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Abstract: Non-small cell lung cancer (NSCLC) is a leading cause of cancer-related deaths worldwide.
Targeted therapy against the epidermal growth factor receptor (EGFR) is a promising treatment
approach for NSCLC. However, resistance to EGFR tyrosine kinase inhibitors (TKIs) remains a
major challenge in its clinical management. EGFR mutation elevates the expression of hypoxia-
inducible factor-1 alpha to upregulate the production of glycolytic enzymes, increasing glycolysis and
tumor resistance. The inhibition of glycolysis can be a potential strategy for overcoming EGFR-TKI
resistance and enhancing the effectiveness of EGFR-TKIs. In this review, we specifically explored the
effectiveness of pyruvate dehydrogenase kinase inhibitors and lactate dehydrogenase A inhibitors in
combating EGFR-TKI resistance. The aim was to summarize the effects of these natural products in
preclinical NSCLC models to provide a comprehensive understanding of the potential therapeutic
effects. The study findings suggest that natural products can be promising inhibitors of glycolytic
enzymes for the treatment of EGFR-TKI-resistant NSCLC. Further investigations through preclinical
and clinical studies are required to validate the efficacy of natural product-based glycolytic inhibitors
as innovative therapeutic modalities for NSCLC.

Keywords: natural products; NSCLC; EGFR-TKI; glycolysis inhibitor; PDK; LDHA

1. Introduction

Lung cancer is the leading cause of cancer-related deaths, with approximately 1.8 million
deaths worldwide in 2020 [1]. Non-small cell lung cancer (NSCLC; 82%) and small cell
lung cancer (SCLC; 14%) account for the majority of cases of lung cancer [2,3]. Overall,
NSCLC is the most frequent type of lung cancer. Based on the histological characteristics,
NSCLC is further classified into lung adenocarcinoma (50–60%), squamous cell carcinoma
(20–30%), and large cell carcinoma (10–20%) [4].

The epidermal growth factor receptor (EGFR) is one of the most common driving
mutations in NSCLC [5]. EGFR mutations are more common in Asian populations (ap-
proximately 50%) than in populations from the United States and Europe (approximately
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10%) [6]. Consequently, EGFR is one of the most significant targetable mutations in NSCLC
and is widely explored in cancer research, medication development, and diagnosis. A
decade ago, the average survival of patients with advanced NSCLC and EGFR mutations
was less than 2 years [7]. Currently, patients receiving third-generation EGFR tyrosine
kinase inhibitor (TKI) treatment have a median survival time of more than 3 years [8]. A
third-generation EGFR-TKI (osimertinib) has good treatment efficacy but is also associ-
ated with the development of secondary resistance [9]. Therefore, overcoming EGFR-TKI
resistance is important.

Emerging evidence highlights the correlation between glycolysis and drug resistance
in cancer. Within cancer cells, glycolysis-related enzymes play pivotal roles in enhancing
resistance to chemotherapy [10]. Pyruvate dehydrogenase kinase (PDK) is a key enzyme
that is involved in the regulation of glucose metabolism and is frequently overexpressed in
cancer cells, resulting in increased glycolysis and lactate production [11]. Moreover, PDK
inhibition has been demonstrated to reduce cancer cell growth and enhance susceptibility to
chemotherapy [12]. Lactate dehydrogenase (LDH) regulates the conversion and production
of pyruvate and lactic acid [13]. Inhibition of LDH A (LDHA) increases oxidative stress
and reduces chemoresistance [14]. Therefore, targeting glycolytic enzymes such as PDK
or LDHA may be a promising strategy to overcome EGFR-TKI resistance in patients
with NSCLC.

Natural products have the potential to be effective as therapeutic agents because
of their lower toxicity and higher specificity than synthetic compounds [15]. A grow-
ing interest has been observed in identifying glycolysis inhibitors from natural sources
that can be used as safe and effective alternatives [16,17]. These inhibitors have demon-
strated promising results in preclinical models [18–20]. Therefore, we compiled natural
products-derived inhibitors of enzymes that are involved in glycolysis, including PDKs and
LDHA, with the aim of understanding the potential of these compounds in overcoming
EGFR-TKI resistance.

This review provides an overview of the current understanding of the role of targeted
therapy in NSCLC, delves into the historical processes underlying EGFR-TKI resistance,
and explores the potential of utilizing glycolysis inhibitors that are derived from natural
products as a strategy for overcoming EGFR-TKI resistance.

2. Targeted Therapy in NSCLC

The treatment for NSCLC is multifaceted and can be tailored to meet the needs of
individual patients. Surgical interventions, including lobectomy and wedge resection, are
designed to surgically remove tumors and associated lymph nodes. Radiation therapy
utilizes high-energy X-rays to target cancer cells, and chemotherapy employs drugs such
as carboplatin and cisplatin to disrupt the growth of these cells. A pivotal shift in the
treatment paradigm has occurred with the identification of specific targetable mutations
in patients with advanced NSCLC [21], and the use of drugs that are designed for these
genetic mutations or altered proteins that promote cancer cell growth and spread [22].
The targeted therapies include those directed towards EGFR, anaplastic lymphoma kinase
(ALK), ROS proto-oncogene 1, receptor tyrosine kinase (ROS1), v-raf murine sarcoma
viral oncogene homolog B1 (BRAF), proto-oncogene, receptor tyrosine kinase (MET), RET
proto-oncogene (RET), Kirsten rat sarcoma virus (KRAS), and programmed death-ligand
1 (PD-L1), and they work by disrupting the signaling pathways that are responsible for
cancer cell growth [22]. Unlike conventional treatments, targeted therapy allows for a more
precise and personalized approach which enhances treatment efficacy while minimizing
side effects and provides a valuable alternative for patients who may not respond well to
standard therapies. Additionally, targeted therapy plays a key role in overcoming resistance
to traditional treatments and recognizes the unique genetic profile of each patient with
cancer [23]. The integration of targeted therapy into NSCLC treatment strategies represents
a significant advancement in improving patient outcomes and underscores the necessity
for a nuanced and tailored therapeutic approach in the era of precision medicine.
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The efficacy of targeted therapies for NSCLC varies depending on individual patient
characteristics and genetic testing results. To determine the best therapeutic options for
individual patients, NSCLC cells are subjected to molecular profiling. In 2022, the Na-
tional Comprehensive Cancer Network (NCCN) expanded its guidelines for metastatic
NSCLC to include “broad molecular profiles including EGFR (Figure 1A), ALK, HER2, MET,
NTRK, RET, ROS1 (Figure 1B), KRAS, BRAF (Figure 1C), and PD-L1 (Figure 1D) [24]. The
NCCN guidelines recommend several Food and Drug Administration (FDA)-approved
targeted therapeutic agents as first-line therapies for patients with specific mutations. Afa-
tinib [25], dacomitinib [26], erlotinib [27], gefitinib [28], and osimertinib [29] are utilized for
patients with the EGFR mutation; amivantamab-vmjw [30] and mobocertinib are employed
for patients with EGFR exon 20 insertions; targeted therapy for other receptor tyrosine
kinases (ALK, HER2, MET, NTRK, RET, ROS1) include alectinib [31], brigatinib [32], cap-
matinib [33], ceritinib [34], crizotinib [35], entrectinib [36], larotrectinib [37], lorlatinib [38],
pralsetinib [39], selpercatinib [40], and tepotinib [41] (Figure 2). Sotorasib [42] has been
approved for KRAS mutations, and dabrafenib [43] and trametinib [43] have been approved
for BRAF mutations. Immunotherapy targeting PD-L1 is also considered a form of targeted
therapy. The FDA has approved atezolizumab [44], bevacizumab [45], ipilimumab [46],
nivolumab [47], and pembrolizumab [48] as PD-L1 targeting therapies. Monoclonal anti-
bodies are a type of targeted therapy which were initially developed as a cancer therapy
targeting EGFR [49]. Necitumumab, an EGFR monoclonal antibody, has been approved as
a combination therapy for metastatic squamous NSCLC [50].
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Figure 1. Targeted therapies for lung cancer. Illustration of the current targeted therapies used for 
non-small cell lung cancer (NSCLC), with specific drugs targeting (A) EGFR mutations; (B) ALK, 
HER2, MET, NTRK, RET, and ROS1 mutations; (C) KRAS and BRAF mutations; and (D) immuno-
therapy drugs for PD-L1 expression. This figure provides an outline of the targeted therapy choices 
recommended by the 2022 National Comprehensive Cancer Network guidelines for metastatic 
NSCLC, emphasizing the importance of personalized genetic testing in determining the optimal 
treatment strategy. EGFR, epidermal growth factor receptor; ALK, anaplastic lymphoma kinase; 
HER2, human epidermal growth factor receptor 2; MET, proto-oncogene, receptor tyrosine kinase; 
NTRK, neurotrophic tyrosine receptor kinase; RET, RET proto-oncogene; ROS1, ROS proto-onco-
gene 1, receptor tyrosine kinase; KRAS, Kirsten rat sarcoma virus; BRAF, v-raf murine sarcoma viral 
oncogene homolog B1; PD-L1, programmed cell death ligand 1. 
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HER2, MET, NTRK, RET, and ROS1 mutations; (C) KRAS and BRAF mutations; and (D) immunother-
apy drugs for PD-L1 expression. This figure provides an outline of the targeted therapy choices
recommended by the 2022 National Comprehensive Cancer Network guidelines for metastatic
NSCLC, emphasizing the importance of personalized genetic testing in determining the optimal
treatment strategy. EGFR, epidermal growth factor receptor; ALK, anaplastic lymphoma kinase;
HER2, human epidermal growth factor receptor 2; MET, proto-oncogene, receptor tyrosine kinase;
NTRK, neurotrophic tyrosine receptor kinase; RET, RET proto-oncogene; ROS1, ROS proto-oncogene
1, receptor tyrosine kinase; KRAS, Kirsten rat sarcoma virus; BRAF, v-raf murine sarcoma viral
oncogene homolog B1; PD-L1, programmed cell death ligand 1.
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Figure 2. Timeline of non-small cell lung cancer targeted therapy. Illustration of the timeline of ge-
netic alterations in non-small cell lung cancer (NSCLC) subtypes, including EGFR, ALK, ROS1, 
KRAS, MET, PD-L1, and other mutations. This figure also indicates major concerns regarding the 
development of targeted therapy for NSCLC. EGFR, epidermal growth factor receptor; ALK, ana-
plastic lymphoma kinase; KRAS, Kirsten rat sarcoma virus; MET, proto-oncogene, receptor tyrosine 

Figure 2. Timeline of non-small cell lung cancer targeted therapy. Illustration of the timeline of genetic
alterations in non-small cell lung cancer (NSCLC) subtypes, including EGFR, ALK, ROS1, KRAS, MET,
PD-L1, and other mutations. This figure also indicates major concerns regarding the development of
targeted therapy for NSCLC. EGFR, epidermal growth factor receptor; ALK, anaplastic lymphoma
kinase; KRAS, Kirsten rat sarcoma virus; MET, proto-oncogene, receptor tyrosine kinase; ROS1, ROS
proto-oncogene 1, receptor tyrosine kinase; PD-L1, programmed cell death ligand 1.
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3. EGFR-TKIs in NSCLC Treatment

EGFR, an oncogenic receptor tyrosine kinase (TK) belonging to the ErbB receptor
family, is activated upon binding to specific ligands, including epidermal growth factor
(EGF) (Figure 3) [51]. Several isotypic ErbB family receptors, such as human epidermal
growth factor receptor (HER) 2, HER3, and HER4, play key roles in the development of
NSCLC. In normal cells, EGFR activation leads to receptor homo- or hetero-dimerization
and autophosphorylation of the intracellular TK domain, which in turn activates signaling
pathways that regulate cellular proliferation, migration, and differentiation [52,53]. How-
ever, EGFR is frequently altered in tumor cells, and these alterations can lead to abnormal
signaling, resulting in cancer cell proliferation, invasion, and metastasis [54]. To attenuate
the effects of EGFR mutation-induced aberrant signaling, EGFR-TKIs have been developed
to inhibit enzymatic activity by binding to the TK domain of EGFRs [55].
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Mutations in kinase-activating EGFRs and overexpression of the EGFR protein are 
the predominant changes observed in cancer (Figure 1A) [60,61]. The most common 
EGFR-activating mutations include an in-frame deletion in exon 19 within codons 746–
750 (19D; 45–50%) and a single-base substitution of arginine with leucine at codon 858 in 
exon 21 (L858R; approximately 35–45%) near the adenosine triphosphate (ATP)-binding 
pocket of the TK domain [54,62]. First-generation EGFR-TKIs (gefitinib and erlotinib), 
which reversibly bind to the ATP-binding site of the EGFR tyrosine kinase domain, have 
resulted in considerable improvements in the outcome for patients with EGFR-mutated 
NSCLC (L858R and 19D) (Table 1) [63,64]. Additionally, less common EGFR mutations 
such as G719X, L861Q, and S768I have demonstrated responsiveness to first-generation 
EGFR-TKI treatment [65,66]. According to a recent study, patients who received subse-
quent EGFR-TKI treatment lived the longest, with a median overall survival (OS) of 31.3 
months (95% confidence interval (CI), 23.9–38.7 months) compared to those who received 
chemotherapy (median OS, 19.4 months; 95% CI, 18.5–20.3 months) or no subsequent 
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Figure 3. Schematic diagrams of EGFR, HER2, HER3, and HER4. The ErbB protein family in-
cludes the EGFR (HER1 and ErbB1), HER2 (Neu and ErbB2), HER3 (ErbB3), and HER4 (ErbB4)
proteins. Structurally, EGFR comprises an extracellular domain containing a ligand-binding region, a
transmembrane domain, a tyrosine kinase (TK) domain, and a C-terminal phosphorylation domain.
Additionally, the binding of growth factors to these receptors is displayed: seven to EGFR, none to
HER2, two to HER3, and seven to HER4. Compared with other ErbB protein family members (EGFR,
HER2, and HER4), HER3 has little to no TK activity [56–59]. EGFR, epidermal growth factor receptor;
HER, human epidermal growth factor receptor. ‘¿ means that ‘None to HER2’ indicates there are
presently no known HER2 ligands.

Mutations in kinase-activating EGFRs and overexpression of the EGFR protein
are the predominant changes observed in cancer (Figure 1A) [60,61]. The most com-
mon EGFR-activating mutations include an in-frame deletion in exon 19 within codons
746–750 (19D; 45–50%) and a single-base substitution of arginine with leucine at codon
858 in exon 21 (L858R; approximately 35–45%) near the adenosine triphosphate (ATP)-
binding pocket of the TK domain [54,62]. First-generation EGFR-TKIs (gefitinib and
erlotinib), which reversibly bind to the ATP-binding site of the EGFR tyrosine kinase
domain, have resulted in considerable improvements in the outcome for patients with
EGFR-mutated NSCLC (L858R and 19D) (Table 1) [63,64]. Additionally, less common EGFR
mutations such as G719X, L861Q, and S768I have demonstrated responsiveness to first-
generation EGFR-TKI treatment [65,66]. According to a recent study, patients who received
subsequent EGFR-TKI treatment lived the longest, with a median overall survival (OS)
of 31.3 months (95% confidence interval (CI), 23.9–38.7 months) compared to those who
received chemotherapy (median OS, 19.4 months; 95% CI, 18.5–20.3 months) or no subse-
quent treatment (median OS, 2.4 months; 95% CI, 1.3–3.5 months) [67]. This study suggests
that patients with EGFR-mutated NSCLC may benefit from further treatment with EGFR-
TKIs. However, after treatment with gefitinib, erlotinib, or afatinib (second-generation
EGFR-TKIs) for approximately 9–14 months, up to 50% of the patients developed T790M-
mediated resistance [68,69]. In comparison to gefitinib, dacomitinib, a second-generation
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EGFR-TKI, has significantly improved progression-free survival in the first-line treatment
of patients with EGFR-mutation-positive NSCLC; however, the drug also has the potential
to directly induce secondary mutations such as T790M [70,71]. Osimertinib is a third-
generation EGFR-TKI that binds to the C797 residue in the ATP-binding site of EGFR
and exhibits high selectivity for both EGFR-activating mutations and the secondary ac-
quired EGFR T790M mutation [9]. Patients treated with osimertinib had a median OS of
38.6 months (95% CI, 34.5–41.8), whereas those in the comparator group had a median OS
of 31.8 months [8]. Osimertinib is a promising third-generation EGFR-TKI, and its combi-
nation with platinum-based chemotherapy may provide additional treatment options for
EGFR-mutated NSCLC [72]. Although the development of targeted therapies including the
first-generation (gefitinib and erlotinib), second-generation (afatinib and dacomitinib), and
third-generation (osimertinib) EGFR-TKIs has demonstrated substantial improvements in
the overall survival of patients with EGFR-mutated NSCLC, the emergence of secondary re-
sistance is challenging [73]. Thus, continued research and exploration of novel therapeutic
strategies are imperative to address and overcome these resistance mechanisms and ensure
sustained efficacy and prolonged benefits for patients with EGFR-mutated NSCLC.

Table 1. Several approved EGFR-TKIs.

Drug Structure Drug Type FDA Approval

Erlotinib
(TarcevaTM)
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4. Enhanced Glycolysis in EGFR-TKI-Resistant NSCLC

Glycolysis is a metabolic pathway that converts glucose to lactate. Moreover, gly-
colysis is orchestrated by a series of glycolytic enzymes, and the dysregulation of the
procedure has been implicated in conferring resistance to EGFR-targeted therapies in
cancer cells [79]. The cancer cells often favor glycolysis (the Warburg effect), despite the
presence of oxygen [80]. The Warburg effect suggests that cancer cells favor glycolysis even
when oxygen is available, because glycolysis is advantageous for their rapid division [81].
Although glycolysis is less efficient in terms of energy production, the process allows cancer
cells to generate energy quickly and provides essential biosynthetic precursors for the
synthesis of various cellular components that are required for cell growth and division [82].
However, the production of free radicals during glycolysis poses a potential challenge, as
these reactive oxygen species (ROS) can have damaging effects on cellular components in-
cluding deoxyribonucleic acid (DNA), proteins, and lipids [83]. However, the NSCLC cells
exhibit several adaptive mechanisms for managing proliferation despite oxidative stress.
Cells in NSCLC employ a combination of antioxidant defenses and survival signaling,
including the phosphatidylinositol 3-kinase (PI3K)/AKT pathway, metabolic adaptations,
DNA repair mechanisms, and adaptation to hypoxic conditions, to manage and sustain
proliferation in the presence of oxidative stress during glycolysis [84–87]. The heightened
glycolysis and increased lactate production observed in cancer cells significantly contribute
to the development of resistance to EGFR-TKIs [88]. Acknowledging that the complex
interplay between various glycolytic enzymes plays a pivotal role in mediating resistance
to EGFR-TKIs is crucial. A previous study proposed that elevated glycolytic activity could
be predictive of gefitinib resistance in patients with EGFR-mutant NSCLC receiving first-
line gefitinib treatment [89]. This suggests that targeting the glycolytic pathway and its
associated enzymes can be a promising avenue for novel therapeutic approaches aimed at
overcoming EGFR-TKI resistance.

In EGFR-TKI-resistant NSCLC cells, increased glucose uptake is primarily facilitated
by the upregulation of glucose transporter 1 (GLUT1), which is a critical regulator of
glucose entry into cells [90]. This increase in GLUT1 enhances the efficiency of glucose
transport across the cell membrane, ensuring a constant supply of glucose to fuel glycolysis
(the preferred energy-producing pathway in resistant cells) [91]. A previous study discov-
ered that inhibiting glycolysis using 2-deoxy-d-glucose enhanced sensitivity to afatinib
(a second-generation irreversible EGFR-TK) in NSCLC cells with acquired resistance due
to the secondary EGFR T790M mutation [92]. Hexokinase plays an important role in the
early stages of glycolysis by catalyzing glucose phosphorylation, which is the first step of
this metabolic pathway [93]. Additionally, the inhibition of hexokinase 2 (HK2) sensitizes
resistant NSCLC cells to gefitinib. This is suggestive of an important role of HK2 in the de-
velopment of resistance mechanisms [90]. Pyruvate kinase M2 (PKM2) is a crucial enzyme
that regulates the final step of the glycolytic pathway and facilitates the transformation
of phosphoenolpyruvate into pyruvate [94]. Additionally, PKM2 can translocate to the
nucleus and activate the signal transducer and activator of transcription 3, which can cause
resistance to gefitinib [95]. Pyruvate is a critical metabolite in cellular metabolism and is
involved in several significant metabolic pathways depending on the cellular context and
environmental factors [94]. Pyruvate regulation is complex and involves key enzymes,
particularly PDK and LDHA. PDK governs the entry of pyruvate into the citric acid cy-
cle and glycolysis [96], whereas LDHA catalyzes the conversion of pyruvate to lactate
under anaerobic conditions [97]. Notably, PDK and LDHA are significantly associated
with EGFR-TKI resistance. The interaction between PDK and LDHA will be explored in
future studies.

The intricate regulation of glycolysis is a critical factor in EGFR-TKI resistance in
NSCLC [98]. Targeting key players of the glycolytic pathway, such as GLUT1, HK2,
PKM2, PDK, and LDHA, is a promising avenue for novel therapeutic strategies aimed
at overcoming EGFR-TKI resistance [90,95,99–101]. Building on this understanding, the
following section describes the exploration of glycolytic inhibitors that are derived from
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natural products and provides insights into potential nature-inspired interventions to
disrupt this crucial metabolic pathway and enhance the efficacy of EGFR-targeted therapies.

5. Advantages of PDK Inhibition against EGFR-TKI Resistance and Inhibitors from
Natural Products

PDK regulates the activity of the pyruvate dehydrogenase complex (PDC), which
converts pyruvate to acetyl-CoA for mitochondrial ATP production [102]. PDK inhibits
PDC activity via phosphorylation, resulting in a decreased conversion of pyruvate to acetyl-
CoA. Instead, pyruvate is diverted toward lactate production via glycolysis [103]. Cancer
cells exhibit high levels of PDK1 expression and activity, which promotes glycolysis and
facilitates cancer cell survival and proliferation [104]. The induction of PDK by hypoxia-
inducible factor-1 alpha (HIF-1α) has been demonstrated to cause chemotherapy resistance
in cancer cells [12]. HIF-1α-induced upregulation of PDK1 inhibits PDC activity, causing
a shift in the cancer cell metabolism towards anaerobic glycolysis, and decreases the
production of ROS [105]. Consequently, cancer cells become resistant to chemotherapeutic
drugs that rely on the cytotoxic effects of ROS [106]. In addition, the shift towards anaerobic
glycolysis provides cancer cells with a metabolic advantage, allowing them to survive and
proliferate in conditions with limited oxygen and nutrients [79]. Inhibiting PDK allows
more pyruvate to enter the mitochondria, promoting oxidative phosphorylation (OXPHOS)
and enhancing the production of ROS. This, in turn, causes oxidative stress, damages
cellular components, and triggers apoptotic pathways, ultimately leading to cancer cell
death [18–20,107]. Crystal structure studies have indicated that the pyruvate-binding
domain (located at the N-terminal regulatory domain), the lipoamide-binding domain, and
the nucleotide-binding domain (located at the C-terminal catalytic domain) are all critical
for controlling PDK activity [108]. Dichloroacetate (DCA) is an orally available small-
molecule PDK inhibitor that shifts the cancer cell metabolism from glycolysis to OXPHOS
by inhibiting PDK activity [109]. In a previous study, the combination of DCA with the first-
generation EGFR-TKIs erlotinib and gefitinib dramatically reduced the viability of EGFR-
mutant NSCLC cells (NCI-H1975 and NCI-H1650) [110]. Another study suggested that
DCA in combination with rociletinib (a third-generation EGFR-TKI) along with radiation
therapy might be a promising therapeutic strategy for treating NSCLC [111].

Several natural products have been reported to have PDK-inhibiting activity, for exam-
ple, huzhangoside A isolated from Anemone rivularis, ilimaquinone isolated from Smenospon-
gia cerebriformis, and hemistepsin A isolated from, Hemistepta lyrate (Table 2) [18–20]. Al-
though the precise IC50 values for the PDK enzyme activity of these natural products
have not been reported, their anticancer effects have been confirmed using in vitro and/or
in vivo studies of colon, lung, breast, and liver cancers. Dicoumarol from Melilotus officinalis,
cryptotanshinone from Salvia miltiorrhiza, and quercetin from various fruits and vegetables
exhibit inhibitory effects on PDK and have been demonstrated to have anticancer activities
against hepatocellular carcinoma, pancreatic cancer, and lung cancer [112–114]. In addition,
several natural products, such as baicalin, β-asarone, betulinic acid, cardamonin, and he-
lichrysetin, are known to inhibit the expression of PDK1 [115–119]. Most of the substances
mentioned above inhibit the upstream factors such as cellular-myelocytomatosis oncogene
(c-Myc), HIF-1α, and phosphatase and tensin homolog/Akt that regulate the expression
of PDK1. Although these natural products are not direct inhibitors of PDK1, they can
inhibit glycolysis; therefore, they may exert effects that are similar to those of synthetic
PDK inhibitors. Further clinical trials are needed to determine the efficacy and safety of
these PDK inhibitors.
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Table 2. Small-molecule PDK inhibitors derived from natural products.

PDK Inhibitor Structure Property Origin Clinical Trials for
NSCLC Reference
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Therefore, PDK inhibition may be a useful therapeutic strategy for overcoming 
EGFR-TKI resistance. Nevertheless, additional studies are necessary to substantiate the 
mechanisms and clinical efficacy of PDK inhibitors in the treatment of EGFR-TKI-resistant 
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6. Natural Product-Derived LDHA Inhibitors and Their Advantage against  
EGFR-TKI Resistance 

LDH plays vital roles in cellular respiration [123] by converting lactate to pyruvate 
or pyruvate to lactate, thereby maintaining an equilibrium between Nicotinamide adenine 
dinucleotide (NAD+) and its reduced form (NADH), which are essential elements in en-
ergy production [124,125]. In humans, LDH utilizes His193 as a proton acceptor and col-
laborates with coenzyme-binding residues (Arg99 and Asn138) and substrate-binding 
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Abnormal LDH activity has been associated with a range of diseases including can-
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Therefore, PDK inhibition may be a useful therapeutic strategy for overcoming EGFR-
TKI resistance. Nevertheless, additional studies are necessary to substantiate the mecha-
nisms and clinical efficacy of PDK inhibitors in the treatment of EGFR-TKI-resistant NSCLC.

6. Natural Product-Derived LDHA Inhibitors and Their Advantage against
EGFR-TKI Resistance

LDH plays vital roles in cellular respiration [123] by converting lactate to pyruvate or
pyruvate to lactate, thereby maintaining an equilibrium between Nicotinamide adenine
dinucleotide (NAD+) and its reduced form (NADH), which are essential elements in
energy production [124,125]. In humans, LDH utilizes His193 as a proton acceptor and
collaborates with coenzyme-binding residues (Arg99 and Asn138) and substrate-binding
(Arg106, Arg169, and Thr248) residues [126]. Two main types of subunits are present in
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LDH, denoted as M (for muscle) and H (for heart) and encoded by genes—LDH-A and LDH-
B, respectively [127]. The combination of these M (LDHA) and H (LDHB) subunits leads
to the formation of tetrameric LDH of varying compositions (e.g., LDH-1, LDH-2, LDH-3,
LDH-4, and LDH-5), each with different kinetic properties and tissue distributions [127].
Furthermore, LDHA is the most abundant isotype in the skeletal muscle and efficiently
catalyzes the conversion of pyruvate to lactate and NADH to NAD+ [128]. In contrast,
LDHB is predominantly present in the heart, liver, and brain, where it facilitates the
conversion of lactate to pyruvate and NAD+ to NADH [127,129,130].

Abnormal LDH activity has been associated with a range of diseases including cancer,
metabolic disorders, neurodegenerative diseases, and cardiovascular diseases [131–134]. In
cancers, dysregulated LDH activity influences tumor progression by promoting the War-
burg effect [135]. The conversion of pyruvate to lactate, favored by LDHA overexpression,
partially contributes to the acidification of the tumor microenvironment [136]. This acidifi-
cation is linked to the progression and metastasis of cancer and other diseases [79]. Elevated
levels of plasma LDH can be used as a prognostic factor in patients with EGFR-mutated
NSCLC [137,138]. However, LDHA inhibition may overcome EGFR TKI resistance.

Several LDHA inhibitors have been derived from natural products (Table 3). Apigenin
has been reported to reduce LDHA messenger ribonucleic acid (RNA) expression [139].
Berberine improves ischemia/reperfusion injury by downregulating LDHA activity and
subsequently decreases lactate production [140]. Capsaicin suppresses the EGF-induced
invasion and migration of human fibrosarcoma cells [141]. In our previous study, cate-
chin, which is known to enhance cardiovascular health and reduce oxidative stress and
inflammation [142], exhibited a potent inhibitory effect on LDHA by directly binding to the
Thr94, Ala95, Gln99, Arg105, Ser136, Arg168, His192, and Thr247 residues of LDHA [14].
Curcumin, extracted from Curcuma longa, inhibits glycolysis by downregulating the expres-
sion of HK2 and LDHA, thereby inducing mitochondria-mediated apoptosis in colorectal
cancer cells [143]. Curcumin has been reported to overcome the resistance to EGFR-TKI
(gefitinib and erlotinib) [144,145]. Epigallocatechin gallate (EGCG), a significant biologically
active component of green tea, has been identified to have LDHA-inhibitory activity [146].
EGCG has a synergistic effect when used in combination with EGFR-TKI for head and
neck cancer [147,148]. LDHA is a single-stranded DNA-binding protein that stimulates cell
transcription [149]. Galloflavin acts as an inhibitor of LDHA, preventing it from binding
to single-stranded DNA and reducing RNA production [150]. Leonurine (known for its
cardioprotective effect) has been demonstrated to reduce LDH activity and has antioxidant
properties [151]. Quercetin, extracted from Quercus, can decrease the activity and expression
of LDHA, suppress PI3K/AKT signaling, and regress Dalton’s lymphoma growth [152].
Ursolic acid has antioxidant, antidiabetic, antibacterial, and anticancer effects [153] and can
suppress LDHA expression in breast cancer [154].

The diverse range of natural LDHA inhibitors highlighted in this discussion, such as
apigenin, berberine, capsaicin, catechin, curcumin, EGCG, galloflavin, leonurine, quercetin,
and ursolic acid, demonstrate the potential of natural compounds to modulate LDHA
activity and associated pathologies (Table 3). Curcumin and EGCG have emerged as
promising candidates demonstrating efficacy as LDHA inhibitors and for overcoming
EGFR-TKI resistance, particularly for cancer treatment. The interplay between LDHA and
EGFR-TKI resistance presents a fascinating avenue for further investigation. Though the
current research on natural remedy treatment options is relatively limited, exploring new
options holds promise for advancing our understanding and refining treatment strategies.
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Table 3. LDHA inhibitors from natural products.

LDHA Inhibitor Structure Property Origin Clinical Trials
for NSCLC Reference
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therapeutic potential when combined with the EGFR-TKI gefitinib [156]. Genistein is a
natural isoflavone that can directly downregulate HIF-1α, thereby inactivating GLUT1 and
HK2 to suppress aerobic glycolysis [157]. α-Hederin, a pentacyclic triterpenoid saponin
that is present in the leaves of Hedera helix, is known for anti-inflammatory, antioxidant,
and anticancer properties [158]. Moreover, α-Hederin inhibits the growth of lung can-
cer cell lines (A549, NCI-H460, and NCI-H292) by suppressing glycolysis-related factors
including GLUT1, PKM2, LDHA, and HK2 proteins and demonstrates efficacy in in-
hibiting tumor growth in an A549-injected mouse model [159]. β-elemene is a natural
compound that displays antimetastatic efficacy by blocking PKM2 transformation and
nuclear translocation [160]. β-elemene can overcome gefitinib resistance by inducing
fructose-1,6-bisphosphatase [161]. Licochalcone, a natural compound from Glycyrrhiza
uralensis, is a potent HIF-1α inhibitor that can suppress the expression of GLUT1 and
PDK1 by inhibiting HIF-1α in HCT116 cells [162]. Additionally, licochalcone-A can over-
come mesenchymal-epithelial transition factor (c-Met) overexpression-mediated gefitinib
resistance by promoting c-Met ubiquitination [163]. Tanshinone IIA is a natural product
extracted from Salvia miltiorrhiza Bunge [164]. Tanshinone IIA inhibits the development and
proliferation of oral squamous cell carcinoma cells by suppressing Akt-c-Myc signaling and
HK2-mediated glycolysis by diminishing HK2 expression at the transcriptional level [165].
Tanshinone IIA is an EGFR inhibitor that suppresses the growth of NSCLC cells by targeting
the EGFR-Akt-myeloid cell leukemia-1 axis. Sulforaphane can modulate HIF-1α stability
in human colon cancer cells [166] and downregulates glycolytic enzymes, including HK2,
PKM2, and PDH, in bladder cancer [167]. In EGFR-TKI-resistant NSCLC cells, SFN treat-
ment reduces EGFR expression and inhibits tumor growth [168]. The anticancer effects
of EGCG have been attributed to multiple molecular mechanisms. EGCG inhibits HK2
expression and induces apoptosis in human tongue carcinomas [169]. Furthermore, EGCG
disrupts the binding of EGF to EGFR, leading to the inhibition of EGFR TK activity [170,171].
EGCG can also induce the internalization of EGFR into endosomes, rendering it inaccessible
to EGF ligands [172]. In another study, EGCG was demonstrated to overcome gefitinib
resistance by inhibiting autophagy and enhancing cell death by targeting the extracellular
signal-regulated kinase pathway in NSCLC [173]. Shikonin has been detected in lithos-
permum erythrorhizon and identified as a glycolysis inhibitor that suppresses PKM2 [174].
Shikonin exhibits a synergistic anticancer effect when combined with gefitinib via putative
molecular processes that are associated with PKM2/STAT3/cyclinD1 inhibition.

In summary, a range of natural compounds such as cucurbitacin D, cucurbitacin B,
genistein, α-Hederin, β-elemene, licochalcone, tanshinone IIA, sulforaphane, EGCG, and
shikonin demonstrate promising glycolysis-inhibiting effects. These compounds target
various glycolytic components and represent potential therapeutic avenues for overcoming
EGFR-TKI resistance and inhibiting cancer cell growth (Table 4).

Table 4. Other glycolysis inhibitors from natural products.
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8. Perspectives and Conclusions 
Drug resistance is a major challenge in cancer treatment, particularly in targeted ther-

apy [175]. Cancer cells can evolve and adapt to the effects of targeted therapies, thereby 
reducing treatment effectiveness over time. Resistance to drugs can occur through mech-
anisms such as mutations in the targeted protein or activation of alternative signaling 
pathways [176]. In addition, the effectiveness of targeted therapy is restricted to a subset 
of patients with cancer with specific genetic mutations, limiting the utility of targeted ther-
apy across a wide population of individuals with cancer. In this review, we hypothesized 
that glycolytic enzymes, including GLUT1, HK2, PKM2, PDK1, and LDHA, are promising 
targets for enhancing the efficacy of EGFR-targeted therapy and overcoming drug re-
sistance in NSCLC. Targeting the glucose metabolism via the Warburg effect has potential 
advantages over traditional targeted therapies. One advantage of targeting the glucose 
metabolism in cancer cells is that it may prove to be more effective than traditional tar-
geted therapies for several types of cancers. Although targeted therapy is often specific to 
certain genetic mutations or cancer types, most cancer cells exhibit a certain degree of the 
Warburg effect [177]. Another advantage is that targeting the glucose metabolism may 
result in fewer side effects than those produced by traditional chemotherapies or targeted 
therapies, because the Warburg effect is a unique characteristic of cancer cells; therefore, 
drugs targeting this metabolic pathway may be less toxic to healthy cells [79]. 

PDK inhibitors have demonstrated promising results in overcoming the resistance to 
EGFR-targeted therapies in NSCLC, suggesting a potential benefit of their use in combi-
nation therapies [109–111]. Notably, in all studies investigating combination therapies in-
volving PDK inhibitors and EGFR-TKIs to overcome resistance in NSCLC, the PDK inhib-
itors utilized were of synthetic origin. In a previous study, we discovered that natural 
product-based PDK inhibitors such as huzhangoside A, Leelamine, and otobaphenol in-
duced PDH activity-dependent cancer cell death [178]. Natural products, shaped by mil-
lions of years of evolution, encompass a wide array of chemical compounds exhibiting 
diverse structures and functions. They stand out as abundant reservoirs of bioactive mol-
ecules with potent therapeutic potential [179]. Furthermore, natural products often typi-
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8. Perspectives and Conclusions

Drug resistance is a major challenge in cancer treatment, particularly in targeted
therapy [175]. Cancer cells can evolve and adapt to the effects of targeted therapies, thereby
reducing treatment effectiveness over time. Resistance to drugs can occur through mech-
anisms such as mutations in the targeted protein or activation of alternative signaling
pathways [176]. In addition, the effectiveness of targeted therapy is restricted to a subset
of patients with cancer with specific genetic mutations, limiting the utility of targeted
therapy across a wide population of individuals with cancer. In this review, we hypoth-
esized that glycolytic enzymes, including GLUT1, HK2, PKM2, PDK1, and LDHA, are
promising targets for enhancing the efficacy of EGFR-targeted therapy and overcoming
drug resistance in NSCLC. Targeting the glucose metabolism via the Warburg effect has
potential advantages over traditional targeted therapies. One advantage of targeting the
glucose metabolism in cancer cells is that it may prove to be more effective than traditional
targeted therapies for several types of cancers. Although targeted therapy is often specific
to certain genetic mutations or cancer types, most cancer cells exhibit a certain degree of
the Warburg effect [177]. Another advantage is that targeting the glucose metabolism may
result in fewer side effects than those produced by traditional chemotherapies or targeted
therapies, because the Warburg effect is a unique characteristic of cancer cells; therefore,
drugs targeting this metabolic pathway may be less toxic to healthy cells [79].

PDK inhibitors have demonstrated promising results in overcoming the resistance
to EGFR-targeted therapies in NSCLC, suggesting a potential benefit of their use in com-
bination therapies [109–111]. Notably, in all studies investigating combination therapies
involving PDK inhibitors and EGFR-TKIs to overcome resistance in NSCLC, the PDK
inhibitors utilized were of synthetic origin. In a previous study, we discovered that natu-
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ral product-based PDK inhibitors such as huzhangoside A, Leelamine, and otobaphenol
induced PDH activity-dependent cancer cell death [178]. Natural products, shaped by
millions of years of evolution, encompass a wide array of chemical compounds exhibit-
ing diverse structures and functions. They stand out as abundant reservoirs of bioactive
molecules with potent therapeutic potential [179]. Furthermore, natural products often
typically demonstrate superior biocompatibility and reduced toxicity compared to syn-
thetic compounds. This heightened compatibility with biological systems is a result of their
natural selection over time [15]. Additionally, natural products often have unique chemical
structures that are difficult to replicate using synthetic chemistry, making them valuable
sources of novel compounds for drug discovery and development [180]. In light of these
compelling attributes, natural product-based PDK inhibitors represent a promising avenue
for advancing therapeutic strategies for the treatment of EGFR-TKI-resistant NSCLC.

The upregulation of HIF-1α plays a pivotal role in the adaptation of cancer cells to the
tumor microenvironment [181]. Although not a direct glycolytic enzyme, HIF-1α exerts
a profound influence on the glucose metabolism by orchestrating the expression of key
enzymes and transporters that are involved in glycolysis [181]. In this review, the potential
of several natural product-based glycolysis inhibitors that demonstrated the ability to
modulate HIF-1α levels was discussed as potential therapeutic strategies for EGFR-TKI-
resistant NSCLC (Figure 4). Notably, compounds such as genistein, licochalcone, and
sulforaphane exhibited inhibitory effects on HIF-1α, consequently downregulating the
expression of crucial glycolytic components including GLUT1, HK2, PKM2, PDK1, and
LDHA. Understanding the intricate interplay between HIF-1α and glycolytic pathways is
crucial for developing targeted therapeutic approaches, and our findings underscore the
promising role of natural product-based glycolysis inhibitors in this context.

Natural products play a pivotal role in cancer therapy, as they offer a vast array of
compounds sourced from plants, marine organisms, and microorganisms [182]. These
compounds have demonstrated substantial anticancer properties, including the ability
to impede cancer cell growth, induce apoptosis, and inhibit angiogenesis [183]. The
significance of natural products lies in their unique chemical structures, which often serve
as inspiration for the development of novel drugs with improved efficacy and few side
effects [183]. Furthermore, natural products exhibit synergistic effects with anticancer drugs
and other natural chemicals [184,185].

Some natural product-based glycolysis inhibitors for EGFR-TKI-resistant NSCLC such
as apigenin, quercetin, capsaicin, catechin, curcumin, EGCG, leonurine, and sulforaphane
have obtained FDA approval for their safety. However, these drugs have been reported
to have adverse effects. Capsaicin causes tissue irritation and burning [186]. EGCG, the
primary polyphenol in green tea, may manifest side effects such as anxiolytic activity,
potential hypoglycemic effects, a risk of hypochromic anemia due to interference with iron
absorption, hepatotoxicity, and kidney issues at high doses [187]. High doses of apigenin,
particularly from supplements, may cause stomach discomfort, muscle relaxation, and
sleepiness [188]. High levels of sulforaphane, catechin, and curcumin can cause digestive
difficulties [189–191]. Despite FDA approval, these natural glycolysis inhibitors require
careful dosing and monitoring because of the potential side effects in therapeutic use.
When exploring the pharmacological characteristics of various compounds, factors such as
oral bioavailability and water solubility can significantly affect their clinical applicability.
Cryptotanshinone and berberine have low oral bioavailability, which limits their clinical ap-
plicability [192,193]. Leelamine, α-hederin, and tanshinone IIA demonstrated very low oral
bioavailability at 7.6%, 0.14%, and 3.5%, respectively [194–196]. Dicoumarol, ursolic acid,
genistein, and shikonin face challenges owing to their poor solubility [197–200]. β-elemene
also exhibits poor solubility in water; thus, researchers have synthesized various derivatives
to address this issue and enhance its antitumor activities [201]. Licochalcone A, with an
oral bioavailability of 3.3% in mice, exhibits poor absorption; however, when loaded onto li-
posome carriers, its water solubility and oral bioavailability significantly improve [202,203].
Further research is required to explore formulation strategies, (including nanoformulations
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and lipid-based carriers) to enhance the bioavailability of drugs with poor absorption
characteristics and optimize their clinical applicability. More comprehensive research is
needed on the pharmacokinetics and pharmacodynamics of hemistepsin A, huzhango-
side A, ilimaquinone, and otobaphenol to explore their therapeutic properties. Berberine
(NCT03486496), catechin (NCT00573885 and NCT00611650), curcumin (NCT02321293 and
NCT01048983), and genistein (NCT01628471 and NCT00769990) are currently undergoing
clinical trials for the treatment of NSCLC. Although natural product-based glycolysis in-
hibitors exhibit diverse drug profile variations in bioavailability, formulation-dependent
improvements, and potential side effects, the therapeutic potential of these substances
is promising.
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Figure 4. Treatment strategy for EGFR-mutated non-small cell lung cancer (NSCLC). Illustration
depicting the treatment strategy for NSCLC with EGFR mutations. The figure focuses on the glycolysis
pathway, a key metabolic process in cancer cells. The glycolysis pathway is highlighted, with key
enzymes, including HK2, PKM2, LDHA, and PDK1, marked in pink to emphasize their significance
in the metabolic reprogramming of cancer cells. In the blue box, natural product-based glycolysis
inhibitors are indicated, showcasing their potential role in targeting glycolytic pathways. Additionally,
the figure underscores the regulatory influence of HIF-1α, depicted as a key factor (red), which can
upregulate glycolytic enzymes, further emphasizing the intricate interplay within the glycolysis
pathway. EGFR, epidermal growth factor receptor; HK2, hexokinase 2; PKM2, pyruvate kinase M2;
LDHA, lactate dehydrogenase A; PDK, pyruvate dehydrogenase kinase; HIF-1α, hypoxia-inducible
factor 1-alpha. The upward arrow symbol (↑) indicates upregulation.
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In this review, we have presented the potential of combining glycolytic inhibitors
with EGFR-TKI to overcome EGFR-TKI resistance. Despite the absence of clinical studies
supporting this hypothesis, ongoing research in this field is promising. Further investiga-
tion is essential to evaluate the safety, tolerability, and efficacy of the co-administration of
glycolytic inhibitors with EGFR-TKIs in a clinical setting. In addition, the effectiveness of
glycolytic inhibitors in conjunction with other targeted therapies such as immunotherapy,
conventional chemotherapy, and radiotherapy needs to be explored. Furthermore, biomark-
ers to identify patients who are most likely to benefit from glycolytic inhibitor-based
therapies are needed. The identification of biomarkers can create avenues for personalized
cancer treatment, thereby enhancing outcomes and mitigating toxicity in patients with
cancer. Although the current literature on the utilization of glycolytic inhibitors and EGFR-
TKIs is limited, preclinical studies have demonstrated the potential utility of this approach
in cancer therapy. As research in this domain progresses, a meticulous evaluation of the
safety and efficacy of combination therapy approaches in clinical settings is imperative to
enhance the outcomes for patients with cancer.

In conclusion, this review demonstrates that glycolytic inhibitors represent a promising
therapeutic strategy for cancer treatment, and that natural products are rich in compounds
with glycolytic inhibitory activity. Overall, combining glycolytic inhibitors with EGFR-TKIs
can enhance their effectiveness, while minimizing side effects and the risk of resistance.

Author Contributions: H.-S.C., D.R. and K.-T.H. conceived and supervised the project and revised
the manuscript. W.P. and J.H.H. wrote the manuscript. S.W. and S.-J.B. collected the data. S.-Y.C. and
E.-S.Y. drew the figures and tables. All authors have read and agreed to the published version of
the manuscript.

Funding: This study was supported by the Basic Science Research Program through the National Re-
search Foundation of Korea (NRF) and by National Research Foundation of Korea (NRF) grants funded
by the Korean government (MIST) (grant No. NRF-2022R1A2C2005130, NRF-2021R1A4A1025662, and
RS-2023-00237776).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We acknowledge the use of BioRender (https://biorender.com, accessed on
28 December 2023) for creating the figures in this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

Abbreviation Definition
2-DG 2-deoxy-d-glucose
ALK Anaplastic lymphoma kinase
ATP Adenosine triphosphate
BRAF V-raf murine sarcoma viral oncogene homolog B1
c-Myc Cellular-myelocytomatosis oncogene
DCA Dichloroacetate
DNA Deoxyribonucleic acid
EGCG Epigallocatechin gallate
EGF Epidermal growth factor
EGFR Epidermal growth factor receptor
FBP1 Fructose-1,6-bisphosphatase
FDA Food and Drug Administration
GLUT1 Glucose transporter 1
HER2 Human epidermal growth factor receptor 2
HIF-1α Hypoxia-inducible factor-1 alpha
HK2 Hexokinase 2
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KRAS Kirsten rat sarcoma virus
LDH Lactate dehydrogenase
LDHA Lactate dehydrogenase A
MET Proto-oncogene, receptor tyrosine kinase
NAD Nicotinamide adenine dinucleotide
NCCN National Comprehensive Cancer Network
ND Not determined
NSCLC Non-small cell lung cancer
NTRK Neurotrophic tyrosine receptor kinase
OXPHOS Oxidative phosphorylation
OR Overall survival
PDC Pyruvate dehydrogenase complex
PDK Pyruvate dehydrogenase kinase
PD-L1 Programmed cell death ligand 1
PEP Phosphoenolpyruvate
PI3K Phosphatidylinositol 3-kinase
PKM2 Pyruvate kinase M2
RET RET proto-oncogene
RNA Ribonucleic acid
ROS Reactive oxygen species
ROS1 ROS proto-oncogene 1, receptor tyrosine kinase
SCLC Small cell lung cancer
SFN Sulforaphane
TK Tyrosine kinase
TKI Tyrosine kinase inhibitor
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