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Abstract: In plasma diagnostics using interferometry, the phase shift caused by the plasma in the
fringes is extracted to determine the plasma density. The common method to extract the phase
shift from the fringes is the fast-Fourier-Transform (FFT), but this technique encounters challenges
when dealing with insufficient fringe numbers, spatially varying fringe frequencies, or extremely
sharp phase changes. These challenges result in errors and hinder the acquisition of precise phase
measurements. To tackle this issue, we introduced the fringe normalization (FN) method. The
simulations demonstrated that the FN method extracts accurate phase information, surpassing
the capabilities of the FFT method. As a result, this advancement enables more precise plasma
diagnostics by mitigating errors that arise during the phase data processing. Furthermore, we
improved the code for the inverse matrix Abel inversion to convert phase information into density.
The simulation employing this code showed that the developed code provides more accurate values
in the analysis of plasmas with a sharp density profile, assisting in electron beam manipulation in
laser-plasma acceleration.
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1 Introduction

Plasma diagnostics represent a crucial method for its efficient application in plasma-based researches.
Plasma characteristics such as temperature and density have been analyzed using a range of methods
including spectroscopy and interferometry [1–3]. One of typical techniques for plasma density
measurement is optical laser interferometry, which entails the analysis of phase shift induced by
plasma in interference fringes. Because the phase shift is proportional to the electron number density
in the interferometry scheme, the accurate analysis of phase information is a critical process. Such
analysis has primarily been conducted using a fast-Fourier-transform (FFT) method [4]. However,
under constrained conditions that involve abrupt plasma density variations or yield a limited number
of fringes, errors can arise during data processing.

In laser wakefield acceleration (LWFA) researches, the plasma profile with a sharp density
transition plays a crucial role in the injection and acceleration of electrons [5–7]. Narrow and high
density distribution may be used for short injection resulting in a narrow spectrum and high charge
electron beams, and long or inclined density profile can be used for longer acceleration length.
Therefore, precise measurement of steep plasma density gradients is essential for effective electron
beam control in LWFA applications.

In this study, we introduced the fringe normalization (FN) method to reduce an error in phase
analysis. The FN is an algorithm to extract the phase information from single fringe pattern
with non-uniform amplitude [8, 9], and from comparative simulation with the FFT method, we
confirmed that the FN method enhances the accuracy in phase analysis under some constrained
conditions. Furthermore, we improved the inverse matrix Abel inversion method [10, 11] as a means
of converting phase shift to density function. To check validity of proposed methods, we conducted
simulations for plasma density analysis by assuming defined density profile which can be used
in LWFA.
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2 Fringe normalization method

2.1 Fringe normalization

The purpose of FN is to map appropriately the data values within the range of −1 to 1, facilitating
the effective utilization of the inverse cosine function. To apply FN, let’s assume that the fringe data,
the intensity 𝐼 (𝑥) of the signal, are represented as

𝐼 (𝑥) = 𝐴(𝑥) · cos(𝜙(𝑥)) + 𝐷𝐶 (𝑥). (2.1)

To obtain the normalized fringe signalcos(𝜙(𝑥)), we employ the most intuitive peak-based method,
then 𝐷𝐶 (𝑥) and 𝐴(𝑥) are extracted from 𝐼 (𝑥).

The first step for 𝐶 (𝑥) is setting upper peaks and lower peaks of 𝐼 (𝑥) (figure 1a). After
interpolating the upper peaks, an envelope of upper part (𝑒𝑛𝑣+) is obtained. Similarly, the obtained
lower peaks give the lower envelope ( 𝑓−). Here we define 𝐷𝐶1(𝑥) as an average of 𝑒𝑛𝑣+ and 𝑒𝑛𝑣− .
By subtracting 𝐷𝐶1(𝑥) from 𝐼 (𝑥) we define 𝐼1(𝑥), and similar process of finding new 𝑒𝑛𝑣+ and
𝑒𝑛𝑣− is repeated by finding 𝐷𝐶2(𝑥) and 𝐼2(𝑥), and so on.

𝐼2(𝑥) = 𝐼1(𝑥) = 𝐴(𝑥) cos(𝜙(𝑥)) + 𝐷𝐶 (𝑥) − 𝐷𝐶1(𝑥)
𝐼3(𝑥) = 𝐼2(𝑥) − 𝐷𝐶2(𝑥), . . . (2.2)

After 𝑛 steps 𝐷𝐶𝑛 (𝑥), it will converge to zero at large 𝑛. Then, 𝐷𝐶 (𝑥) can be expressed as the sum
of 𝐷𝐶𝑘 (𝑥): 𝐷𝐶 (𝑥) = ∑𝑛

𝑘=1𝐷𝐶𝑘 (𝑥). However, blindly increasing 𝑛 can actually lead to more errors
between 𝐷𝐶 (𝑥) and

∑𝑛
𝑘=1𝐷𝐶𝑘 (𝑥). The reason is that there are numerical errors during interpolation

when using peaks. Here, we propose the linear interpolation and opt up to 𝑛 = 2 in the data process.
Now, we obtain a new signal (𝐼amp(𝑥)) after removing 𝐷𝐶 (𝑥): 𝐼amp(𝑥) = 𝐼 (𝑥) − 𝐷𝐶 (𝑥).

Next, we remove the amplitude function 𝐴(𝑥). If the 𝐷𝐶 (𝑥) is effectively eliminated in the
above process, the upper and lower sides of the envelope of 𝐼amp(𝑥) should be balanced around the
center zero. To make more peaks we add −𝐼amp(𝑥) to 𝐼amp(𝑥) and pick up the upper peaks, which
will give 𝐴(𝑥). The red line in figure 1b shows after the interpolation. There can be some points of
𝐼amp(𝑥) that are larger than 𝐴(𝑥), especially where 𝐴(𝑥) significantly variate. This issue would be
resolved by changing the interpolation method or adjusting the positions of the peaks. However, the
simplest solution is to set those points forcing the same values 𝐴(𝑥) to 𝐼amp(𝑥). When all points
satisfy 𝐴(𝑥) ≥ |𝐼amp(𝑥) |, then we can get the normalized fringe 𝐼norm(𝑥) (figure 1c) by dividing
𝐴(𝑥): 𝐼norm = 𝐼amp(𝑥)/𝐴(𝑥).

There are two more issues to be cautious when processing the original data. The first is to
accurately identify positions of peaks, i.e., correctly captured points where the phase (𝜙(𝑥)) should
become an integer of π. The second is to avoid data before the first peak and after the last peak since
it cannot be obtained through the interpolation.

2.2 Phase retrieving with inverse cosine function

The obtained 𝐼norm(𝑥) will have cos(𝜙(𝑥)) like eq. (2.1), so the phases are obtained by 𝜙arc(𝑥) =
acos(𝐼norm(𝑥)). Since the inverse cosine function ranges [0, 𝜋], it is necessary to map appropriately
the values in the range of [0, 2𝜋] to align with the periodicity of the cosine function. When the
phase 𝜙(𝑥) is appropriately mapped within the range of [0, 2𝜋]: 𝜙wrap, it satisfies the following

– 2 –



2
0
2
3
 
J
I
N
S
T
 
1
8
 
C
1
2
0
1
6

equation: 𝜙(𝑥) = 𝜙wrap(𝑥) + 2𝜋𝑁 (𝑁 is an integer). We can determine 𝜙wrap considering the 𝜙arc

slope:

𝜙wrap(𝑥) =
{

𝜙arc(𝑥) :
(
𝜙′arc(𝑥) ≥ 0

)
2𝜋 − 𝜙arc(𝑥) :

(
𝜙′arc(𝑥) < 0

) , (2.3)

where 𝜙′arc(𝑥) is the derivative of 𝜙arc(𝑥). There are peaks where the sign of 𝜙′arc(𝑥) is not determined
due to the discontinuity as shown in figure 2a. In such peaks, we choose the smaller slope of
𝜙wrap−𝜙arc or and 𝜙wrap−[𝜙arc − (2𝜋 − 𝜙arc)] into 𝜙wrap connecting to neighbor points. Afterward, by
unwrapping 𝜙wrap to ensure the function is continuously connected, 𝜙(𝑥) is obtained finally (figure 2b).

Figure 1. (a) shows the intensity 𝐼 (𝑥) of an arbitrary test signal along with its upper peak and lower peak,
which were used to obtain their respective envelopes, 𝑒𝑛𝑣+ and 𝑒𝑛𝑣− . Additionally, it displays the average of
these two envelopes, 𝐷𝐶1 (𝑥). (b) shows 𝐼amp (𝑥), obtained by removing 𝐷𝐶1 (𝑥) from 𝐼 (𝑥), along with its
graph −𝐼amp (𝑥) flipped with respect to zero. It presents the envelope 𝐴𝑚𝑝(𝑥) derived from the upper peaks
of these two curves. (c) shows the normalized intenstiy(𝐼norm (𝑥)).

Figure 2. (a) The graph of 𝜙arc (𝑥) obtained using the acos function and the graph of 𝜙mod (𝑥) obtained by
extending it to the range of [0, 2𝜋]. The peaks marked with red dots should be handled with caution when
extending the range. (b) shows 𝜙mod (𝑥) and its unwrapped version 𝜙(𝑥).

2.3 Phase shift calibration

Phase shift is defined as difference between the signal phase and reference (or carrier) phase. When
there are no images of the reference signal available, we can select a portion of the image where no
phase shift occurs. Of course, this phase-shift-free portion should be strategically positioned to avoid
passing through a plasma or gas before conducting interferometry measurements. We choose the part

– 3 –
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without phase shift and apply the least square method for one-dimensional fitting. The resulting fitting
can then serve as a reference phase. If noise signals are low, first-order interpolation would suffice.
However, in cases where the frequency of carrier fringe varies across space, higher-order fitting
might become necessary. An experimental result is shown in figure 3. In figure 3a, the measured
interference pattern passing through a plasma is depicted, while figure 3b showcases the outcomes
of the phase shift using the FN method. The latter reveals a distinct plasma density formation.

Figure 3. (a) shows the interference fringes with laser induced plasma. (b) shows retrieved phase shift of (a)
by using FN method.

2.4 Comparison of FN and FFT methods

In this section, we will compare the simulation results of the FFT method and the FN method
using different numbers of fringes with MATLAB. To conduct the simulation, we first determine
the size of the domain and create a reference signal with no phase shift (represented by the red
dotted line in figure 4a), aligned with the number of fringes to be used. Then we added an arbitrary
phase shift (represented by the black line in figure 4b) to create a modulated signal (represented
by the black line in figure 4a). We analyzed these signals separately using the FFT method and
the FN method, comparing the phase shift value obtained with the phase shift values introduced
during signal modulation to confirm the errors that occurred depending on the method used. In this
simulation, we assumed that there is no noise in the signal itself, and that the amplitude change is
also smooth, in order to discuss the effectiveness of the method itself.

In figure 4b, a comparison is presented between the original phase shift, the phase shift retrieved
through the FFT method, and that retrieved via the FN method. Figures 4c–f display the phase errors
at fringe numbers 15, 20, 25, and 30, respectively. As the number of fringes increases, the phase
errors decrease when using the FFT method. On the other hand, the FN method exhibits quite small
errors even with just 15 fringes, and these errors further diminish as the number of fringes increases.
Ultimately, the FN method provides more accurate results compared to the FFT method.

The challenge when applying the FN method to real data is whether it can accurately capture the
correct envelope points or not. However, this is not a problem with the FN methodology but rather a
question of whether noise handling and peak detection can be performed accurately. Fortunately, the
FN method allows for easy correction of error points by directly identifying them. Another issue
could arise when intensity changes between fringes are not linear. However, if this fact is known,
one can use high-order approximations tailored to it.

– 4 –
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Figure 4. (a) shows modulated fringe data. (b) shows phase shift added to the reference signal. (c), (d), (e)
and (f) plots represent the errors in the phase variation obtained using the FFT and FN methods for fringe
counts of 15, 20, 25, and 30, respectively.

3 Inverse matrix Abel inversion

The Abel inversion is a mathematical technique that allows us to reconstruct the internal density
function using its projection image. It assumes that the internal density function, denoted as 𝑓 (𝑟), is
a function of the radial variable. Given a projection image 𝐼 (𝑥), the density function 𝑓 (𝑟) can be
expressed as follows:

𝑓 (𝑟) = − 1
𝜋

∫ ∞

𝑟

𝑑𝐹

𝑑𝑥

𝑑𝑥
√
𝑥2 − 𝑟2

. (3.1)

When directly applying eq. (3.1), errors due to discretization can significantly impact the reconstructed
density function. After discretizing values of 𝐼𝑖 and 𝑓 𝑗 (𝑖, 𝑗 = 1, . . . , 𝑁), they can be expressed using
matrix notation as follows: 

𝑀1,1 . . . 𝑀1,𝑁

. . . 𝑀𝑖, 𝑗 . . .

𝑀𝑁,1 . . . 𝑀𝑁,𝑁



𝑓1

. . .

𝑓𝑁

 =

𝐼𝑁

. . .

𝐼𝑁

 , (3.2)

where 𝑀 is 𝑁 × 𝑁 matrix that depends on the specific transformation. Assuming 𝐼 (𝑥) represents
a projection of a radial density function, 𝑀 becomes upper triangular matrix and invertible, this
allow us to calculate the density function 𝑓 using the equation 𝑓 = 𝑀−1 × 𝐼. To determine the
matrix 𝑀, let’s assume a semicircle with a radius of 𝑁 . We assume that its density function takes
the form 𝜌(𝑟 (𝑥, 𝑦)) = 𝑁 −

√
𝑟2, where 𝑟2(𝑥, 𝑦) = (𝑥 − 1)2 + (𝑦 − 1)2. Then, we can make the 𝑀𝑖 𝑗

by counting the number of 𝑦 that satisfy the following condition:

𝑀𝑖 𝑗 = count{𝑦 |𝑁 − 𝑗 + 1 < 𝜌(𝑟 (𝑖, 𝑦)) ≤ 𝑁 − 𝑗 + 2 : 𝑦 is an integer}.

– 5 –
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Figure 5a illustrates the computed matrix 𝑀 with 𝑁 = 100. As the size of matrix 𝑀 increases,
the values of 𝑓 𝑗 become more accurate. Therefore, the projection 𝐼 (𝑥) is discretized using a larger
number of points. We only need to consider 𝑓 𝑗 values that correspond to the measured 𝐼 (𝑥) as 𝑓 (𝑟).
In figure 5b, a comparison is made among the original density function, the density function retrieved
using the inverse matrix method, and the density function directly calculated using eq. (3.2). The
inverse matrix method yields a more accurate result at 𝑁 = 1000 compared to 𝑁 = 100. However,
significant errors are observed in the first grid value 𝑓1. Hence, for now, it is recommended to
extrapolate 𝑓1 from the values of 𝑓2∼𝑁 rather than using the directly obtained value.

When applying this to real data, there are several points to be considered. Firstly, it’s about
determining the center position of the plasma. Finding the center of a plasma that exhibits left-right
symmetry is essential, but since real data is often asymmetric, the choice of what to consider as the
center can significantly affect the results. We plan to develop code that utilizes the inverse matrix
method for asymmetric Abel inversion to address this issue. Next, there is issue of dealing with
problems that arise at the plasma’s boundary. As the laser passes through the plasma’s outer region,
it undergoes refraction, leading to additional phase changes and causing ambiguity in precisely
determining the boundary. The effects of refraction not only impact the phase but also affect the
intensity, so we plan to improve the code by incorporating a method that considers intensity in
defining the boundary.

Figure 5. (a) shows the 𝑀 with 𝑁 = 100. (b) shows the original denstiy function with reconstructed density
function by inverse matrix method (N=100 and 1000) and direct method.

4 Simulation for plasma density analysis

There exists a relationship between the plasma density (𝑛𝑒) and the differential phase (𝑑𝜙), which
can be expressed as follows [12]:

𝑑𝜙 =
𝑒2

−2𝑐2𝑘0𝜖0𝑚𝑒

𝑛𝑒𝑑𝑥 , (4.1)

where 𝑘0 is the wavenumber of the probe laser and 𝑑𝑥 is the differential length of plasma. The
phase shift (Δ𝜙 =

∫
𝑑𝜙) is obtained by the FN method. This phase shift is then utilized in the Abel

inversion process to estimate the electron density of 𝑛𝑒.
For density analysis calculations, a signal was tested under following conditions. The maximum

plasma density at the center is 5 × 1024 m−3, with a cross-section profile following a one-sigma
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Gaussian shape of 0.2 mm (represented by the black line in figure 6d). The longitudinal electron
density profile is shown as a black solid line in figure 6c. The corresponding phase shift is presented
in figure 6b. In order to validate our algorithm, we introduce the phase shift to the reference data with
20 fringes, and the generated signal data is shown in figure 6a, and reconstructing the data is shown
in figure 6e. As demonstrated in figure 6c, there is a noticeable agreement with the original one. In
figure 6d, after dividing into 20 segments using the inverse matrix method, the value 𝑓1 obtained
by the spline interpolation was slightly lower at the center axis, measuring 0.947 compared to the
original value of 1.0. The final calculated electron density amount to 4.73 × 1024 m−3, whereas the
original value stood at 5.0 × 1024 m−3.

In the actual plasma where LWFA phenomena occur, the phase changes are often too subtle to
be directly observed. Therefore, it is necessary to artificially extend the length of the plasma for
measurements. It appears that further research is needed to understand how the process of increasing
the size of the plasma at the same gas density nonlinearly affects the plasma density.

Figure 6. (a) The generated fringe data. (b) The generated phase shift map. (c) Normalized density
distribution along the x-axis. (d) Normalized density distribution of cross-section. (e) Retrieved electron
number density map.

5 Conclusion

We introduced two data processing algorithms of the FN method and inverse matrix Abel inversion to
diagnose a plasma density with the laser interferometry. The FN method could show more accuracy
than the FFT method. The inverse matrix Abel inversion, as finding better matrix M, it could work
effectively even at a small size. Our data process promised capability in plasma density diagnostics
through a virtual plasma test with its accurate and efficient data analysis. The next goal will be to
demonstrate that this analysis method works properly using real experimental data in the future.
Further research and exploration of these algorithms could lead to significant advancements in the
laser interferometry applications for plasma diagnostics, especially in LWFA.
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