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ABSTRACT In Internet of Things (IoT) environments, effective public key management is crucial for
managing numerous devices. RF features, primarily considered analog features within physical layer
authentication by RF Fingerprinting (RFF) processes, present a novel approach to key management. In this
research, we introduce a novel RF-based Public Key Generator (RF-PubKG) model that maps RF features
into cryptographic sequences by incorporating a Key Generation (KeyGen) layer into the RFF model. The
RF-PubKG demonstrates superior performance, achieving 97.2% accuracy at a 20dB SNR and further
improving to 99.6% in noise-free conditions with a Frame Error Rate (FER) below 1%. The generated public
key sets exhibit negligible correlation, with intra-key-set correlations not exceeding 0.24 and inter-model
correlations falling below 0.04, highlighting the reliability of the RF-PubKG model. The integration with
the Rivest–Shamir–Adleman (RSA) algorithm provides proof-of-concept for the RF-PubKG-based digital
signature scheme, effectively simplifying the Certificate Authorities (CAs) management and, consequently,
reducing Public Key Infrastructure (PKI) complexity. This simplification promises effective public key
management within the Public Key Cryptography (PKC), thereby enhancing the efficiency of digital
signature verification processes.

INDEX TERMS Radio frequency fingerprinting, public key generator, public key cryptography, digital
signature scheme, public key infrastructure.

I. INTRODUCTION
In an Internet of Things (IoT) environment, accepting mes-
sages from trusted users is a crucial task. A common method
to authorize users is to check the device’s address, such as
the Media Access Control (MAC) or Internet Protocol (IP)
address, encoded as digital bits in message packets. How-
ever, if these addresses are transmitted without cryptographic
encryption, eavesdroppers can sniff and modify the addresses
using software-defined approaches [1].

One of the efficient solutions to solve this problem is
to insert a valid authentication code in message packets.
An overview of the user authentication scheme in IoT
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environments is presented in Fig. 1. In recent decades, several
network security protocols, such as IEEE 802.1X [2], MAC-
sec [3], or IPsec [4], have been proposed to secure network
channels. These methods encrypt and decrypt user datagrams
using cryptographic algorithms, making it impossible for
eavesdroppers to sniff the user address without access to the
public and private key details.

To secure communication between the numerous devices
in IoT environments, a reliable key management system is
essential. Public Key Cryptography (PKC) can be an effective
solution due to its effective public key management structure.
In PKC, the sender’s datagrams are encrypted using a private
key, allowing any receiver to verify both the integrity of the
datagrams and the sender’s identity. This approach simplifies
key management, as each IoT device needs only a single
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FIGURE 1. An overview of the user authentication scheme in IoT Environments: (a) ID/PW-based authentication; (b) authentication based
on IP and MAC addresses utilizing PKC; (c) authentication using RF features based on RFF; and (d) (RF-PubKG) the proposed method for
authentication using IP and MAC addresses combined with RF features through PKC.

public and private key, whereas a unique key for each pair
of devices is required in private key cryptography.

Digital certificates are primarily used to verify the trust-
worthiness of the public key. These certificates are centrally
managed in the Public Key Infrastructure (PKI) for key
authentication, certificate issuance, and management [5].
However, establishing a trusted PKI involves significant
financial and resource allocations for trusted third parties,
which is not feasible for IoT environments. An alternative
key management system for ensuring the trustworthiness of
the public keys is required.

Radio Frequency Fingerprinting (RFF) can be an alterna-
tive approach for verifying the authenticity of IoT devices.
The RFF is one of the physical layer authentication
approaches that utilizes a unique RF feature present in
analog RF signals. The inherent nonlinearity in the RF
components of the transmitter, such as the Digital Analog
Converter, Frequency Oscillator, or Power Amplifier, arises
from manufacturing variations [6]. These effects accumulate
and manifest as a distinct feature in the transmitted RF signal,
which can serve as a unique authenticated key referred to as
the RF feature.

Research on RF features is both extensive and multi-
faceted. For instance, the time-frequency energy proper-
ties of transient signals generated at the beginning of RF
transmission have been used to identify twenty Bluetooth
devices [7]. Multi-sampled steady state signals, captur-
ing variations in RF transmission of preamble data, have
been directly trained into a convolutional neural network
for 54 ZigBee devices under line-of-sight conditions [8].
Spectrograms of falling signals observed during the decline
of RF transmission have been used to identify seven
frequency-hopping transmitters [9]. More recently, multi-
faceted RF features have been considered with advanced
deep learning approaches. For Wi-Fi devices, IQ, carrier
frequency offset, Fourier coefficients, and time-frequency
coefficients are incorporated into an attention-based deep
learning model [10]. Similarly, magnitude, phase, and power
spectral density of steady-state signals of the Bluetooth

devices have been considered with an embedding-attention
framework [11].
The RF features are renowned for their non-replicable key

characteristics, largely attributed to practical challenges [12].
The randomness and uniqueness of these RF features stem
from the natural variations introduced during the manufac-
turing process. Replicating these key features would require
tighter control over the varied components at the analog level.
However, it is widely recognized that achieving such control
is either prohibitively expensive or virtually impossible in
real-world scenarios [13]. Owing to the inherent randomness
and uniqueness of the RF features, they can be effectively
utilized as non-replicable public keys in user authentication
schemes.

Our research goal is to utilize the non-replicable RF fea-
tures as public keys for the PKC. To achieve this goal, the
RF feature must be converted into a finite cryptographic
sequence. Recent research on RFF has concentrated on cap-
turing RF features as digitized signals in the real domain
[7−11, 14−16]. These features are segmented directly from
the RF signal and transformed into feature domains to
enhance the distinction between different RF transmitters.
Subsequently, these RF features have mainly been processed
using AI models for identification, rather than for crypto-
graphic computations. Conversely, cryptographic schemes
based on PKC depend on complex mathematical problems
conducted within the finite field domain [17]. Although cryp-
tographic calculation in the real domain is feasible, it requires
hardware capabilities that are expensive and unsuitable for
IoT environments. Therefore, further research is required to
establish a mapping relationship between RF features and
cryptographic sequences.

In this paper, we propose a novel RFF process for a Radio
Frequency based Public Key Generator (RF-PubKG) to uti-
lize RF features as cryptographic sequences. In the process of
RFF model training, we introduce a key generation layer to
map the RF features into cryptographic sequences. By con-
sidering these cryptographic sequences as users’ public keys,
we can simplify the PKI structure in the PKC, enhancing the
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FIGURE 2. The overall RF Fingerprinting process is depicted with (a) the Pre-processing step and (b) the RF Fingerprinting step illustrating the
conventional RFF, followed by (c) (Proposed) the Key Generator step representing the proposed RF-PubKG method.

efficiency of the public keymanagement system. The specific
contributions of this paper are detailed as follows:

✓ (RF-basedCryptographic sequences) We propose the
RF-PubKG for mapping RF features to cryptographic
sequences. This unique mapping of the RF feature to
a cryptographic sequence enables integrated authenti-
cation with RFF and PKC. This aspect of the research
paves the way for addressing cryptographic problems
based on RF features.

✓ (RF-based Digital Signature) As proof of concept,
we evaluate the RF-PubKG-based digital signature
scheme along with the hashed RSA algorithm. This
result demonstrates the simplification of the PKI struc-
ture by relying on the trustworthiness of the public key,
which is inferred from non-replicable RF features.

The structure of this paper is as follows: Chapter II
describes the background knowledge related to RFF and the
digital signature scheme for PKC. Chapter III presents the
proposed RF-PubKG scheme and the conceptual structure
for the RF-PubKG-based digital signature scheme imple-
mented by RSA algorithm. Chapter IV details the dataset and
experimental setup, while Chapter V presents the results and
discussions. Chapter VI concludes the paper by summarizing
the findings of this research.

II. BACKGROUND KNOWLEDGE
A. TARGET RADIO FREQUENCY FEATURES
The RF features are distinct characteristics that can be dif-
ferentiated within the RF domain. Selecting the appropriate
target RF feature is crucial for the design of the RFF. While
various methods exist to calculate the RF features from RF
signals, in this work, we adopt the definition outlined in
our previous research [9]. The simple descriptions for each
feature are as follows:

✓ (Rising Transient, RT) The RT feature is a signal
property that rises from the noise level to the desired
communication level, illustrating the process of RF sig-
nal emission when the device is activated.

✓ (Steady State, SS) The SS feature refers to the property
of the signal region that contains the RF-modulated

digital data for message transmission. This illustrates the
process of RF modulation during data transmission.

✓ (Falling Transient, FT) The FT feature represents the
signal property that decreases from the communication
level to the noise level. This illustrates the attenuation of
the RF signal when the device is deactivated.

The most crucial aspect of utilizing the RF features as
public keys is ensuring that it cannot be forged by a third
party. In [18], it was reported that the statistical analysis
of the RT feature is more resilient to impersonation attacks
compared to the I/Q constellation error calculation in the SS
feature.

Additionally, we aim to replace certificates with RF fea-
tures. From the definition of the RF features, the RT and
FT features are independent of the modulated digital data,
and they can be directly utilized as unique features over an
extended period. On the other hand, the SS feature undergoes
significant variations depending on the modulated digital
data. These data dependencies can be eliminated through
additional computational costs, such as extracting the ideal
modulated RF signal from the received RF signal [19].
However, these post-processing costs may compromise the
effectiveness of the system configuration.

For this reason, in this research, we focus on the RT and FT
features as RF features, aiming to create characteristics that
have no dependencies on the digital contents of the certificate.

B. RADIO FREQUENCY FINGERPRINTING
The overall scheme for the RFF process is presented in
Fig. 2, along with the proposed RF-PubKG structure. This
subsection describes the detailed RFF process, including the
pre-processing step and the RFF model training process. The
proposed RF-PubKG scheme is described in Chapter III.

The details of the RFF process are conducted in three steps:
1) RF feature segmentation, 2) RF feature extraction, and
3) RF feature training and classification.

The overall RFF process is formulated as a classification
problem for given RF features. The mathematical description
is as follows:

y = FRFF (s) (1)
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where s ∈ CNSig×1 is a down-converted RF signal
acquired from the receiver operation. NSig is the length of
a complex-valued signal s. FRFF is the RFF algorithm that
maps the input signal s from the RF signal space to the device
ID space. Finally, y ∈ RNC×1 is the result of the RFF that
contains the device ID information, where NC represents the
number of transmitters used to train the RFF algorithm.

The RF feature segmentation is the step for extracting
the target RF features from the received RF signal. This
procedure can be represented by the following equation:

sSeg = gSeg (s) (2)

where gSeg is the function for segmenting the RF features
sSeg ∈ CNSeg×1. It is defined on the target RF feature list,
i.e., feature ∈ {RT ,FT }. NSeg is the length of the segmented
RF features sSeg. In this paper, gSeg is designed based on the
energy variation of the RF feature. We adopt a windowed
energy detection approach to monitor the energy fluctuation,
with En ≥ (1 + δ)En−1 indicating a rise for RT and En ≤
(1 + δ)En−1 indicating a fall for FT. The specific details are
further described in [9].

As a next step, the RF feature extraction aims to transform
the signal space of RF features into other domains, thereby
enhancing the differentiation between the RF features from
different transmitters. The extraction procedure is expressed
as follows:

sTrans = hTrans
(
sSeg

)
(3)

where hTrans is the function for domain transform of the
RF features. sTrans ∈ RN i

Trans×N
j
Trans is the transformed RF

feature, where N i
Trans and N

j
Trans are the sizes of each trans-

formed indices, i and j, respectively. The function hTrans can
be defined in many different ways. It can transfer to the
I/Q constellation domain [20], can calculate the properties
in the statistics domain [21], or can be directly processed
into the AI models for deep learning classifiers [22]. In this
paper, the discrete-time short-time Fourier transform (STFT)
is applied to convert the signal domain intomulti-dimensional
spaces, i.e., time and frequency axis. In this case, i and jare t
and f ; the details are described in [9].

As a last step, the RF feature training and classification
aims to assign transmitter IDs from the RF features, ensuring
robust classification through effective training. The classifi-
cation results can be obtained by:

y = fClassify (sTrans) (4)

where fClassify is the classification algorithm, and the output
y implies the transmitter ID information. Thanks to recent
research in deep learning, fClassify is commonly defined as a
deep learning-based classifier, such as Convolutional Neural
Network (CNN) based classifiers [23], [24], [25] or Genera-
tiveAdversarial Network (GAN) based approaches [26], [27].
This paper utilizes the Deep Inception Network (DIN), which
reported its effectiveness in understanding the RF features in
our previous work [9], as the main RFF model. The structure
details are described in Table 2 of Chapter IV.

To obtain the classification from (4), we must train the
RFF model fClassify for robustness. From the given training
dataset S = [s1, s2, . . . , sM ] of M samples and their relative
labels Y = [y1, y2, . . . , yM ], our DIN model for RFF can be
trained with the cross-entropy loss and Adam optimizer [28]
as follows:

loss = −
(

1
M

)∑M

i=1
log

(
eyi[ck ]∑C
j=1 e

yi[cj]

)
(5)

where k is the true transmitter ID relative to an output label
yi, and yi[cj] is the value of the j th element in yi.

C. DIGITAL SIGNATURE SCHEME
A Digital Signature (DS) scheme is one of the PKC applica-
tions used to verify the authenticity and integrity of a digital
message [29]. It involves using a private key to generate
a unique signature for the sending message, which can be
verified using the corresponding public key. The signature
verifies that the message is not tampered with and is indeed
sent by the claimed sender.

The DS scheme involves the following steps:
✓ (Key Generation, Gen) The signer generates a pair of

keys; a private key, kpri, and a corresponding public key,
kpub. kpri is kept secret and used only by the signer, while
kpub is made public and can be shared with the verifier.

[kpri, kpub] = Gen(1n) (6)

✓ (Signature Generation, Sign) To sign the message m
which has been hashed with the hash function h, the
signer applies a one-way cryptographic function to the
hashed message.

σ = Sign
(
kpri, h (m)

)
(7)

✓ (Signature Verification, Vrfy) The verifier with the
public key, kpub, and the signature, σ , can verify the
authenticity of the sending message m. Verification is
done by applying a verification function defined as
follows:

Vrfy
(
kpub, h (m) , σ

)
= b (8)

where b is 1 if the signature is valid, and 0 if the signature is
invalid

The digital signature can be verified by anyone who has
access to the valid public key. However, calculating the
private key solely from the public key and forging a valid
signature using the estimated private key is extremely chal-
lenging due to cryptographic complexity. These properties
make digital signature schemes fundamental tools for ensur-
ing the integrity of digital data and emphasize the need for
valid public key management.

D. CERTIFICATES AND PUBLIC KEY
INFRASTRUCTURE (PKI)
The trustworthiness of the public keys is crucial in digital
signature schemes. If third parties generate invalid signatures

140870 VOLUME 11, 2023



J. Kang et al.: Radio Frequency Public Key Generator for Digital Cryptographic Application

FIGURE 3. System overview of Digital Signature schemes: (a) Traditional scheme with a certificate management system from the PKIs,
illustrating the process of certificate issuance; (b) Trustworthy scheme based on the RF-PubKGs, utilizing the RFF for key generation to
eliminate the need for a centralized certificate authority, thus simplifying the overall certificate management system.

and fake public keys, the verifier may struggle to determine
signature validity. To prevent this, the digital certificate is
used to verify the authenticity of the user’s public key. These
certificates are strictly managed in the PKI system to ensure
integrity and authenticity [30].

We present the system overview of the digital signature
scheme with the PKIs in Fig. 3.a. The Certificate Authority
(CA) is a core entity of the PKI structure, constructed as a
trusted entity responsible for ensuring the authenticity of the
certificates. The certificate contains a digital signature with
a user’s public key and identity information. The CA signs
this certificate with the CA’s private key and commits it to
Alice and Bob within a secured channel. By verifying Alice’s
certificate with the CA’s public key, Bob can trust the integrity
of Alice’s public key.

The CA is responsible for the revocation and renewal of
the certificates. The CA must publish the Certificate Revo-
cation Lists (CRLs) or operate the Online Certificate Status
Protocol (OCSP) to inform users of the up-to-date status of
the certificates. Bob needs to check these lists to ensure that
Alice’s public key is current.

The CAs are organized in a hierarchical model, where the
intermediate CA (ICA) authenticates users, and the ICAs are
authenticated by the root CA (RCA). This structure ensures
the certificate’s credibility by tracing back to the credibility of
all CAs. However, this structure requires significant resource
allocation to maintain the secure channel for the commitment
of the certificates. Effective architecture to reduce these man-
agement costs must be considered [5].

In this paper, we aim to propose the RF-PubKG, which the
public keys are directly derived from the RFF models.

[y, kpub] = FRF-PubKG (s) (9)

We present an overview of the digital signature scheme
with the RF-PubKG in Fig. 3.b. The uniqueness and
non-replicability of RF features allow the RF features to serve
as unique public keys, replacing the role of digital certificates.
By transforming the RF features into finite cryptographic
sequences, i.e., unique public keys, the trustworthiness of

the public key can be ensured, a role previously fulfilled by
certificates. This approach can simplify the PKI architecture
in the digital signature scheme. It allows the RF-PubKG
model manager, which originally operates at the receiver in
the RFF process, to manage the enrollment of RF features
for authentication. Therefore, this approach can simplify the
hierarchical model required by focusing on managing the
RFF models within the RF-PubKG manager, thus reducing
the complexity of the traditional certificate infrastructure.

III. PROPOSED METHOD
A. RADIO FREQUENCY PUBLIC KEY GENERATOR
Originating from the conventional RFF process outlined in
Chapter II-B, the RF-PubKG includes an additional fea-
ture map layer to enhance cryptographic key reliablity. The
underlying principles and algorithmic approaches of the
RF-PubKG are described in this section.

The feature map was first introduced as an intermediate
computation result of the CNNmodel [31]. It is used to detect
and extract specific features from the input data. Each value of
the feature map in the data represents the interaction between
a particular feature and its location information. This feature
map helps to understand how the deep learning model can
recognize essential features within the data.

From research analyzing the feature maps learned by each
layer, it is well-known that higher layers can learn complex
features to make decisions [32]. Applying this understanding
to the RFF model, we can infer that the higher layers of
the RFF model learn the crucial features from RF signals to
estimate the device ID information. The proposed RF-PubKG
is derived from this inference.

The RF-PubKG scheme is depicted in Fig. 4. Based on the
definition of the RFF classification model in (4), we define
the output of the Key Generation (KeyGen) Layer as follows:

[y, kraw] = fClassify,KeyGen (sTrans) (10)

where kraw ∈ RNkey×1 is the raw key derived from the input
RF feature sTrans, and is considered as an intermediate output
produced by the additional KeyGen layer. fClassify,KeyGen is
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FIGURE 4. The proposed RF-PubKG structure: The KeyGen layer is located
at the highest hidden layer, which processes outputs to generate and
estimate the public key, as depicted in (10) to (14).

the classification algorithm for RF-PubKG, which extends
the RFF model with the KeyGen layer. In this research, the
KeyGen layer is located at the highest hidden layer of the RFF
model, i.e., just before the final classification layer.

The raw key, kraw, is computed within the real domain,
R. To apply the cryptographic scheme, the raw key needs
to be converted into a cryptographic sequence that operates
within the finite field domain. To transfer the real domain into
the target finite field with q elements, we define a mapping
function as follows:

kestimate = round
(

(q− 1)×
kraw −min (kraw)

max (kraw −min (kraw))

)
(11)

where kestimate ∈ NNkey×1 is the estimated cryptographic
key working with the Galois Fields with q elements, i.e.,
GF(q). This research assumes a binary field, GF(2). The
round function is a mathematical function that maps a real
number to the nearest integer number.

The phase of the RF-PubKG is divided into two parts,
i.e., Enrollment and Authentication, similar to the RFF as
described in Fig. 2. Enrollment is the training phase in which
the classification model is trained from the pre-enrolled RF
features of the target transmitters. Authentication is the test-
ing phase in which the input RF feature is classified as one of
the trained transmitter sets.

Based on this description, we set the public key of the
RF transmitters as a sample mean of the pre-enrolled RF
features, which can be obtained during the Enrollment phase.
The detail is as follows:

kpub,ci = round
(∑

kestimate,Train,ci

nTrain,ci

)
(12)

where kpub,ci ∈ NNkey×1 is the public key of the i th target
device ci, kestimate,Train,ci is the sample cryptographic key
estimated from the pre-enrolled RF features, and nTrain,ci is
the number of the pre-enrolled samples.

The public key setting step can be done by calculating the
public keys as in (12) for all of the target transmitters.

KPub =
[
kpub,c1 , kpub,c2 , . . . , kpub,cN

]
(13)

where KPub ∈ NNkey×NC is the public key set of all target
transmitters, which can be used as a reference for the public
key generators.

To authenticate the public key from the input RF feature
during the Authentication phase, a key estimation method is
required to estimate a public key from a given public key set.
We consider the similarity of the cryptographic sequences;
Hamming distance is a valuable metric that measures the
similarity of the two input sequences [33]. We can estimate
the public key as follows:

k̂pub = Argmin
kpub,ci

H (kpub,ci , kestimate,Test) (14)

where kestimate,Test is the cryptographic key estimated from
the test RF feature, H is the Hamming distance between the
public key and estimated key, and k̂pub ∈ NNkey×1 is the final
estimated public key of the test RF feature during the Authen-
tication phase.

By referencing (10) and (14), we can obtain the formu-
lation of the RF-PubKG as represented by (9). The whole
procedure for the RF-PubKG is presented in Algorithm 1.

Algorithm 1 Proposed RF-PubKG algorithm, FRF-PubKG.
Input: The received RF signal s.
Step1: Segment and Transform the target RF signal s to
the segmented RF feature sSeg on (2) and the
transformed RF feature sTrans on (3).

If phase is Enrollment do:
Step 2-1: Train the RF-PubKG model fClassify,KeyGen
on (10) with the loss function on (5)
Step 2-2: Set the public keys KPub on (12) and (13).

else if phase is Authentication do:
Step 2-1: Estimate the device ID, ci from the model
output y, described in (10).
Step 2-2: Estimate the public key, k̂pub, based on the
key estimation equation in (14).

Output: The estimated device ID, ci, the estimated public
key, k̂pub.

B. RF-PUBKG BASED HASHED RSA SCHEME
In this chapter, we aim to prove the effectiveness of the pro-
posed RF-PubKG system. As a proof of concept, we demon-
strate the RF-PubKG-based digital signature scheme with the
simplified PKI configuration by replacing the CAs with the
RF-PubKGs.

This paper considers the hashed RSA algorithm as a digital
signature scheme. The RSA algorithm is currently the most
widely used PKC algorithm. The RSA is based on the math-
ematical fact that the factorization of the sufficiently large
number is difficult to solve [34]. T, represented as follows:

n = P · Q (15)

140872 VOLUME 11, 2023



J. Kang et al.: Radio Frequency Public Key Generator for Digital Cryptographic Application

Algorithm 2 Hashed RSA algorithm based on RF-PubKG.
Input: The public key kpub, the user identity m, the
received RF signal s and the RF-PubKG algorithm
FRF-PubKG.
function Gen(kpub)
1. Set the LSB of the kpub as 1 (for odd number)
2. Set the large P and Q as prime numbers (with the
size of Nkey/2 bits).
3. Compute n = P ·Q and ϕ (n) = (P− 1) · (Q− 1).
4. Check that gcd

(
ϕ(n), kpub

)
= 1

4.1 If not, do again from 2 to 4.
5. Compute kpri where kpri · kpub ≡ 1(modϕ(n))
Output: Public key {kpub, n} and Private key {kpri, n}.

function Sign(kpri,m)
1. Hash the input message, m, i.e. m̂← SHA256(m)
2. Sign the hashed message m̂, i.e. σm← m̂kpri mod n

Output: The signature σm of the message m.
function Vrfy(s,m, σm)

1. Estimate the public key, k̂pub, from FRF-PubKG as
depicted in Algorithm 1

if SHA256(m) = σ
k̂pub
m mod n then

return True
else:
return False

where P and Q are prime numbers, and n is the product of
these two primes. The factorization of the sufficiently large n
into the unknown prime numbers, P and Q, is a complicated
problem. However, if one of the two primes is known, calcu-
lating the other remaining prime becomes an easy problem.

The RSA key generation process utilizes the above rela-
tionship to generate the public and private key pair. In this
work, we aim to generate an RSA private key, kpri, satisfying
the following two conditions when the estimated public key,
kpub, is given from Algorithm 1.

gcd
(
ϕ(n), kpub

)
= 1 (16)

kpri · kpub ≡ 1(modϕ(n)) (17)

where ϕ (n) := (P− 1) · (Q− 1) is Euler’s totient function
of n in (13).
We detail the hashed RSA algorithm based on the

RF-PubKG in Algorithm 2. To integrate the RF-based esti-
mated public key into the RSA algorithm, the following
two modifications are made to the conventional hashed-RSA
algorithm:

LSB
(
kpub

)
= 1 (18)

k̂pub = FRF-PubKG(s) (19)

where (18) reflects the public key for RSA key pairs that need
to be odd numbers, and (19) is the expected public key that
should be utilized in the verification step.

The remaining steps align with the standard RSA
algorithm; the signer signs the message m with its private
key kpri, denoted by RSA signature σm, and the verifier

TABLE 1. RF feature dataset.

verifies the signature σm with its public key kpub in verifi-
cation scheme. The ‘Hash-and-Sign’ paradigm, referred to
as hashed RSA algorithm [29], employs a one-way hash
function h to convert variable-length input message m to a
fixed-length hash value m̂. This conversion is computation-
ally challenging to reverse, making it useful for constructing
efficient and secure signatures. In this paper, SHA-256 is
applied, which is well known to provide random oracle prop-
erties [35]. The system structure is presented in Fig. 3.b.

IV. EXPERIMENTAL SETUPS
A. RF FEATURE DATASET DESCRIPTION
We collected a set of RF signals from real RF transmitters.
Six Ultra High Frequency (UHF) walkie-talkie transmitters
were prepared; four were the SL1M Motorola, and two were
the BD358 Hytera. All transmitters adhered to the Digital
Mobile Radio (DMR) standard [36], which followed the two-
slot Time-Division Multiple Access (TDMA) and four-level
Frequency Shift Keying (4FSK)modulation protocol. The RF
signal consisted of repeated RF bursts. These bursts occurred
at intervals of 30ms. Each RF burst was constructed from the
RT, SS, and FT features described in Chapter II-A. We con-
sidered the RT and FT features as the target RF features in
this research.

The details of the RF feature dataset are presented in
Table 1. An average of 664 RF bursts were measured for each
transmitter, resulting in 3982 bursts from six transmitters. The
RF dataset was divided into training and testing datasets at a
ratio of 7:3, meaning that 2790 bursts were used for training,
while 1192 bursts were reserved for testing.

B. HARDWARE AND SOFTWARE CONFIGURATIONS
We collected the RF signal using our RF receiver sys-
tem. The system configuration is depicted in Fig. 5. The
RF signal was transmitted to the receiver at a carrier fre-
quency of 444.025MHz. This signal was then received and
down-converted to a 1MHz IF signal, utilizing hardware com-
ponents with the Nagoya NL-R2 UHF antenna, XL-11-411
RF mixer, and E4438C ESG vector signal generator, which
functioned as the frequency oscillator. The IF signal was
sampled at 20MHz using the PX14400 digitizer. We applied
software-defined Digital Signal Processing (DSP) techniques
to extract the RF burst from the IF signal. The energy detec-
tion approach described in [9] was applied to detect the RF
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TABLE 2. Architecture of the RF-PubKG model (Based on DIN model
in [9]).

FIGURE 5. The RF receiver system: H/W and S/W configurations.

bursts, and this RF burst was subsequently down-converted
to the baseband with a decimation factor of 2. Finally, we set
the 10 M sampled baseband RF bursts as the RF Feature
dataset.

All experiments were conducted on an Intel i7-6850K
CPU and NVIDIA Titan RTX GPU, using Python 3.6 with
PyTorch 1.6.0. The only exception was the DSP procedure for
constructing the RF feature dataset, which was performed in
MATLAB 2018a. The experiments were evaluated 10 times,
and the average results are presented.

C. EVALUATED RF FINGERPRINTING MODELS
In this paper, we aim to demonstrate the effectiveness of the
key generation approach rather than evaluating the classifier
model. We describe the architectures of the main and baseline
RFF models evaluated in this paper.

There are three approaches to constructing the custom deep
learning classifier: a vgg block in VGG [37], a residual block
in ResNet [38], and an inception block in Inception-v4 [39].
We have evaluated the RFF models with these construction
approaches to demonstrate the generality of the RF-PubKG.

We constructed themain RFFmodel based on the inception
block. The architecture detail is presented in Table 2. The
design strategy of the inception block is to filter out input
features using different receptive field sizes. This strategy
was successfully demonstrated to be useful for understanding
RF features in our previous work [9]. Based on this result,
we adopted the DIN classifier from [9] as the main RFF

TABLE 3. Key estimation accuracy∗.

model, utilizing the inception-A and reduction-A blocks of
the inception-v4 model [39]. The only modification made
was the introduction of the KeyGen layer as the highest
hidden layer of themodel, serving as the public key generator,
as described in Chapter III-A.

A first baseline model is established using a set of vgg
blocks. The design strategy of the vgg block employs a
repeated pattern of a simple and homogeneous topology,
proven effective in extracting complex features as the network
deepens [37]. To ensure fairness in comparison with the main
model, we simplified the VGG11 model in [37], originally
composed of 5 vgg blocks, to just 2 vgg blocks with channel
depths of 32 and 64. Similar to themainmodel, we introduced
the KeyGen layer just before the FC-1000 layer.

A second baseline model is established using the residual
block. The residual block is designed to alleviate the vanish-
ing gradient problem that occurs as the network goes deeper,
through the use of a skip connection [38]. This strategy is
well-reflected in [40], where the Hilbert spectrum of the SS
feature is effectively trained by repeating 2 residual blocks.
Baseline 2 is constructed from the RFF model structure in
[40] by introducing theKeyGen layer just before the fc5 layer.

The third baseline represents a conventional RFF model
constructed using a CNN architecture. In [41], the SS features
were calculated by removing the ideally encoded signal from
the received RF signal, and these features were learned using
an RFF model constructed with a 1D convolutional network.
For the Baseline 3 model, we adapted the identification net-
work from [41], converting the 1D convolutional layer to 2D,
and added a KeyGen layer just before the final Dense layer.

D. ENSEMBLE RF-PUBKG
An ensemble approach is a well-known method to enhance
the generalization performance of the classifier [42]. It aggre-
gates the results of themultiple base classifiers tomake a final
decision. It was reported that the stacking ensemble of the
multiple RF features can improve the accuracy of RFF [9].
We construct a stacking ensemble key generator as shown

in Fig. 6. From the definition of the raw key with a single
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FIGURE 6. Ensemble approach of RF-PubKGs: The raw key outputs from
each RF-PubKG are combined in stacked manner in (20).

classifier in (10), the ensemble raw key kraw,Ensem for the input
RF features sTrans,feature can be defined as follows:

kraw,Ensem =
1

|feature|

∑
fKeyGen,Classify

(
sTrans,feature

)
(20)

where feature ∈ {RT ,FT } is the target feature of interest for
stacking the ensemble classifier, and the other key generation
algorithms in (10) to (14) operate on this ensemble raw key
kraw,Ensem.

V. RESULTS AND DISCUSSION
This chapter describes the results and discussion related to
the proposed RF-PubKG method. Accuracy and Frame Error
Rate (FER) are examined across various signal-to-noise radio
(SNR) channel conditions to evaluate the effectiveness of
the RF-PubKG. To evaluate system reliability, we measure
clustering results for RF-PubKG outputs and the correlation
between different public keys or RF-PubKGmodels. Further-
more, we quantify the size and time consumption of the RSA
algorithm based on RF-PubKG, serving as a proof of concept
for the RF-PubKG-based digital signature scheme, as illus-
trated in Fig. 3. These metrics, which will be discussed in the
following subsections, provide a comprehensive evaluation of
the proposed RF-PubKG’s performance and reliability.

A. PUBLIC KEY ESTIMATION RESULTS
First, we evaluate the key estimation accuracy and key esti-
mation time of the proposed RF-PubKG method. Accuracy
is determined by the correctness of the estimated public key,
as defined in (14). Time is measured as the public key gener-
ation time from (10) to (14). We assume that the public key
set in (13) is already established during the Enrollment phase
and committed to the receiver in the Authentication phase.
The results are presented in Tables 3 and 4.

Table 3 illustrates the public key estimation accuracy
related to variations in key size. The FT feature achieved
an average mapping accuracy of 94.9% to cryptographic
sequences, while the RT feature achieved 98.1% accuracy.
The Ensemble of RF Features yielded a 99.6% accuracy in
mapping to cryptographic public keys. This result indicates

TABLE 4. Key estimation time.

that there were just five rejections out of 1192 RF bursts
in the test dataset. In other words, one rejection per every
7.5 seconds will occur in the DMR transaction.

When compared to the baselines, Baseline 2 achieved
an accuracy that was 0.7% lower than the inception block,
highlighting the residual block’s efficiency. However, the
inception block maintained higher accuracy than Baseline 2
across all key size variations. This is consistent with the
findings in [9] that the consideration of different recep-
tive filter sizes in the inception block is more efficient.
While Baseline 1, utilizing the vgg blocks, showed similar
estimation efficiency, it had a nearly 2% decrease in perfor-
mance. Regarding Baseline 3, the CNN-based RFF model,
it achieved an accuracy of only 87.6%.We analyzed this result
due to its limited structure for training RT and FT features.

Table 4 presents the key estimation time for the RF
feature-based public key. Using a single feature, the inception
RF-PubKG results in an average estimation time of 5.6ms,
while the ensemble approach results in 10.8ms. These values
are greater than those of the other baselines, such as 2.2ms for
Baseline 3, 2.6 ms for Baseline 1, and 3.8 ms for Baseline 2.

Upon analysis, we observe that the time degradation is
primarily correlated with the number of branches in RFF
models, rather than with the number of parameters. For
instance, the ResNet and inception blocks contain 2 and
4 branches, respectively. While these branches may appear
to be calculated in parallel within the system structure, they
are serially computed and combined in S/W implementations.
This means that the inception blocks require 4 times as many
calculations as other baselines. Even in that case, the results
of the inception RF-PubKGs remain competitive, consider-
ing the one-slot duration of the DMR transaction is 30ms.
We expect that the ensemble RF-PubKGs can be optimized
in time by utilizing multiple GPU units for parallel input
features.

As a next step, we estimate the key estimation accuracy
against SNR variation according to the AWGN channel. From
(1), the received signal, including the AWGN channel noise,
is defined as follows:

ŝ← s+ n (21)

where ŝ is a noisy RF burst to which AWGN channel noise n
generated proportionally from normal RF burst s is applied.

VOLUME 11, 2023 140875



J. Kang et al.: Radio Frequency Public Key Generator for Digital Cryptographic Application

FIGURE 7. Key estimation accuracy of the RF-PubKG under AWGN
channel conditions. The RF-PubKG achieves 97.2% at 20dB SNR, rising to
99.0% with improved channel conditions.

SNR formulation for theAWGNnoise n is defined as follows:

SNR = 10 log10

(
∥s∥22
|n| σ 2

n

)
(22)

where |n| represents the length of the n, and σ 2
n represents its

variation.
As a next evaluation metric, we evaluate the FER of the

proposed method. According to the frame definition in the
TDMA protocol of the DMR standard [36], one frame con-
sists of two RF burst signals. Since the RF-PubKGs operate
on units of the RF burst signal, we can compute the prob-
ability of two RF bursts being received without error. The
probabilities are defined as follows:

BER = 1− Accuracy (23)

FER = (1− BER)2 (24)

where the Burst Error Rate (BER) is the probability of an RF
burst being rejected.

The estimation accuracy results in relation to SNR varia-
tion are presented in Fig. 7. With SNR over 20dB, which is
generally assumed to be a good channel condition, the ensem-
ble method achieved over 97.2% key estimation accuracy.
This represents a performance improvement of more than
0.5% compared to 96.6% of the RT, 95.3% of the Baseline 1,
and 96.7% of the Baseline 2. Baseline 3 only achieved an
83.3% accuracy, a degradation in performance. Especially
at 25dB or higher, the inception RF-PubKGs achieved over
99.0% accuracy, uniquely achieving a BER of less than 1%
compared to the other baselines.

Fig. 8 presents the FER results. At SNR levels exceeding
20dB, the ensemble approach achieves an FER of 5.6%. This
value decreases to 2.0% at 25dB SNR and drops further to less
than 1.0% in noise-free conditions where no AWGN noise is
added. Conversely, the baselines do not reach below 1.0%
FER, with the lowest value being 1.9% for Baseline 2 in
noise-free conditions. We emphasize that these results reflect

FIGURE 8. Frame error rate of the RF-PubKG under AWGN channel
conditions. The RF-PubKG achieves 5.6% at 20dB SNR, 2.0% at 25dB SNR,
and decreased to less than 1.0% in noise-free conditions.

the raw FER without the application of Error Correction
Coding (ECC), a technique commonly utilized to enhance
FER performance. We anticipate that future improvements in
performance through ECC will be possible.

B. RELIABILITY OF THE CRYPTOGRAPHIC SEQUENCES
To evaluate the reliability of the proposed RF-PubKG,
we conduct a comparative analysis of the estimated public
keys derived from both training and test datasets. To facil-
itate this comparison, we apply t-Distributed Stochastic
Neighbor Embedding (t-SNE) to our RF dataset. t-SNE is
a nonlinear dimensionality reduction method to transfer a
high-dimensional data structure into a lower-dimensional
space while preserving the similarity relationships of the data
points [43]. It is primarily used for visualization and can be
useful for discovering patterns or clusters in complex data
domains. The results of the t-SNE are presented in Fig. 9.

Fig. 9.a. illustrates the clustering results between the public
key sets KPub and the public keys kestimate estimated from
the training dataset. The results show that the public key
estimation scheme in (12) is simple but effectively identifies
the center of each cluster. The key consideration for this
evaluation is how well this pre-enrolled public key set aligns
with the public keys estimated from the test dataset. The
clustering result is illustrated in Fig 9. b. The result shows that
the given public key set retains the centrality of the clusters in
the test dataset. It confirms that, as described in (14), accurate
and unique public key estimation is achievable through a
Hamming distance-based estimation approach, when using
the provided public key set.

In Fig. 10, a correlation matrix of the public key sets is
calculated to confirm the stability of the generated public
cryptographic key sets. The result shows that the correlation
between the generated Public Key of each transmitter is not
significantly large, and the largest correlation is 0.24 between
Tx1 and Tx3. This is a reasonable result considering that the
AI model trains the dataset for optimizing the clusters with
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FIGURE 9. Clustering results of estimated public keys, kestimate, from RF features with the public key set KPub: (a) Demonstrated centrality within the
training dataset; (b) Consistency maintained within the testing dataset. The public key set accurately establishes cluster centers during training and
preserves center integrity in testing.

FIGURE 10. Correlation Matrix of the RF-PubKG. Public key correlations
remain below 0.24, indicating the uniqueness of the generated public
keys among RF transmitters.

sufficient distance. This result confirms that the RF-PubKGs
can generate unique public key sets with sufficiently different
cryptographic sequences between the RF transmitters.

Another significant aspect of evaluating the reliability of
the key generator is to examine the variance in generated pub-
lic key sets when new RFF models are being trained. Table 5
evaluates the correlations for the generated public key sets
across the different trained RFFmodels. The result shows that
the correlation remains consistently low, not exceeding 0.04.
This implies that the activated node positions in the KeyGen
layer are established through the random distribution. This
observation confirms that the periodical re-training approach
of the RFFmodel can enhance the overall security of the PKC
system.

C. PUBKGS IN HASHED RSA SCHEME
As a proof of concept for the RF feature-based digital signa-
ture schemes, the implementation performance was evaluated

TABLE 5. Correlation matrix for key sets generated by distinct RF-PubKG
models.

using a hashed RSA algorithm based on the RF-PubKG. The
results for size and time consumption are presented in Table 6.
We implemented a hashed RSA digital signature scheme
based on the X509 certificate for the PKImanagement system
using the PyCryptodome [44] and pyOpenSSL [45] libraries.
The system overview is depicted in Fig. 3. PyCryptodome,
a Python library for cryptographic operations that complies
with the Digital Signature Standard (DSS) standard docu-
ments NIST FIPS 186-4 [46], is utilized to implement the
RSA signature scheme. Meanwhile, the pyOpenSSL library,
a wrapper for OpenSSL in Python, is used to construct the
digital signature scheme with a single CA for PKIs using
the X509 object packages in pyOpenSSL. The evaluation
included evaluations of certificate file sizes and scheme oper-
ation time, thus confirming the concept for the proposed
RF-PubKGs.

In our evaluation, we assume that the training procedure for
the RF-PubKG has already completed the Enrollment phase
as defined in Algorithm 1. This implies that the RF-PubKG
function FRFF and Public Key SetKPub have been committed
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TABLE 6. Quantification analysis of RF-PubKG based digital signature scheme implemented by hashed RSA algorithm.

to the sender and receiver before RF transmission. We arti-
ficially generate a 12-digit MAC address as a user identity
message and evaluate the implemented signature scheme to
verify this address. Our focus is on the analysis of time con-
sumption and file size for constructing the PKIs. Specifically,
we measure the time required for the Gen, Sign, and Vrfy
processes as defined in Algorithm 2. In addition, we mea-
sure the time needed for CA certificate verification, the file
size for PKI configuration, and the certificate generation
time.

Consequently, the proposed RF-based RSA signature is
identical to the conventional RSA signature method except
for the public key generation process from the RF-PubKGs.
For this reason, it was confirmed that the time consumption
is similar to that of the conventional RSA algorithm, and it
even increased a s the key size increased. This result can be
anticipated, given that the method involves a larger key size
than general RSA key pairs, which utilize a fixed public key,
i.e., kpub is 65537.
The proposed RF-based RSA signature scheme presents

an advantage in simplifying the PKI structure. Through the
previous discussion, we confirmed that a public key can be
uniquely derived from the non-replicable RF features. This
means that the PKI, a system for maintaining and managing
certificates, can be simplified because the reliability of the
public key can be sufficiently secured. As a result of the actual
experiment, it is confirmed that Alice’s signature could be
verified from the public keys estimated from the received RF
feature, and a certificate for Alice is not required to verify the
public key in this process. We note that one person only needs
a few Kbytes and tens of milliseconds, but these amounts can
increase exponentially as the number of people managed by
PKIs increases.

This evaluation illustrates that the hierarchical model of
CAs described in Chapter. II can be sufficiently simplified.
The complexity can be minimized, as the structure solely
necessitates a RFF model manager responsible for the sys-
tematic updates of the RFF models.

D. DISCUSSION
We successfully evaluated the effectiveness and reliability
of RF-PubKG and validated the concept of an RF-PubKG
based digital signature scheme using the RSA algorithm. This
subsection will discuss the impact and future work related to
RF-PubKG, along with its drawbacks.

RF-PubKG is a novel RFF process designed to generate
trustworthy public keys from non-replicable RF features.
It allows for the integrity verification of the public key, based
on the device’s authenticity at the physical layer. We believe
that RF-PubKG can enhance the efficiency of cryptography
system structures by being integrated into key verification
processes.

As a case study demonstrated in Chapter V-C, we imple-
mented an RF-PubKG based digital signature scheme using
the RSA algorithm. This scheme efficiently validates the
signature verification directly from the trustworthy public
key derived from the RF-PubKG, thereby making certificates
redundant and reducing the need for third-party CA man-
agement. Consequently, as depicted in Fig. 3, RF-PubKG
considerably simplifies the operational complexities and
resources required for the PKI entities. We believe this poten-
tial application to simplify PKC structures holds promise for
a wide range of key-based cryptography.

Future work will focus on addressing the inefficiencies of
the RF-PubKG based digital signature scheme in the con-
text of cryptography. As a proof-of-concept, we employed a
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cascade structure that combines RF-PubKG and the existing
RSA algorithm. Although this approach shows feasibility,
it was not optimally efficient from a cryptographic aspect,
as demonstrated by the increased time consumption shown
in Table 6. These inefficiencies are drawbacks for real-world
applications that necessitate further research into more effec-
tive cryptographic algorithms for managing the RF-PubKGs.

VI. CONCLUSION
In this research, we have investigated the novel applica-
tion of RF features in generating trustworthy cryptographic
sequences, demonstrating the promising potential of RF fea-
tures at the physical layer to enhance the efficiency of digital
security. We proposed RF-PubKG, which utilizes a key gen-
eration layer within the RFF model to effectively map analog
RF features to digital cryptographic key sequences. This work
establishes a novel paradigm for public key generation.

We evaluated the effectiveness of RF-PubKG.We achieved
key estimation accuracy of over 99% for various crypto-
graphic key lengths, with a generation time of only 10.8ms.
In AWGN channels with an SNR level over 20 dB, these
results maintained a 97.2% accuracy along with a 5.6% FER,
which decreased below 1% as channel conditions improved.

We corroborated the reliability of the RF-PubKG by vali-
dating the consistency and clustering centrality of the public
key sets when compared to the testing dataset. We confirmed
the independence among public keys by measuring correla-
tion values lower than 0.24. Notably, the ability to generate
distinct key sets with updates to the RFF model was demon-
strated by correlation values lower than 0.04, emphasizing the
dynamic and adaptable nature of the RF-PubKG scheme.

As a proof-of-concept, we have validated the RF-PubKG-
based digital signature scheme using an RSA algorithm.
This scheme enhances PKI efficiency by generating reliable
public keys directly from unique RF features, thus avoid-
ing the complexities of third-party CA management. These
results validate the signature verification directly from the
RF-derived public keys, making certificates redundant. Such
simplification could reduce the operational complexities and
resource demands for PKIs, enhancing the efficiency of
digital signature applications by simplifying the PKI enti-
ties. This process of verification could become less complex
and resource-intensive when managing a large number of
identities.

This research is a pioneering exploration into utilizing RF
features as cryptographic sequences, thereby substantiating
the cryptographic viability of the proposed method. Research
findings not only evaluate the efficiency and reliability of
the RF-PubKG but also its applicability to real-world cryp-
tographic scenarios.

As a direction for future research, we plan to further
improve our research findings by integrating ECC to improve
FER rates and expanding the application of PKC to sim-
plify complex hierarchical systems of cryptography. We will
continue to pave the way for more secure and efficient

cryptographic solutions derived from the potential of RF
signal features.
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