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ABSTRACT In this paper, a multi-function embedded eye tracker system (ETS) has been presented and
FPGA implementation of that has been described. The image processing algorithm is based on morphological
operations to detect centers of pupil (PC) and corneal glint (GC) so that gaze of the user can be estimated by
establishing a mapping between obtained PC-GC vector and screen. Moreover, the proposed ETS is capable
to detect pupil size which is vitally important in understanding consciousness of the user since it varies in
response to light condition. Taking advantage of optimum system design and parallel signal processing on
high-speed digital units of the FPGA, the processing time of 1.8 ms was achieved that allows operation of the
system up to 500 fps. The results of test with 176 x 120 images demonstrate maximum vertical or horizontal
error of £1 pixel. Experimental results imply versatility of the proposed low-power and high-accuracy ETS
for real-time and accurate applications such as medical diagnosis and human-computer interface.

INDEX TERMS Embedded system, field programmable gate arrays, gaze tracking, hardware acceleration,

morphological operations.

I. INTRODUCTION

Gaze tracking is a well-known approach for a reliable cog-
nitive assessment of human. Gaze tracking is defined herein
as the process of detecting, tracking and modeling eyes of
users which is the role of an eye tracker system (ETS) [1],
[2]. With the increase in demand for ETSs worldwide, many
researchers have been trying to introduce and develop eye
tracking approaches for several applications.

To date, almost all of the presented ETSs are based on
one the following methods: ellipse fitting, pattern recognition
and morphological operations. In the method of ellipse fitting
after binarizing image the largest contour is considered as
pupil. Then, an ellipse is fitted to that contour. By fitting
the ellipse, along with center location of the pupil, diameters
length of that is provided as well [3]. However, in this method
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image processing is carried out using a software running
on a complex system with high memory usage. Moreover,
to remove false pupil candidates that can degrade the per-
formance, extra processing unit is required which increase
the system complexity further. In pattern recognition-based
works, eye features such as pupil center location and eye
corners are extracted using a supervised neural network
(basically convolutional neural networks (CNN)) [4], [5] or
unsupervised methods such as calculating cross correlation
between captured image and a predefined template (a.k.a.
filtering) [6]. On the one hand, by exploiting this method a
fast and robust ETS can be obtained which is able to extract
the required information for eye tracking such as pupil center
(PC) location, eye corners and pupil size simultaneously. But
on the other hand, the aforementioned advantages can be
achieved only at the price of a complex hardware for training
network and processing images which result in increase in
cost and power consumption of the system. The eye trackers
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which employ morphological operations detect PC by pro-
cessing the binarized image pixel-wise. In fact, each pixel
value is determined according to value of the neighboring
pixels at each iteration. Thus, after a few iterations undesired
pixels including false candidates are removed and only PC
remains.

Except for morphological-based eye trackers, other eye
tracking methods require a powerful processor and enormous
amount of memory. As a result, they consume an exten-
sive power to accomplish image processing. In addition,
due to required time for transferring data between memory
and processor they are not as fast as morphological-based
eye trackers with in-memory processing capability. How-
ever, in morphological-based ETSs, false pupil candidates
degrade the accuracy drastically. Basically, false pupil can-
didates can be originated from light source reflection on
corneal and undesired pixels like eyelash and eyelids [7].
Consequently, by removing false pupil candidates, an accu-
rate ETS can be achieved that can demonstrate low power
consumption and complexity. However, several FPGA-based
works fail to achieve high accuracy due to not mitigating this
error properly [8]. Also, various works deal with that using
software-hardware collaborative design which wastes bene-
fits of FPGA hardware acceleration and is not appropriate for
real-time applications [9].

In this work, in order to improve accuracy of the system
over previous FPGA-based ETSs we remove false pupil can-
didates effectively by filling the holes in eye images caused
by corneal glint and eliminating unwanted pixels other than
pupil prior to detecting PC without the needs of any additional
algorithm and the burden of more complexity. The proposed
multi-function ETS can obtain crucial data for gaze estima-
tion by detecting the pupil and corneal glint centers besides
pupil size of the user based on morphological operations.
Taking advantage of FPGA hardware acceleration and utiliz-
ing high-speed digital resources optimally, all objectives are
detected simultaneously with frame rate up to 500 fps. Also,
accuracy and robustness of the proposed design are verified
through several tests. Experimental results and comparison
with the recent state-of the-art ETSs imply the superiority
of our design over previous works and competency of that
for real-time applications such as human-computer interface
(HCI).

The rest of this paper is organized as follows. In Section II
design methodology of the proposed ETS is presented.
Section III describes FPGA implementation of the proposed
ETS in detail. Experimental results of the prototype ETS are
provided and discussed in Section IV. Finally, conclusions
are drawn in Section V.

Il. PROPOSED ETS DESIGN METHODOLOGY

A. OPERATION PRINCIPLE

Fig.1 illustrates operation principle of the proposed ETS.
First, eye image is captured by image sensor. Since the
image processing is carried out in digital domain, eye
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FIGURE 1. Operation principle of the proposed ETS.

image is binarized using comparator circuit. The compara-
tor threshold value is a critical parameter in morphological
operations-based digital ETSs because an inappropriate value
for that may result in irrecoverable errors such as wrong
PC and GC location. In another case, if chosen value is too
large, it causes an increase in the number of iterations and
accordingly processing time and power consumption. And
in the worst case, if a too small value is chosen for that,
failure in obtaining appropriated information due to removing
all pixels in the first dilation iteration is highly likely to
occur. This parameter is proportional to light condition and
object (eyes of the user) distance from light source and image
sensor. By using IR LED and photodetector as light source
and image sensor, dependence of threshold value on light
condition can be mitigated. Also, in head-mounted device
(HMD) configuration or an application in which the user is in
a static position like medical diagnosis, the object distance to
light source and camera is invariant. So, an optimum and per-
manent threshold value can be set heuristically during system
configuration. Subsequent to binarization, several informa-
tion can be extracted from eye image utilizing morphological
operations.

Two well-known morphological operations in image pro-
cessing are dilation and erosion. Dilation converts a black
pixel to white if all neighboring pixels of that are not black.
Conversely, erosion flips white pixels to black provided that
all neighboring pixels of that are not white. Based on the
pattern of sensing neighboring psixels there are three types of
kernels for morphological operations: 1) cross, 2) rectangular
and 3) ellipse [10]. Appropriately, we extract required infor-
mation from eye image in this work employing only these two
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FIGURE 2. PC detection process in the propose ETS. (a) without glint
utilizing dilation, (b) with glint utilizing dilation only, (c) with glint
utilizing dilation and erosion.

operations as descried in this section. We utilize cross kernel
for dilation and rectangular kernel for erosion.

B. PC DETECTION

By performing dilation operation number of black pixels
in the image decreases after each iteration which results in
removing the small black regions other than pupil. As long
as the number of remaining pixels is more than a predefined
value, this process is repeated. Then, PC location is repre-
sented with the location of the remaining pixels (Fig. 2(a)).
Corneal glint reflections cause holes in the image which may
lead to wrong PC location (Fig. 2(b)). In order to avoid
this error, the holes must be filled prior to series of dilation
operations. For this purpose, we perform erosion for two
iterations. It should be noted that we perform erosion after
one iteration of dilation to ensure removal of unwanted pixels
and prevent expanding them. After filling the holes, dilation
operation series continues as far as the number of remaining
pixels falls below the predefined value which is 10 in this
work (Fig. 2(c)).

C. GC DETECTION

In order to track gaze of the user, in addition to location
of the PC, GC location is required to establish a mapping
between PC-GC vector and screen [11]. In this work we
detect GC location with the same algorithm as of PC detec-
tion. However, as the corneal glint is the brightest feature in
image in contrast with the pupil, we need to perform inverse
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FIGURE 4. Pupil size detection in the proposed ETS.

binarization on image prior to morphological operations.
Again, by performing an iteration of dilation at the beginning
undesired pixels are diminished. Subsequent to two iterations
of erosion followed by the first dilation, GC location is
detected through a series of dilation operations with the same
stop criterion as of PC detection as shown in Fig. 3. It should
be pointed out that for both PC and GC detection if more
than one pixel remains, the rightmost one in the lowest row
is considered as the output. This rule and number of required
dilation and erosion operations were obtained heuristically.

D. PUPIL SIZE DETECTION

Another function that our ETS using FPGA can provide is
detecting the size of pupil which is crucial in some appli-
cations such as medical diagnosis because diameter of the
pupil varies in reaction to illumination. The most commonly
used approach of detecting pupil size is finding the largest
contour in the image with assumption that it is the pupil
and fitting an ellipse or a circle to that [9], [12], [13], [14].
However, an incorrect contour may be mistakenly identified
as the pupil. In this work pupil size is detected exploiting the
same principle as PC and GC detection (i.e. morphological
operations). Since image features are removed by dilation
operation, after finding the location of pupil center, pupil
shape can be retrieved by processing inversely (expanding
the remained black pixel). For this purpose, in the number of
difference between number of dilation and erosion cycles we
perform expand operation on remaining black pixel. It should
be highlighted that we utilize a cross kernel for this function
to obtain a diamond that can be fitted to an ellipse as shown
in Fig. 4. Then, using 5 obtained points (center of pupil, X1,
X2, Y1 and Y2) an ellipse is fitted to pupil the diameters of
which provide the size of pupil.
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FIGURE 5. Conceptual FPGA implementation of the proposed ETS.
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typedef ap_axis <8, 2, 5, 6> pixel_type;

typedef hls::stream <pixel_type> AXI_STREAM;

void dil_ero (AXI_STREAM &in_stream, AXI_STREAM
Sout_stream){

#pragma HLS INTERFACE axis port=in_stream

#pragma HLS INTERFACE axis port=out_stream
pixel_type input_pixel, output_pixel;

unsigned char INPUT_IMAGE[IMAGE_HEIGHT][IMAGE_WIDTHI;
unsigned char OUTPUT_IMAGE[IMAGE_HEIGHT][IMAGE_WIDTH];
10 unsigned char kernel [31[3] = {

11 {o,1,0},

12 {1,1,1},

13 {0,1,0}};

14 int KCenterX = KERNEL_SIZE / 2;

15 int kCenterY = KERNEL_SIZE / 2;

16 for (int i = 0; i < IMAGE_HEIGHT; i++){

WO EFEWNER

17 for (int j = 0; j < IMAGE_WIDTH; j++){
18 input_pixel = in_stream.read();

19 INPUT_IMAGE [i][j] = input_pixel.data;
20 for (int k = ©; Kk < KERNEL_SIZE; k++){
21 int Kk = KERNEL_SIZE - 1 - k;

22 for (int 1 = 0; 1 < KERNEL_SIZE; 1++){
23 int 11 = KERNEL_SIZE - 1 - 1;

24 int ii = i + (k - kCenterY);

25 int jj = j + (L - kCenterX);

26 if (ii >= 0 && ii < IMAGE_HEIGHT
27 & jj >= 0 & jj < IMAGE_WIDTH){
28 OUTPUT_IMAGE [il[j] +=

29 INPUT_IMAGE[iil[jj] * kernel[k][1];
30 }

31 }

32 }

33 output_pixel.data = OUTPUT_IMAGE;

34 output_pixel.keep = input_pixel.keep;
35 output_pixel.strb = input_pixel.strb;
36 output_pixel.user = input_pixel.user;
37 output_pixel.last = input_pixel.last;
38 output_pixel.id = input_pixel.id;

39 output_pixel.dest = input_pixel.dest;
4o out_image.write(output_pixel);

41 }

42}

43 1}

FIGURE 6. HLS code of a naive implementation of dilation and erosion
with 3 x 3 cross-shaped kernel.

IIl. PROPOSED ETS DESIGN METHODOLOGY
A. SYSTEM CONFIGURATION
Fig. 5 depicts conceptual FPGA implementation of the pro-
posed ETS. In this work FPGA acts as central processing
unit of the system. First, it receives data from image sensor
through I/O ports connected to programming system (PS)
of the chip. The captured images are stored in 512 MB
DDR3 SDRAM with 16-bit bus which can be connected
to programmable logic (PL) through AXI interface. Then,
to accelerate image processing, data is sent to PL to be
processed by functions implemented on high-speed digital
units with parallel signal processing and pipelining ability.
For each function in the system we have defined a custom
IP connected to corresponding AXI DMA. Since each AXI
DMA has access to memory separately, and each custom
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IP utilize PL hardware independently, all functions can be
performed simultaneously without any disturbance. To have
a perfect performance 8-bit image pixels are transmitted to
PL through AXI4-Stream interface that is suitable for trans-
ferring image and video because of capability of handling
size of the data being transferred and near real-time opera-
tion. As can be seen in Fig. 5, in order to fetch data to be
sent to PL. from memory, and storing received data from PL
in the memory, AXI Direct Memory Access (AXI DMA)
provides a FIFO-based channel between memory and AXI4-
Stream interface. To obtain appropriated information from
eye image, morphological operations need to be performed
repeatedly on each image. Each function is equipped with
block RAM (BRAM) units of FPGA to receive image pixels
only once and use them for several times without the need of
continuous PL-PS connection. Hence, by excluding required
time for continuous transferring data between memory and
functions during operation results in lower processing time
compared to software-based systems.

The appropriate threshold values are fed to PC and
GC detection functions through AXI Lite Slave interface
for image binarization. Also, pupil size detection function
receives required number of iterations for erosion from PC
detection function through AXI DMA using AXI Lite Slave
interface. Finally, PS receives processed data from PL and
generates appropriate output that can be sent to screen.
In Fig. 5 AXT Lite slave, AXI4-Stream and /O signals are
represented by green, blue and red lines, respectively.

It should be highlighted that even though in this work we
exploit PS memory to store captured images, in a more effi-
cient approach for real-time operation in practical condition,
functions can receive pixel values directly from image sensor
connected to PL of the FPGA. Consequently, by detaching
the memory of FPGA chip we can achieve higher rate of
image processing with in-memory processing ability of the
proposed functions.

B. CUSTOM IP FOR IMAGE PROCESSING
For each function of the system a custom IP has been
implemented using Xilinx Vivado HLS 2019.2 in C+4+.
Since fundamentals of each function is based on dilation
and erosion, we describe implementing these operations sys-
tematically in this section. As mentioned in the previous
section, all functions of this work can be obtained by different
iterations of these operations. Dilation and erosion are mor-
phological operations based on sliding window convolution
between input image and kernel. A naive implementation
of this process is shown in Fig. 6. The lines 1-7 and 8-9
define AXI4-Stream interface and 2D memory array on PL,
respectively. Moreover, the purpose of the lines 33-40 is to
transmit generated output pixels to PS as a stream. The two
outer loops iterate over every pixel of input image and the two
inner loops iterate over the values within kernel.

It is worth mentioning that owing to pattern of read/write
pixels from/to memory in this method, only the inner loop can
be pipelined which limits optimizing the hardware design by
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FIGURE 7. (a) Fundamentals of line buffer and window buffer, (b) HLS
code for an efficient implementation of dilation and erosion using line
buffer and window buffer.

pipelining. As a consequence, the bottleneck of this method
is limited number of pixels being read/write simultaneously
per clock cycle. For example, when we use a 3 x 3 kernel,
9 input pixels have to be read for generating every single
output pixel. The Vivado HLS synthesis report shows that in
this method calculating only one output pixel takes 5 cycles
because each pixel should be accessed several times for cal-
culating different output pixels. It becomes even worse for
large kernel sizes. However, since the Vivado tool calculates
only the runtime of processing unit excluding inter-unit data
transmission time in timing analysis, the estimated time for
processing images can be worse in practical condition.
Accordingly, we employ a more efficient method so that
each pixel is accessed only once for the whole process. Line
buffer and window buffer are two cooperating memory struc-
tures that allows to achieve this efficiency. The concept of this
method and HLS code implementation of that are illustrated
in Fig. 7(a) and (b), respectively. The AXI4-Stream interface
and memory definition is the same as of Fig. 6. A line buffer
is a 2D memory array with the size of [kernel size] x [image
width] ([3] x [176] in this work) and acts as a cache to store
input image pixels being processed. The window buffer is an
array of registers with the same size as kernel (3 x 3 in this
work) that retains the pixel values within kernel in each clock
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cycle so that they can be accessed at the same time. First, the
line buffer loads input image pixels one by one (Lines 3-5).
Once it gets adequate elements to fill the rightmost column
of the window buffer it shifts vertically at every iteration
(lines 7-9). While the line buffer is shifting, elements from
the topmost line are discarded one by one. Correspondingly,
on each clock cycle only one new pixel needs to be loaded
from input stream to the line buffer. After filling the window
buffer, at each iteration by performing dilation or erosion
operation, the new pixel value is calculated and sent to the
output stream. At the next iteration window buffer discards
the leftmost column and loads the new column from the line
buffer on the right (lines 11-14). While the lines 15-22 of
the code illustrates dilation operation, if O in line 15 and |
(logical or operation) in line 19 are replaced with 255 and
& (logical and operation), respectively, the code performs
erosion operation.

Utilizing pipeline pragma in the code, during each iter-
ation only one read/write from/to the external data stream
occurs. Interestingly, benefiting from this technique the opti-
mal throughput of one output pixel per clock cycle can be
achieved [15], [16]. It should be pointed out that it is nec-
essary to halt the process until the line buffer gets sufficient
elements to produce one output element right from the first
iteration. Thus, before running the process on input stream,
the line buffer needs to be initialized with a suitable value (0
or 1 depending on image background) otherwise some data
in the output image would be missing.

While it takes several iterations to obtain appropriated
information from eye images, benefiting from pipelin-
ing in the proposed design, different operations are per-
formed simultaneously to achieve lower processing time. For
instance, once a pixel is generated at the first iteration of
dilation, it is fed to line buffer of the next step immediately
for erosion. Moreover, during the operation number of black
pixels (pixels with the value of 0) are counted and if it falls
below the predefined value the algorithm stops and the result
is sent to the processor.

IV. RESULTS AND DISCUSSION

A. TEST SETUP

The proposed ETS was implemented on Xilinx PYNQ Z1
FPGA board. Xilinx Vivado 2019.2 development kit was
used to configure hardware of the board. Then, to run the
system and obtain the results it was connected to a personal
computer and controlled via Jupyter notebook. Eye images
were captured using a conventional camera. Nevertheless,
the system can be linked with an image sensor as well.
Due to lack of IR imaging equipment corneal glints were
generated artificially. But, it doesn’t discredit the results
because the size and brightness of them were set similar to
the real case. A conceptual test setup of the proposed ETS
is shown in Fig. 8. The utilized FPGA resources has been
listed in Table 1. The system operates at default FPGA clock
frequency of 100 MHz. Among the used resource, all the
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FIGURE 8. The test setup of the proposed ETS.

TABLE 1. The proposed ETS FPGA resource usage.

Resource Utilization Available Utilization %
LUT 9584 53200 18.02
LUTRAM 532 17400 3.06
FF 11750 106400 11.04
BRAM 40 140 28.57
DSP 11 220 5.00

BRAM and DSP, 75.7% of FFs and 71.7% of LUTs were used
solely for functions. The AXI interconnections use 24% of
FFs, while the processor system reset module utilizes 0.3%.
Additionally, 28.13% of LUTs are used for AXI interconnec-
tions, and 0.17% are dedicated to the processor system reset
module.

B. EXPERIMENTAL RESULTS

We verify the proposed design by inducing several tests
on 176 x 120 eye images with different scenarios. First,
to demonstrate robustness of the algorithm, we examined the
system performance with different types of eyes. As can be
seen in Fig. 9, the proposed ETS can detect PC, GC and pupil
size properly regardless of the eye shape and color. It is impor-
tant to note that as the images were captured in divergent
conditions, processing of each image might demand different
binarization threshold value and number of iterations for
detecting appropriated information. These values have been
mentioned in Fig. 9 for each image. It can be inferred from
the results that as the eye is darker, lower threshold value
and higher number of iterations are required for PC detection
because more pixels have to be removed. Later, we captured
eye images looking to different directions with fixed light
condition and camera distance from the eye. In this case,
threshold value is identical for processing different images.
Fig. 10 shows eye images and detected PC. To evaluate
accuracy of the system we obtained these parameters using
software simulation along with the proposed FPGA imple-
mented ETS. Detected PC from implemented system and
software simulation are represented by yellow x and blue W,
respectively. Herein, we define the error as the discrepancy
between measured and simulation results. As can be seen,
while the images are occluded by corneal reflection glints,
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eyelids and eyelashes, the maximum error is 1 pixel in ver-
tical and horizontal directions. In other words, the maximum
diagonal error for all gaze directions is ./2 pixel which
occurs when in both vertical and horizontal directions there
is an error of one pixel.

As explained in Section II-A, threshold value is a deter-
mining parameter in digital ETSs employing morphological
operations. Although we set the threshold value during initial
configuration of the system, but due to fluctuation in core
voltage and temperature of FPGA this value may vary in
practical condition. So, we evaluate our ETS performance
over threshold deviation by processing images with random
threshold values in the range of & 100% of optimal value
(i.e. 5 for images in Fig. 10) for 1000 epochs. While number
of pixels in original image increases with the growth of
threshold, number of remaining pixels in processed image is
constant for a large portion of the range. Hence, the vertical
and horizontal error remain in the range of £1 pixel for the
entire threshold variation range. Therefore, it can be implied
that mismatches and environmental conditions do not degrade
stability and performance of the system.

We implemented the proposed ETS processing units on
PL of the Xilinx FPGA to accelerate functions taking advan-
tage of instructions pipelining and parallel signal processing
utilizing fast digital modules. As described in Section III-B,
a single output pixel is generated at each clock cycle. In con-
sequence, runtime of the algorithm is calculated by the
number of image pixels multiplied by clock period. Partic-
ularly, the runtime of processing images with the resolution
of 176 x 120 in this work is 211.2 us using 100 MHz clock
frequency. However, taking the required time for receiving
data from PS, storing it in PL local memory and sending the
processed data to PS into account the total processing time of
this work is 1.8 ms. Therefore, it can be said that the system is
able to process 500 images per second (i.e. 500 fps). In order
to provide a comparative analysis of the obtained processing
time with software implementation and underline benefits of
hardware acceleration, we implemented the image processing
functions on PS of the FPGA using python OpenCYV library.
While instructions on PL can be performed concurrently and
pipelined, they are run sequentially on PS.

Hence, with a considerable increase in the processing time,
it takes 25.2 ms to accomplish image processing using PS of
the FPGA. As a result, it can be said that hardware acceler-
ation factor of 14 was achieved in this work that is defined
as the ratio of processing time using PS to processing time
using PL. The total power consumption of FPGA chip is
247 mW with 3.3 V power supply. According to FPGA board
control panel, the static and dynamic power consumptions are
141 mW and 106 mW, respectively.

C. DISCUSSION

Table 2 summarizes the proposed ETS specifications and
presents a comparison with the state-of-the-art eye trackers.
From the Table 2, it can be deduced that there is a noticeable
gap between required hardware for implementing an ETS
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FIGURE 9. The test results of the proposed ETS with different types of eyes.

using FPGA and software-based system disregarding the per-
formance. Additionally, due to high integratability of FPGA
components in contrast to required system for software-based
eye trackers, FPGA-based works consume drastically less
power compared to those systems. Therefore, in applications
where power dissipation and system complexity are critical,
FPGA-implemented systems are highly preferred.
According to Table 2, our design demonstrates the most
resource efficiency among the other works. While [3] cap-
tures images at a resolution of 800 x 600, they only process
100 x 100 eye images for pupil detection. Surprisingly, their
system utilizes 160 MB of memory, which is over 900 times
larger than the memory usage in our work. In addition, ETSs
in [6], [8], [12], and [13] process images at double the size,
and in [5] at quadruple the size compared to our work. How-
ever, considering the relationship between the difference in
input image resolution and the disparity in resource usage
while they only provide basic functions such as detecting eye
location, pupil and gaze direction but our design performs
three functions in parallel providing information with high
precision at considerably higher frame rate implies superior-
ity of this work over them in terms of resource efficiency.
Owing to high-speed processing algorithm and FPGA
hardware acceleration this work demonstrates a remark-
able improvement in frame rate among FPGA-based ETSs
which allows incorporating our design in near real-time
applications. The processing time mentioned in Table 2
encompasses both runtime of the algorithm and consumed
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Threshold = 5 No. of Iters. = 8 - 10

FIGURE 10. The test results of the proposed ETS with constant light
condition and user-camera distance.

time for transferring data from memory to processing unit
and vice versa. Therefore, to achieve this improvement in
this work first the need for continuous inter-unit transfer-
ring data in FPGA has been eliminated utilizing PL local
memory and data transmission is carried out through ultra-
fast AXI4 Stream interface between memory and processing
units within the chip only once. Furthermore, employing line
buffer facilitates image processing by pipelining and efficient
pattern of accessing memory which results in lower runtime.
As one output pixel is produced during each clock cycle,
by increasing the clock frequency the processing time can
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TABLE 2. The proposed ETS performance summary and comparison with state-of-the-art eye trackers.

3] [13] [12] [8] [6] [5] This work
Obtained info. PC & GC Tris Pupil Pupil Eye loc. Gaze dir. PC, GC and
pupil size
Impl. platform Software FPGA FPGA FPGA FPGA FPGA FPGA
. Ellipse Morph. S
Algorithm Fitting Morph. Oper. Oper. Morph. Oper. Filtering CNN Morph. Oper.
Image size 100x100 320%240 320x240 320%240 320%240 640%480 176x120
Hardware Intel 17 Stratix [V Zynq Cyclone IV Cyclone II Cyclone IV Pynq Z1 (Zynq
7700k EP4SGX530 xc7z020 EP4CE115 2C70 EP4CE115 xc72020)
Frame rate (fps) 723 210 N/A N/A 8 80 500
Processing time 1.38 ms 5.15 ms 6.25 ms' 6.5 ms 118 ms 0.52 ps? 1.8 ms
Memory usage 160 MB 2048 KB 440 KB 1641 KB 52 KB 80 KB 180 KB
Processor frequency 3
(MHz) 4200 215 203 111 27 100 100
Power (mW) N/A N/A N/A N/A 375 409 247
Max. error (vertical or 0.67* N/A N/A N/A +1 N/A +1
horizontal)

"Runtime of the algorithm.
Recognition time of CNN.

3The system uses 40 % of all CPUs during training and 13%while capturing.

4Standard deviation for 4500 samples.

be decreased. Due to PLL limitation the maximum actual
clock frequency is 525 MHz on the Xilinx PYNQ Z1 FPGA
board. However, we employed the default clock frequency
of 100 MHz in this work to highlight the influence of hard-
ware acceleration and perfect design methodology on the
achieved efficiency and frame rate enhancement. Though,
obviously by employing the maximum clock frequency,
a lower runtime and accordingly a higher frame rate can be
achieved while using considerably lower hardware resources
compared to other works. In practical condition, we can set
the clock frequency at maximum for the best performance.
Although the ETS in [5] shows the least processing time, but
it should be noted that the mentioned time is only recogni-
tion time of the CNN. Also, the processing time associated
with [12] is solely the runtime of algorithm, calculated by
multiplying the clock period by the required number of clock
cycles that is still considerably higher than the runtime of
our proposed ETS, even when using clocks at double the
rate. Thus, we can see that when the total execution time
including the time of transferring data between different parts
of the system is taken into account, the output frame rate
which is obtained considering the whole processing time is
remarkably less than our work. In [6], cross correlation with
a predefined pattern is calculated through an image. Despite
of our design, each pixel needs to be read several times
which increase the processing time substantially. Nonethe-
less, the runtime can be improved by exploiting a higher
clock frequency. Yet, the meaningful processing time in [6]
underlines the need for optimizing implementation. Taking
advantage of modular design and parallel-pipelined imple-
mentation, the ETS in [13] shows the best processing time
among other FPGA-based works in Table 2. In order to detect
iris, the system generates multiple circles as iris candidates.
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Then, to select the best circle, an iterative algorithm is used
which leads to increase in resource usage notably. As can
be seen in Table 2, [13] exhibits the highest memory usage
among other FPGA-based works. To circumvent iterative
optimization algorithm, the ETS proposed in [8] employ a
Gaussian filter and adaptive thresholding prior to processing
image to reduce imperfections caused by background vari-
ations and poor contrast. However, at the price of a slight
decrease in memory usage, this work fails to locate the pupil
properly in the presence of dense eyelashes and eyebrows.
While undesired pixels such as eyelashes and eyebrows at
the first dilation operation are removed or shrinked in our
proposed ETS. Furthermore, pixel-wise image processing
ensures diminishing non-connected components like eye-
lashes and eyebrows effectively after a few iterations which
results in high accuracy as can be seen in Fig. 2. Finally,
it should be highlighted that our proposed ETS provides more
functions than other works within the mentioned runtime in
parallel while consuming less power. To sum up, the proposed
design surpasses software implemented counterparts in terms
of power consumption, processing time and efficiency in
any condition. Also, when an embedded eye tracker with
flexibility and multi-functionality is of interest in real-time
and accurate applications such as medical diagnosis and HCI,
the proposed low-power and high-speed ETS can be preferred
to FPGA-based counterparts.

V. CONCLUSION

A high-speed FPGA-based ETS employing morphological
operations (dilation and erosion) has been presented in this
paper. The proposed multi-function ETS can obtain all of the
application required information such as PC and GC locations
for gaze tracking along with the pupil size in parallel. Taking
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advantage of hardware acceleration on PL of the FPGA using
line buffers and AXI4 Stream interface, the processing time
has been improved by the factor of 14 that allows the proposed
ETS to operate up to 500 fps at 100 MHz clock frequency.
Experimental results show that the proposed ETS can obtain
appropriated information within &1 vertical or horizontal
pixel error with 247 mW power consumption. Also, the
algorithm is robust to FPGA chip voltage and temperature
fluctuation, threshold deviation and unwanted corneal reflec-
tion glint. The results imply superiority of this work over
software implemented eye trackers and competency of that
for real-time and precise applications such as HCI and med-
ical diagnosis. Finally, developing this work by designing
another custom IP to perform sampling video frames for
real-time video processing, and constructing PC-GC vector
mapping function for gaze estimation are suggested for future
works.
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