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Abstract

A parked vehicle damaged by a hit-and-run can only be repaired at the expense of the owner, unless the fleeing vehicle is identified
and the driver apprehended. Identifying the fleeing vehicle involves using a video investigation method that searches for perpetrators
through CCTV footage of the crime scene. When the length of the recorded video is long, the investigation may require an extended
amount of time from the investigator, resulting in an added burden on their daily work. Some commercial companies are using object
recognition and tracking technology to detect hit-and-run incidents; however, detecting small movements of a vehicle during a minor
collision still remains a challenge. Therefore, there is a need for a system that can detect small movement in a vehicle in a lengthy
video. Automatic recognition and tracking require a sufficient amount of training dataset. However, such a dataset for hit-and-run
incidents is not publicly available. One of the reasons behind this scarcity is that it may violate personal information protection acts.
On the other hand, instead of using real accident videos, we could use actors to simulate such accident scenes. Although this may be
feasible, creating such a dataset would require substantial costs. In this paper, we describe a new dataset for hit-and-run incidents.
We collected 833 hit-and-run videos by recreating a parking lot using miniaturized cars. This dataset has been made publicly available
through Kaggle. We used three-dimensional convolution neural network, which is frequently used in the field of action recognition,
to detect small movements of vehicles during hit-and-run incidents. In addition, the proportion of the area that surrounds the target
vehicle to the min-max box of the vehicle itself and the length of the input frame are varied to compare the accuracy. As a result, we
were able to achieve better accuracy by using the lowest proportion and the shortest input frame.

Keywords: video action recognition, 3D-CNN, video surveillance

1. Introduction region of interest (ROI) and track any objects that enter it. Investi-
gators can then record all of the footage from the ROI and review it
to confirm the crash. This method is provided by intelligent CCTV
solution companies and is primarily used for security purposes.
However, it is not very effective at reducing investigation time, as
it can generate a lot of unnecessary footage of vehicles that simply
pass by the damaged vehicle.

To solve this problem, we need a function that can detect small
shakings when a reference vehicle collides with another vehi-
cle. This function will enable classifiers to accurately determine
whether the vehicles are colliding. It is important to improve the
function’s accuracy and minimize false alarms that may occur
when other vehicles simply approach the reference vehicle with-
out colliding, when the reference vehicle is merely occluded, or
when only a portion of it is visible. To avoid such false alarms, we
should only pick when the reference vehicle and the other vehicle
have truly collided. To do so, the classifier must accurately iden-
tify the moment of impact when the vehicles collide and a slight
shake occurs.

Hit-and-run is a crime that is not specifically defined in road
traffic laws. It occurs when a driver causes an accident or dam-
ages a parked vehicle and then flees the scene without pro-
viding assistance or exchanging information. Hit-and-run cases
are difficult to prosecute and even when they are, the penalties
are often light. As a result, many hit-and-run drivers are never
caught.

To solve a hit-and-run case, investigators require information
about the damaged area, the time of the accident, and the of-
fender vehicle. The damaged area can be determined through
photographs or video footage, while the time of the accident can
be obtained from the vehicle’s black box. In cases where the black
box does not record the hit-and-run, investigators will have to rely
on video surveillance footage from the surrounding area to search
for the perpetrator. However, this method can be time-consuming
as it necessitates watching hours of video footage. To reduce the
time it takes to investigate a hit-and-run case, there are several
methods that investigators can use. One of them is to designate a
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2. Related Works

Our work relates to the general problem of spatial-temporal
changes of objects where the input is a series of frames captured
by a surveillance camera installed in a parking lot. Closely related
subjects include anomaly detection, object tracking, and video ac-
tion recognitions. We review relevant works in the following sub-
sections.

2.1. Anomaly detection

The primary goal of CCTV video analysis is to detect abnormal
situations such as crime scenes, natural disasters, and medical
emergencies in recorded videos. However, this process requires
significant manpower, as it involves analyzing long stretches of
video footage. To address this issue, many studies have focused on
automating CCTV monitoring to reduce the manpower required.
To meet these social demands, the intelligent CCTV market has
continued to expand in both public and private sectors, driven by
changing social paradigms and increased safety demands. Rapid
advancements in technology have led to the development of in-
telligent CCTV systems. These advancements include the integra-
tion of artificial intelligence and the Internet of Things. The in-
telligent CCTV systems use these technologies to enhance their
functionality.

Anomaly detection is the process of distinguishing between
normal and abnormal samples. It is applied in various fields, with
efforts being made to adapt the approach to the unique char-
acteristics of each domain. Traditional anomaly detection meth-
ods are trained using only normal samples, with any deviations
from normal behavior classified as abnormal. For example, in
video surveillance, anomaly detection might be used to detect
bicycles, vehicles, or other unexpected objects in pedestrian ar-
eas or to identify traffic accidents. Video surveillance is a particu-
larly important field for anomaly detection, as it enables the de-
tection of strange behavior and other anomalies in surveillance
videos.

If only the appearance is observed, the perpetrating vehicle that
causes the hit-and-run generally shows a movement similar to
the vehicle attempting to park. However, when the vehicle collides
and slightly shakes, it differs from the typical vehicle movement.
Therefore, to classify normal and abnormal cases, it is essential to
extract relevant features accurately from the images. The current
approach has been to utilize classical computer vision algorithms.
Several methods have been proposed to recognize abnormal pat-
terns by extracting hand-crafted features such as feature point
detection and motion vector extraction. Common computer vi-
sion techniques, such as Scale Invariant Feature Transform (SIFT),
Speeded-Up Robust Features (SURF) and Histogram of Oriented
Gradients (HOG) have been utilized for this purpose (Bay et al.,
2006; Dalal & Triggs, 2005; Lowe, 2004). However, while these hand-
crafted methods perform well in specific situations, they are less
accurate in other environments.

In recent years, methods for automatically detecting abnor-
mal situations have been proposed. These methods automati-
cally extract and classify features within the deep learning net-
works such as convolution neural networks (CNNs), that gained
enormous amount of popularity due to the rapid development
of GPUs and artificial neural networks. This contrasts with the
hand-crafted method, which manually extracts the features of
the image and cannot be generalized. Autoencoders, which are
often used in deep learning, have good performance in one-class
classification (Ribeiro et al., 2018). The autoencoder consists of
an encoder and a decoder, which includes a CNN and a pool-

ing layer. The autoencoder-based model can learn features of a
normal region that are the main component of the data without
specific labeling. The autoencoder model, which is learned only
from normal data, reconstructs it with normal data even if ab-
normal values enter as input. Anomaly score is calculated us-
ing these properties and one-class classification is performed. Ad-
ditionally, abnormalities are detected when sudden changes oc-
cur by measuring the amount of movement changes on the en-
tire frames, using methods such as optical flow. Xu et al. (2015)
used optical flow and autoencoder-based models containing mo-
tion information to learn normal data and used the trained model
to detect abnormal data. Hasan et al. (2016) used HOG and His-
togram of Optical Flow (HOF) as hand-crafted elements for mo-
tion characteristics and proposed an autoencoder based model.
Biradar et al. (2019) extracted background images and performed
anomaly detection by separating static and dynamic objects. Sul-
tani et al. (2018) attempted to predict the time of the accident
based on the anomaly threshold by using weak labeling and pre-
trained three-dimensional (3D)-CNN as backbone. Yao et al. (2019)
predicted the expected trajectory of the vehicle using the bound-
ing box information based on unsupervised learning to determine
whether an accident occurred. Zhou et al. (2022) extracted spa-
tial features using the object detection technique and extracted
temporal features using HOF and a multilayer neural network
to determine whether there was a traffic accident. Samani et al.
(2022) detected abnormal situations in COVID-19 situations us-
ing a 2D detector. Kim et al. (2022) proposed a real-time moni-
toring warning system that can be applied in e-scooter sharing
services.

2.2. Object detection and object tracking

Object recognition technology was initially developed for detect-
ing people. If pedestrians can be detected accurately on cam-
era, this can be used for front-end risk notification in the field of
autonomous driving and security monitoring. Object recognition
technology has previously used hand-crafted methods to detect
objects. Viola and Jones (2001) proposed the Haar feature-based
cascade classifier, which is a classic and the most popular algo-
rithm. Dalal and Triggs (2005) proposed a HOG-based methodol-
ogy to identify objects by extracting local gradient distribution
characteristics of images. Zhu et al. (2006) improved the speed by
applying the cascaded technique to HOG. They applied HOG by
creating blocks of various sizes and positions. Felzenszwalb et al.
(2010) proposed a part-based model method that can detect not
only by the overall appearance of an object but also by using the
part information of the object. This method can detect even when
the shape of the object changes.

Recently, with the increase in computing power, the develop-
ment of deep learning and the discovery of CNNs, deep learning
has also begun to apply in the field of object recognition and is
currently showing outstanding results. Initially, the localization
process, region proposal, and classification were conducted sep-
arately. In the region proposal phase, inefficient methods such
as sliding windows were initially used; however, computer vision
technologies such as selective search were utilized, or localization
problems were solved by selecting through region proposal net-
works, etc. (Girshick et al., 2014; Ren et al., 2017). When the candi-
dates of the object are determined by the corresponding method,
the object is classified through the classification model. The two-
stage method has high accuracy; however, the processing speed
is slower than the one-stage method to be introduced later. The
two-stage method involves performing the region proposal step

$20Z |1Mdy Zz uo Jasn ABojouyoa ] B 8ousiog Jo a1niisu| N Buems) Aq 0060192/901/2/1 L/ejonie/epal/woo dnooiwspese//:sdiy woll papeojumod



108 | 3D CNN for detecting vehicle collisions in video

and classification together (Dai et al., 2016). The method of simul-
taneously performing region proposal and classification finds only
objects of a predetermined location and size. These locations and
sizes are selected to be used in most situations, such as anchor
boxes. This method is referred to as the one-stage method (Liu et
al., 2016; Redmon et al., 2016).

In the field of object tracking, a method has been proposed that
tracks only a single object (Held et al., 2016) such as utilizing CNNs
for the entire image (Wang et al., 2015) or Kalman filters using val-
ues from object recognition results have been proposed (Wojke et
al., 2017). Attention mechanisms have also been utilized (Lee et al.,
2023). It is believed that all these technologies have exceeded the
level of human perception.

Intelligent CCTV companies use object recognition and track-
ing technology for crime prevention. The system allows users to
designate areas of interest. When new objects enter these areas,
an alarm is issued and the time is recorded. When this technol-
ogy is applied to a hit-and-run, an ROI is designated around the
affected vehicle. Subsequently, when other vehicles approach the
area of interest, that incident with the trajectory of those vehicles
is recorded. However, this methodology has the disadvantage of
being inefficient in reducing the time used for the investigation.
This is because it provides a lot of unnecessary information, such
as the trajectories of vehicles that simply pass through the area
of interest without colliding with the affected vehicle.

2.3. Action recognition

Action recognition in video covers various areas such as video
summarization, surveillance systems, video retrieval, and video
prediction. Video summarization aims to reduce the amount of
data in a video. Surveillance systems are used for security pur-
poses. Video retrieval helps in finding a specific content within
a video. Video prediction forecasts future events in videos. Action
recognition is a longstanding and important computer vision task.
Researchers have studied action recognition for many years, as
demonstrated by the works of Bao and Intille (2004) and Zhang
and Tao (2012).

Action recognition is a process that aims to understand the
movement of an object over time and identify it in an image. To
achieve this, motion information over time is often used. Optical
flow is a common method for obtaining motion information. The
motion information is added or processed based on the RGB infor-
mation of an image. This helps correct for camera shakes, which
can affect the accuracy of the action recognition process (Poleg et
al., 2016).

There have been significant changes in action recognition be-
fore and after the advent of deep learning. Before deep learn-
ing, spatial and temporal information was obtained using various
hand-crafted elements. Those include histograms of optical flows
(Wang et al., 2013), SURFs with improved SIFT performance and
HOG (Laptev & Lindeberg, 2006). These were used to enhance the
performance of action recognition.

After the advent of deep learning, attempts were made to solve
the action recognition problem using CNN. The features learned
using 2D-CNN and the temporal characteristics can be captured
through various fusion methods with multiframe input (Karpathy
et al., 2014). Furthermore, temporal information can be modeled
using 2D-CNN, Recurrent Neural Network (RNN) and Long Short-
Term Memory (LSTM) (Donahue et al., 2015). Police signals have
also been recognized using 2D-CNN and LSTM (Baek & Lee, 2022).

3D-CNNs have been developed to utilize temporal information.
The structure of the 3D-CNN network uses methods validated on

2D-CNN (Ji et al., 2013; Tran et al.,, 2015). Attempts have also been
made to use pre-trained 2D-CNN weights with relatively little data
(Carreira & Zisserman, 2017). Optical flow and RGB were entered
as two main streams to separate spatial and temporal information
(Simonyan & Zisserman, 2014). Alternatively, to minimize hand-
crafted elements, the same video was entered as two streams with
different frame rates (Feichtenhofer et al., 2019). Currently, many
experiments are being conducted to modify the backbone and
two-stream structures showing high performances. Action recog-
nition can be classified into large categories such as sports and
cooking, as well as individual movements in sports or detailed
behaviors such as walking, running, and gestures. It is expected
that the characteristics of such action recognition can express the
movement of the vehicle in detail. Therefore, in this paper, the
action recognition methodology is used to distinguish between
small shaking of the vehicle from other normal cases.

The datasets used for action recognition research include Ki-
netics, Sports-1M, HMDB-51, and AVA (Gu et al., 2018; Karpathy et
al., 2014; Kay et al., 2017; Kuehne et al., 2011). In these datasets,
each short video clip represents one class that includes several
multiple actions. However, in the case of the hit-and-run dataset,
most frames show normal vehicles that are parking and moving in
the scenes. And only a small fraction of the video includes the ac-
tual collision. It is necessary to pick or isolate the frames starting
from the first frame of the shaking until the frame where the shak-
ing stops. In other words only the relevant frames should be used
as an input to the training model as being classed as a hit-and-
run case. We apply the 3D-CNN to the isolated frames for further
processing. Figure 1 shows the overall structure of the proposed
system.

This paper contributes in three areas. First, it is shown that
hit-and-run can be solved by applying 3D-CNN. The hit-and-run
is regarded as an action recognition problem that distinguishes
between the cases where the vehicle is shaken and where it is
not. Second, a hit-and-run dataset was collected using a radio-
controlled (RC) car to reduce the cost. The RC car was used to
simulate the movement and collision of real vehicles. This method
not only solved safety problems that could result when real acci-
dents are performed but it also reduced costs by more than 100
times as compared with the real-sized performances. The filming
environment was configured to fit the size of the RC car by reflect-
ing the actual parking lot. Third, we propose a data preprocessing
method that reflects the characteristics of general action recog-
nition datasets and other hit-and-run datasets. In particular, we
propose a method of introducing r values to input data only for
the parts needed for the problem-solving. The r value represents
the degree of the surrounding environment of the damaged ve-
hicle. In other words, it defines the margin of areas surrounding
the damaged vehicle. Finally, we propose a method of analyzing
scenes that the network can misdetect and an enhancement in
the method by preprocessing the dataset so that the scenes can
be more robustly distinguished.

3. Dataset

In this section, we discuss how we constructed the environment
where the collisions were staged, design of the scenarios for the
training, and data preprocessing. In the data preprocessing, vary-
ing lengths of video clips that were collected on the designed sce-
narios are quantized in a fixed-frame-lengths so that they can
be easily consumed and processed in the model training and
testing.
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Figure 1: Overall structure of the proposed system.
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Figure 2: RC cars for dataset collection.

3.1. Environment

Obtaining hit-and-run clips from CCTV is challenging due to con-
cerns regarding potential infringement of personal information.
Therefore, it is necessary to collect the datasets directly to ensure
sufficient data. Direct collecting involves hiring actors to perform
actions according to a designed scenario. However, following prob-
lems must be handled properly when datasets are collected di-
rectly. First, guaranteeing the diversity of datasets requires a large
number of vehicles, which can be expensive to build and main-
tain. Second, vehicle collisions incur repairment costs and results
in lapse of time needed for the vehicle to be repaired. Third, there
is a risk of human injuries and a safety manual must be estab-
lished to prevent such risks.

To solve this problem, we used commercially available remote-
controlled miniature toy cars, as shown in Fig. 2. By using toy cars
instead of actual vehicles, costs can be reduced by more than 100
times. The RC car’s appearance is similar to that of an actual vehi-
cle; however, the upper part of the car on which the infantrides is
different. To evaluate the similarity between the RC cars and the
actual vehicle, we compared the detection and tracking results of
the RC cars by using the pre-trained weights of the YOLOvS and
DeepSORT models trained for real vehicles. These models were
trained using the BDD-100K dataset, which is a large dataset of
road images. Sample results are shown in Fig. 3. We can see that
the RC car was correctly detected and tracked, using the weights
learned from real vehicles. The results of tracking the movements

of actual vehicles and RC cars were also similar. One concern was
the mismatch of the aspect ratio of the RC car to that of the actual
vehicle. However, data augmentation techniques are often used
to expand the data to various aspect ratios (T. He et al., 2019). It
is widely accepted that by training with differently scaled aspect
ratios, detection performance can be improved. Our experiments
have shown that within the range where the spatial characteris-
tics and features of the actual vehicle images are maintained, the
CNN network is indifferent to different aspect ratios. Hence, we
used the dataset collected from the RC car for training our model
to identify the minor impact collisions.

The dataset was collected using a GoPro HERO6 BLACK camera,
with shooting settings detailed in Table 1. The aim was to capture
the appearance of an underground parking lot, where hit-and-
run accidents typically occur. To achieve this, we referenced CCTV
footage of underground parking lots, as well as videos from web
crawling and alleyways of residential areas. We also consulted
with on-site police officers and carefully considered the camera’s
location, angle, shooting height, and the positioning of vehicles to
construct the shooting environment. The shooting height was se-
lected as 80 cm, which is about one-third of the height of a typical
parking lot CCTV camera installation. This was chosen to match
the height of the RC car, which is one-third the height of an ac-
tual vehicle. The shooting angle was set at 30 degrees, at which
point the upper side of the camera was not visible. When pho-
tographed with these settings, the resulting image resembled the
actual parking lot shown on the left side of Fig. 4. The comparison
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Figure 3: RC cars with object recognition and tracking.

Table 1: Camera settings.

Environment Specification

Camera model GoPro HERO6 BLACK

Frame per sec 30
Aspect ratio 16:9
Field of view 118.2
Resolution 1920x1080
Height from ground 0.8m
Distance from car 1.2m

Shooting angle 30 degrees

of the real parking lot with our staged environment is shown in
Fig. 4. The distance and size measurements of the shooting stage,
including the location of the RC car and the camera, areillustrated
in Fig. 5.

Our collision detection system is designed to be highly robust,
with the primary determining factor being any noticeable move-
ment of the vehicle that has been impacted. This detection is de-
pendent on the relative motion of the car with respect to the cam-
era’s line of sight. We found that the primary failure scenario oc-
curs when the direction of the car’'s movement is parallel to the
camera’s line of sight. To analyze the cause of this failure, we have
conducted a detailed analysis to determine the limiting distance
of movements that can be detected by a CCTV camera. Our cal-
culations involve determining the field of view (FOV) of the cam-
era, calculating the number of pixels per unit distance in both
horizontal and vertical resolutions, and then defining a threshold

1.2M

1.2M

3
NI
=

Stationary |
Vehicle |

Driving
Vehicle E Camera

Figure 5: Recoding layouts and camera settings.

for noticeable pixel differences. For a GoPro HERO6 Black camera
specifications, we calculated that the camera can discern move-
ments of the impacted vehicle as long as it moves more than ap-
proximately 5.4 mm horizontally and 7.0 mm vertically in the or-

Figure 4: Actual parking lots (left panel) and collected datasets (right panel).
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Straight Driving

Collision

Parking
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Figure 6: Dataset scenario.

thogonal direction to the line of sight. Detailed calculations for
the horizontal and vertical resolutions &, and §, are as follows:

8h= (2><L><tan ehfz)/nh=54mm/pixel
8

V= (2 xLxtan 9‘//2) /nv:7.0mm/pixel

where, L is the distance to target (10 m); 6, the horizontal FOV (91.6
degrees); ny the number of pixels of the Charge-Coupled Device
(CCD) in the horizontal direction (3840); 6, the vertical FOV (74.35
degrees); and n, the number of pixels of the CCD in the vertical
direction (2160).

3.2. Dataset scenario

To diversify the dataset, we photographed six RC cars by alter-
nating from four different directions, simulating a parking lot.
As underground parking lots typically have no rain and provides
consistent illumination, we conducted the data collection during
rain-free daylight hours. Each video captured the vehicle’s actions
based on specific scenarios, each lasting 10 to 15 s. The recording
started from the moment the vehicle entered the parking lot and
continued until the action was completed.

Figure 6illustrates four scenarios: parking, straight driving, col-
lision, and wandering. The collision scenario is classified as class
A, while the remaining scenarios are classified as non-collision
class S. Parking refers to cases where the vehicle successfully
parks and stops next to the reference vehicle. Straight driving
refers to cases where the entering vehicle drives straight pass-
ing the reference vehicle without any special maneuvers. Colli-
sion describes cases where a collision occurs while attempting to
park. Wandering refers to cases where unexpected events occur,
such as temporarily stopping or approaching a reference vehicle
while attempting to park in a straight driving scenario. The col-
lected datasets include various situations. The collision scenario
was thoroughly designed to recreate vehicle collisions from var-
ious directions. The wandering scenario, which does not involve
a collision, simulates situations where it may appear that a col-
lision may occur any soon but does not actually happen, such

Table 2: Collected dataset details.

Directions Class Number of videos
North A 48
S 142
South A 59
S 190
Left A 61
S 170
Right A 41
S 122
Total 833

as closely approaching a reference vehicle while attempting to
park. The parking scenario not only positions the vehicle in the
parking space but also recreates the movement trajectory, sim-
ulating the actions of an actual driver during parking. In most
scenarios, the reference vehicle was occluded by another vehi-
cle. We collected a total of 833 videos, with the collection details
presented in Table 2. The hit-and-run dataset is available for free
download at the provided Kaggle URL (https://www.kaggle.com/
datasets/inwoohwang?2/parking-vehicle-hit-an-run-dataset).

Data labeling was carried out by classifying each scenario ac-
cording to the image name. For class A, bounding box labeling was
employed to identify the vehicle involved in the collision. We la-
beled the frames in the range from the start of the vehicle’s colli-
sion up to and not including the frame when the shaking caused
by the collision stops. This method allowed us to include frames
for the duration of two vehicles actually making contacts and
at the same time demonstrating minor movements. For compar-
isons, we also extended by including some of the frames prior to
the start of the collisions during model testing. For class S, bound-
ing box labeling was performed on the two vehicles adjacent to
the parking space. These two vehicles are likely to be obscured by
the driving vehicle, so labeling them assists in tracking the driving
vehicle’s movement.
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Video Sequence

Figure 7: Proposed data preprocessing method.

r=2 r=2.33

Figure 8: Peripheral margin range of reference vehicle according to the r value.

3.3. Data preprocessing

To achieve optimal results in deep learning, the availability of
meaningful training data and the choice of the model used play
significant roles. Additionally, the preprocessing method is also
important. For efficient learning, it is essential to utilize a reliable
data preprocessing method. This process includes classifying the
data to align with the learning objective and removing any unnec-
essary data that might hinder the learning process.

As previously mentioned, we employed a 3D-CNN network-
based action recognition algorithm. This algorithm was used to
detect hit-and-run incidents and distinguish between collision
and non-collision scenarios. Two factors were considered when
applying the collected dataset to the network. The first factor was
the length of the input video clip. For class A, we performed ex-
periments by dividing the length of each video clip into 9, 15,
and 30 frames. In these divisions, the last frame corresponds
to the moment when the collision concludes. The reference
frame length for each class A is as follows. In 9-frame clips, the
footage contains only the reference vehicle already crashing and
shaking. In 30-frame clips, the vehicle approaches and collides
with the reference vehicle, causing shaking. In 15-frame clips,
the properties were intermediate between 9-frame and 30-frame
clips.

The second factor is the location of the damaged vehicle and
the degree to which the surrounding environment is incorporated.
The extent of the surrounding environment is controlled by the
variable r. In the case of a hit-and-run incident, this method is
straightforward to implement because the location of the dam-
aged vehicleis already known. Instead of utilizing a full image that
contains unnecessary information as input, this method adjusts
the extent to which the affected vehicle and its surroundings are
observed. The variable w. denotes the width of the cropped image,
while wy represents the width of the reference vehicle. The refer-
ence vehicle is precisely positioned in the center of the cropped
image. If centering is not possible, padding is added as illustrated
in Fig. 7. The r value, representing the degree of the surrounding
environment of the damaged vehicle, is shown in Fig. 8. By chang-
ing the r value the training clips are augmented and expanded.
The 833 videos become 1457 video data.

— We

T wy
As the value of r decreases, the system concentrates more on
the affected vehicle. Consequently, it can be more focused on the
problem of recognizing a collision and pay less on the vehicle’s tra-
jectory. On the other hand, as the value of r increases, the model
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Figure 9: Images with ambiguous collision status.

Table 3: The video clips used for training.

Video clip frame Class Number of video clips Total

9 Frame A 209 32975
S 32766

15 Frame A 209 19547
S 19338

30 Frame A 209 9487
S 9278

relies more on the vehicle’s trajectory. However, this may lead the
model to incorporate unrelated surroundings, potentially result-
ing in a misinterpretation of the collision of the affected vehicle.

The images below are all non-collision images. In the image
depicted in Fig. 9, it is challenging to tell whether the top three
pictures are displaying a state of collision. Additionally, the ap-
pearance of a slowly moving vehicle and a vehicle slightly dis-
placed due to a collision are quite similar. To reduce the false
alarm rate, it is necessary to differentiate between these two situ-
ations. Therefore, we divided the non-collision videos into frames
of a specific length and added them to the training as labeled to
be non-collision. The video augmented by the r value was also
divided into frames of the same length. Table 3 summarized the
number of video clips used for training.

We used a fixed frame length for training data. However, dur-
ing the testing process, video data of different lengths can be used.
We utilized the sliding window method during testing. The entire
video is segmented into frames of the same length as used in the
training process with a stride of one. This causes much overlap-
pings between testing video clips.

4., Model

In this section, we compare between two choices of network mod-
els for our purposes. First is the 2D-CNN-RNN model which com-
bines 2D-CNN with RNN for temporal considerations. Second is
the 3D-CNN model that considers time as a third dimension in

space therefore unifies the space and time. We also discuss about
the used data augmentation techniques and the better under-
standing of the proposed model through the use of the class acti-
vation map (CAM) for highlighting where in the image the network
is concentrating more to identify the accidents.

4.1. 2D-CNN-RNN model

In the field of computer vision, effectively handling continuous
time series of images entails more than merely leveraging a CNN
function. The system must also possess the ability to process se-
quential images. While CNNs are suitable for processing short-
term information, they are not ideally suited for learning tempo-
ral information across the entire dataset. Conversely, an RNN is
well-suited for modeling sequence data; however, it does not ex-
cel at learning spatial information. Donahue et al. (2015) proposed
a combined CNN-RNN network that synergizes the strengths of
both neural network structures for video recognition. This net-
work employs a CNN as an encoder and an RNN as a decoder.
Figure 10 illustrates the fundamental concept of the CNN-RNN
structure.

4.2. 3D-CNN model

The hit-and-run dataset presents distinctive characteristics that
resemble general action recognition datasets. For example, in a
scenario involving a baseball player pitching, there are several
distinct body movements, each contributing to the overall action
of pitching. Similarly, the hit-and-run dataset comprises a scene
where a vehicle enters, attempts to park, and eventually collides.
This process is crucial for reproducing the given situation. How-
ever, it is essential to understand that not all these movements
should be categorized as a vehicle collision. In any given video, a
collision should be interpreted as occurring only when the vehicle
makes direct contact and demonstrates discernible shaking.

In the proposed method, the primary factor for distinguishing
whether a vehicle has collided or not is the shaking of the refer-
ence vehicle. The trajectory information of the vehicle, based on
the r value, may also influence the collision determination. Ob-
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Figure 10: 2D-CNN-RNN model for action recognition.

serving vehicle shaking requires both spatial and temporal infor-
mation. Therefore, we chose a 3D-CNN, which extends the concept
of 2D-CNN in the temporal direction, to effectively utilize both
types of information.

As a video is an extension of an image along the time axis, an
image serves as the base. The 3D-CNN structure extends the time-
axis concept of the 2D-CNN structure and incorporates various
concepts from 2D-CNN. It also adopts structures such as VGGNet,
ResNet, and GoogLeNet which have shown strong performance in
2D-CNN.

The backbone network used in this study is based on Two-
Stream Inflated 3D ConvNets (I3D), which leverages the benefits
of well-performing 2D-CNNs like ResNet and Inception (He et al,,
2016; Szegedy et al., 2015) that represent efficient operations in
2D-CNN. The I3D network structure, as depicted in Fig. 11, ex-
pands the dimensions of the 2D-CNN structure. This enables the
use of pre-trained weights, thereby enhancing both performance
and capabilities. The structure of the inception module, as shown
in Fig. 12 (Carreria & Zisserman, 2017), is utilized. The network ac-
cepts a continuous RGB image as input. A1 x 1 x 1 convolution is
employed at the network’s head to reduce the feature maps. The
softmax is then used to classify whether a collision has occurred
or not.

Contrary to the conventional use of I3D, we decided not to uti-
lize optical flow. This decision stemmed from its apparent limi-
tations in detecting shakes in vehicles caused by collisions, par-
ticularly when those vehicles are moving slowly. Furthermore,
the computational load required to generate optical flow images
greatly exceeds that of RGB images. However, the slight improve-
ment in performance does not adequately justify the extra com-
putational expense.

4.3. Data augmentation

Data augmentation is a well-known method for improving the
performance of deep learning models especially when the train-
ing dataset is not large enough to guarantee generalization. Data
augmentation can vary for each image in image data. However,
in the case of video data, all frames of the video should use the

Y1

y2

y3

¥T

same data augmentation method. Augmented data should closely
resemble the original data. In this study, a data augmentation
method was selected that preserves the characteristics of vehi-
cle movement. Shaking is aimed to be simulated as close to the
reality as possible. For instance, we excluded the vertical flip from
our methods. This decision was made because CCTV cameras
are rarely overturned completely, causing the footage to be up-
side down. However, a horizontal flip can diversify the data while
maintaining reasonable image features. We applied color jitter to
create various illumination effects and rotation was used to pro-
duce different photographic compositions. We also applied ran-
dom crop to augment the dataset for the purpose of adding colli-
sions in restricted and occluded views.

4.4. Class activation map

When CNN is used for classification problems, a fully connected
layer is typically included at the end. However, flattening this last
layer can result in the loss of localization information, which can
complicate the identification of which part of the network deter-
mines the decision-making process. The challenge is addressed
by employing the CAM, which leverages global average pooling in-
stead of flattening. This method applies the feature map from the
backbone to the fully connected layer and generates a new weight.
By multiplying the weight with the feature map, we can create a
heat map for a specific class. This heat map can help identify the
foundation of the network’s prediction for a particular class (Zhou
et al.,, 2016). Figure 13 illustrates the structure of CAM.

In the context of a 3D-CNN, we calculate the heat map similarly
to a 2D-CNN, using the final layer as the output. The heat map
highlights the local areas of the image that receive more attention
by increasing intensity, indicating their relative importance to the
model’s decision-making process. Figure 14 provides an illustra-
tion of the CAM at the moment of collision, the point of contact
on the vehicle is highlighted in red, indicating that the network
considers both the vehicle’s shaking and the contact point. CAM
allows for the visualization of relevant parts of the input data,
thereby enabling domain experts to understand the model’s be-
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Figure 12: Inception module.

havior better. Additionally, the results of this visualization can be
used to enhance the model’s accuracy and interpretability.

5. Experiments

The comparison of the outputs from the two models that were
used to identify the collisions is discussed in this section. The de-

tailed specification of the experimental environment is shown in
Table 4.

The choice of different models on the results was evaluated by
comparing the CNN-RNN and the 3D-CNN. The CNN-RNN algo-
rithm was developed using PyTorch. We utilized ResNet-152 pre-
trained on ImageNet. The CNN encoder transforms all 2D images
into 1D vectors. Meanwhile, the decoder uses an LSTM to receive
a sequential input vector from the CNN encoder and output an-
other sequence. For the final prediction, a fully connected layer
was employed. We set the batch size to 256 and the number of
epochs to 15. The learning rate was selected as 0.00001 and we
used the Adam optimizer.

For training, 1164 out of a total of 1457 videos were used, and
the remaining 293 videos were used for testing. Among the 293
videos used for testing, class A contained 41 videos and class S
consisted of 252 videos. The accuracy was calculated as follows:

Accuracy : _ TPAIN .
TP+TN+FP+FN

The accuracy is a binary classification problem where Positive
denotes the video was identified as an accident (class A) and non-
accident (class S), otherwise. The results of the CNN-RNN struc-
ture are presented in Table 5 below.

A bias towards the class S was tended to be exhibited by the
model in the CNN-RNN architecture. This is due to the fact that
number of trained samples for class S outnumbered that of class
Aby 50 to 1. There was no significant difference in accuracy based
on the r value size or the frame length.

For the 3D-CNN architecture, we did not use pre-trained
weights. The hyperparameters were set as follows. The batch size
was set to 15. The number of epochs was set to 100. A learning rate
of 0.00001 was set, and Adam was used as the optimizer. Early
stopping was applied to prevent overfitting. The results of the 3D-
CNN architecture are presented in Table 6.
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Figure 13: CAM in I3D model.

Figure 14: Result of CAM.

Table 4: Computing environment.

Parts Specification

GPU Nvidia quadro RTX 8000

CPU Intel(R) Xeon(R) Gold 6230R CPU @ 2.10GHz
RAM 500 GB LRDIMM DDR4

NVIDIA CUDA Cores 8 x 4608cores

0os Ubuntu 18.04 Linux OS
Language Python

Framework PyTorch

Table 5: Action recognition accuracy comparison (2D-RNN).

Frame length (1) Recall False alarm Accuracy
9(r=1) 39.02% 3.17% 88.74%
9(r=15) 41.46% 0.40% 91.47%
9(r=2) 34.14% 1.19% 89.76%
9 (r=12.33) 34.14% 3.57% 87.71%
9 (r=3) 19.51% 5.56% 83.96%
15(r=1) 24.39% 5.16% 84.98%
15 (r=1.5) 39.02% 0.79% 90.78%
15 (r=2) 24.39% 3.57% 86.35%
15 (r = 2.33) 21.95% 3.17% 86.34%
15 (r=23) 29.27% 5.95% 84.98%
30(r=1) 36.59% 14.28% 78.84%
30 (r=1.5) 36.59% 6.75% 85.32%
30 (r=2) 26.83% 4.37% 86.01%
30 (r=2.33) 24.39% 4.37% 85.66%
30 (r=3) 17.07% 3.17% 85.66%

CEX 1D

Table 6: Action recognition accuracy comparison (3D-CNN).

Frame length (r) Recall False alarm Accuracy
9(r=1) 80.49% 9.52% 89.08%
9(r=15) 68.29% 1.98% 93.86%
9(r=2) 80.49% 3.97% 93.86%
9 (r=2.33) 63.41% 2.38% 92.83%
9(r=3) 43.90% 5.56% 87.37%
15(r=1) 85.37% 4.37% 94.20%
15 (r=1.5) 56.10% 7.14% 87.71%
15(r=2) 75.61% 7.54% 90.10%
15 (r=2.33) 58.54% 5.16% 89.76%
15 (r=13) 63.41% 3.17% 92.15%
30(r=1) 92.68% 2.38% 96.93%
30 (r=1.5) 85.37% 6.35% 92.49%
30(r=2) 80.48% 3.17% 94.54%
30 (r=2.33) 53.66% 1.98% 91.81%
30 (r=3) 63.41% 3.57% 91.81%

The 3D-CNN did not exhibit as much biasing as the CNN-RNN
and showed significantly better performance. The accuracy was
found to be better for smaller values of r. Additionally, longer
frame lengths resulted in better performance. The best perfor-
mance was achieved with r = 1 and a frame length of 30 frames.

In overall, 3D-CNNs outperformed CNN-RNN structures for
several reasons. The CNN-RNN structure requires determining
optimal hyperparameters for each network separately. This is be-
cause the CNN model and the RNN model exhibit different char-
acteristics. The CNN-RNN model is strong in preserving sequen-
tial time information but suffers from gradient vanishing prob-
lem. However, in the context of classifying vehicle collisions and
non-collisions, the inclusion of sequential time information is not
essential. The critical factor in this task is the shaking scene of
the vehicle.

To evaluate how our model performs on real data, we demon-
strate our performance on 20 actual hit-and-run videos. Figure 15
shows the snapshots of these actual data. The sources of the
videos are given in the Appendix 1. Although our primary fo-
cus is on low-speed collisions, we acknowledge the importance of
considering high-speed scenarios. Items 5 and 18 in our dataset
represent high-speed collisions, offering insights into the model’s
performance under such conditions. These cases, along with rel-
evant footage (where available), are included in Appendix 1 for
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Figure 15: Web crawling data.

further reference. We used the optimal hyperparameters of r = 1
and a frame length of 30 frames based on our experimental re-
sults. This approach achieved a recall of 75% (15 out of 20 videos).
To supplement the insufficient web crawling data, we augmented
the accident videos. One approach involved rearranging the ob-
stacles in the scenes to occlude the reference vehicle from var-
ious angles. Additionally, we introduced variations in brightness
to simulate day and night conditions, thereby expressing differ-
ent lighting conditions. There is a disparity in vibration character-
istics between real vehicles and our mock-up models. The differ-
ence in tire damping between an RC car and a real car does lead to
variations in vibration duration. However, for detecting the minor
movement of the cars in collision, the amplitude of movement is
critical. For this matter, the difference between the RC car and a
real car is marginal and within acceptable limits for our purposes.

Figure 16 shows the augmented data, which consisted of 12 h
of footage and 12 collision scenes. The augmented data demon-
strated similar performance to the web crawling data, achieving
arecall of 83.33% in detecting 10 out of 12 collisions. The results of
the web crawling and augmented web crawling data can be found
in Table 7.

6. Discussion

Various effects to the performance of the model, including the
marginal value r, are discussed in this section.

6.1. Performance based on frame length

Better overall performance than the CNN-RNN was exhibited by
the 3D-CNN structure and here we analyzed its results. We found
that the recall decreases when the length of the input frame is
short. This means that there are many cases where a collision oc-
curs with the reference vehicle; however, it is not recognized as

&

LG THE SPACE RACE

a collision. This issue arises because the input information is too
brief. Consequently, the network cannot distinguish between a sit-
uation where another vehicle obstructs the reference vehicle as it
passes by and a scene where the vehicle shakes due to a collision.
Scenes where a vehicle passes by without a collision, occluding
the reference vehicle, occur more frequently than scenes where
a vehicle collides with and shakes the reference vehicle. Collision
situations are more prone to be misinterpreted as non-collision
events by the model due to this imbalance. When the frame length
increases, the model can take in more information. It allows the
model to discern the distinctive pixel changes between situations
where other vehicles occlude the reference vehicle while passing
by and situations where collisions occur.

6.2. Performance based on marginal value r

The r value primarily influences the scope of visual data consid-
ered in detecting collisions. When the r value is at its minimum,
our detection model focuses exclusively on the pixel values within
a tightly defined box encompassing the impacted vehicle. This
narrow focusis designed to analyze the immediate visual changes
precisely at the point of impact. However, as the r value increases,
our algorithm expands its scope to include pixel values in the mar-
gins surrounding the impacted vehicle. This broader view allows
for a more comprehensive analysis of the collision context, incor-
porating the behavior of nearby vehicles and environmental fac-
tors.

The purpose of adjusting the r value, therefore, is to meticu-
lously control the extent to which surrounding elements are fac-
tored into the collision determination process. By varying the r
value, we can assess how the inclusion of adjacent areas influ-
ences the detection accuracy. This nuanced approach is critical
for enhancing the overall accuracy and reliability of our collision
detection system.
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Figure 16: Results of augmented web crawling data.

Table 7: Performance of web crawling video (3D-CNN).

Video Recall
Web crawling 75%
Web crawl- 83.33%
ing + augmen-

tation

Based on the findings presented in Table 6 and Fig. 17, it can
be inferred that when the input includes more areas surrounding
the vehicle, the model is more prone to fail to detect a collision,
even when one does occur. With an increase in the value of r, the
heatmap shifts focus towards the space between the vehicles. This
suggests that the model identifies collisions based on the vehicle
trajectories rather than their shaking movements.

As shown in Fig. 18, when the value of r is small, the vehicle
passing the reference vehicle may cover most of the reference ve-
hicle. However, the model does not recognize this as a collision.
This is because it is able to distinguish between the general move-
ment of the vehicle and the movement caused by the collision.

Figure 17: Image incorrectly detected as class S.

Figure 18: Image with reference vehicle occluded.

7. Conclusions

A 3D-CNN-based network for detecting small shaking of a vehicle
in hit-and-run is proposed in this paper. An RC car, due toits lower
stiffness and lesser mass compared with a real vehicle, would at
first thought to exhibit a larger relative motion during an impact.
However, this is counterbalanced by the fact that the impacting
object in our experiments was also proportionally smaller and
lighter, similar to the RC car. Consequently, the observed motion
of the RC car during impact turned out to be significantly smaller
than what would be expected in a real vehicle collision. This dis-
crepancy in the physical dynamics of the RC car impacts has a
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notable implication for our study. Our training dataset, which cap-
tured these smaller scale impulsive movements, inadvertently led
to our model being more sensitive to impact detection. This in-
creased sensitivity is due to the model being trained on data where
even minor impacts result in visible motion, a scenario less likely
in real vehicle collisions due to their greater mass and stiffness.
This approach not only enhances the generalizability of our model
but also ensures that it remains sensitive and accurate when ap-
plied to real-world scenarios involving actual vehicles.

Our dataset includes RC cars, which showed reasonably good
object detection accuracy using YOLOVS as compared with real
vehicles. We utilized a modified 13D models that have performed
well in the field of action recognition. We proceeded with a 1-
stream network because optical flow information has a nega-
tive effect on accuracy. We compared accuracy using two condi-
tions. Those are frame length in the 3D-CNN model and the in-
put margin extent of the vehicle’s surroundings. Additionally, we
applied CAM to visualize how the 3D-CNN model works. Our re-
sults demonstrated that the model performed better with a frame
length of 30 frames and with the smallest value of r. A high false
alarm rate was observed for larger values of r. We collected our
own dataset without utilizing publicly available open datasets.
Our dataset only includes parking lots. We believe more data are
needed to improve the model’s performance. As for a future work,
more data collection is necessary to carefully learn diverse colli-
sion behaviors in hit-and-run accidents. New locations to include
are alleys or densely populated residential areas, and it is neces-
sary to collect datasets that reflect the real situation, taking into
account the angle of the cameras of the CCTV installed. We be-
lieve such effort will enable the creation of a model that can be
robustly applied in more hit-and-run scenarios.
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Video FPS Resolution Video length Accident time URL
1 30 640 x 480 26 17 https://www.youtube.com/watch?v=I9KMgfV5BeU
2 29.47 1280 x 720 2:55 46 https://www.youtube.com/watch?v=AH5jkmpq_Jc
3 29.97 1280 x 720 1:04 17 https://www.youtube.com/watch?v=4_43LiZyfnQ
4 29.97 720 x 480 51 24 https://www.youtube.com/watch?v=X4gMykwdxNo
5 29.78 1280 x 720 43 33 https://www.youtube.com/watch?v=nluFYkC7y2Q
6 24.86 1280 x 720 1:54 47 https://www.youtube.com/watch?v=VwRT2tcsFmk
7 30 1280 x 720 3:00 2:27 https://www.youtube.com/watch?v=Z-W96lVRhzI
8 15 1920 x 1080 6:02 20 -
9 29.67 1280 x 720 49 10 https://www.youtube.com/watch?v=OH3hD5C2HYs
10 30 1280 x 720 14 10 https://www.youtube.com/watch?v=HhbkdO9VPn8
11 10 528 x 190 6 4 https://www.clien.net/service/board/cm_car/16653661?combin
e=true&q=%EB%AC%BC%ED%94%BC%EB%8F %84 %EC%A3%BC+
cctv&p=2&sort=recency&boardCd=&isBoard=false
12 30 1280 x 720 15 6 https://www.youtube.com/watch?v=0D94uatULmO
13 30 1280 x 720 22 11 https://www.youtube.com/watch?v=0zfObwJW5qE
14 30 854 x 480 43 25 https://www.youtube.com/watch?v=X8DeXsAwnbU
15 30 1280 x 720 2:00 46 https://www.youtube.com/watch?v=7cbeyX80AZU
16 30 1920 x 1080 1:13 37 https://www.youtube.com/watch?v=alU4BpGLWSc
17 15 1920 x 1080 6:28 2:26 -
18 30 1280 x 720 1:32 112 https://www.youtube.com/watch?v=v9r3cMHdJOs
19 30 1920 x 1080 1:31 20 https://www.youtube.com/watch?v=9Ezgb3ejnal
20 30 480 x 360 25 7 -
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