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Abstract 

A parked v ehicle dama ged by a hit-and-run can only be r e pair ed at the expense of the owner, unless the fleeing vehicle is identified 

and the dri v er appr ehended. Identifying the fleeing vehicle involves using a video investigation method that sear c hes for perpetrators 
thr ough CCTV foota ge of the crime scene. When the length of the r ecorded video is long, the inv estigation may r equir e an extended 

amount of time from the inv estigator, r esulting in an added burden on their daily w ork. Some commer cial companies are using object 
recognition and tr ac king tec hnology to detect hit-and-run incidents; however, detecting small movements of a vehicle during a minor 
collision still remains a c hallenge . Therefore , there is a need for a system that can detect small movement in a vehicle in a lengthy 
video . A utomatic recognition and tr ac king r equir e a sufficient amount of training dataset. However, such a dataset for hit-and-run 

incidents is not pub licl y av aila b le. One of the r easons behind this scarcity is that it may violate personal information pr otection acts. 
On the other hand, instead of using real accident videos, we could use actors to simulate such accident scenes. Although this may be 
feasib le, cr eating such a dataset would r equir e substantial costs. In this paper, we describe a new dataset for hit-and-run incidents. 
We collected 833 hit-and-run videos by r ecr eating a parking lot using miniaturized cars. This dataset has been made pub licl y av aila b le 
thr ough Ka ggle. We used thr ee-dimensional conv olution neur al netw ork, whic h is fr equentl y used in the field of action recognition, 
to detect small movements of vehicles during hit-and-run incidents. In addition, the proportion of the area that surrounds the target 
vehicle to the min-max box of the vehicle itself and the length of the input frame are varied to compare the accuracy. As a result, we 
wer e a b le to achiev e better accurac y by using the lo w est proportion and the shortest input fr ame . 

Ke yw ords: video action recognition, 3D-CNN, video surveillance 
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. Introduction 

it-and-run is a crime that is not specifically defined in road
raffic la ws . It occurs when a driver causes an accident or dam-
ges a parked vehicle and then flees the scene without pro-
iding assistance or exchanging information. Hit-and-run cases
re difficult to prosecute and even when they are, the penalties
re often light. As a result, many hit-and-run drivers are never
aught. 

To solve a hit-and-run case , in vestigators require information
bout the damaged area, the time of the accident, and the of-
ender vehicle . T he dama ged ar ea can be determined through
hotogr a phs or video footage, while the time of the accident can
e obtained from the vehicle’s black box. In cases where the black
ox does not record the hit-and-run, investigators will have to rely
n video surv eillance foota ge fr om the surr ounding ar ea to searc h
or the per petr ator. Ho w e v er, this method can be time-consuming
s it necessitates watching hours of video foota ge. To r educe the
ime it takes to investigate a hit-and-run case, ther e ar e se v er al

ethods that investigators can use. One of them is to designate a
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egion of interest (ROI) and track any objects that enter it. Investi-
ators can then record all of the footage from the ROI and review it
o confirm the crash. This method is provided by intelligent CCTV
olution companies and is primarily used for security purposes.
o w e v er, it is not v ery effectiv e at r educing inv estigation time, as

t can generate a lot of unnecessary footage of vehicles that simply
ass by the damaged vehicle. 

To solve this problem, we need a function that can detect small
hakings when a r efer ence v ehicle collides with another v ehi-
le . T his function will enable classifiers to accur atel y determine
hether the vehicles are colliding. It is important to improve the

unction’s accuracy and minimize false alarms that may occur
hen other v ehicles simpl y a ppr oac h the r efer ence v ehicle with-
ut colliding, when the r efer ence v ehicle is mer el y occluded, or
hen only a portion of it is visible. To avoid such false alarms, we

hould onl y pic k when the r efer ence v ehicle and the other vehicle
av e trul y collided. To do so, the classifier m ust accur atel y iden-
ify the moment of impact when the vehicles collide and a slight
hake occurs. 
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2. Related Works 

Our work relates to the general problem of spatial-temporal 
changes of objects where the input is a series of frames captured 

by a surveillance camera installed in a parking lot. Closely related 

subjects include anomaly detection, object tracking, and video ac- 
tion recognitions. We review relevant works in the following sub- 
sections. 

2.1. Anomaly detection 

The primary goal of CCTV video analysis is to detect abnormal 
situations such as crime scenes , natural disasters , and medical 
emer gencies in r ecor ded videos. Ho w e v er, this pr ocess r equir es 
significant manpo w er, as it inv olv es anal yzing long str etc hes of 
video footage. To address this issue, many studies have focused on 

automating CCTV monitoring to reduce the manpo w er r equir ed.
To meet these social demands, the intelligent CCTV market has 
continued to expand in both public and private sectors, driven by 
c hanging social par adigms and incr eased safety demands. Ra pid 

adv ancements in tec hnology hav e led to the de v elopment of in- 
telligent CCTV systems . T hese adv ancements include the integr a- 
tion of artificial intelligence and the Internet of T hings . T he in- 
telligent CCTV systems use these technologies to enhance their 
functionality. 

Anomaly detection is the process of distinguishing between 

normal and abnormal samples. It is applied in various fields, with 

efforts being made to adapt the approach to the unique char- 
acteristics of each domain. Traditional anomaly detection meth- 
ods ar e tr ained using onl y normal samples, with an y de viations 
from normal behavior classified as abnormal. For example, in 

video surv eillance, anomal y detection might be used to detect 
bicycles , vehicles , or other unexpected objects in pedestrian ar- 
eas or to identify traffic accidents. Video surveillance is a particu- 
larly important field for anomaly detection, as it enables the de- 
tection of strange behavior and other anomalies in surveillance 
videos. 

If only the appearance is observed, the perpetrating vehicle that 
causes the hit-and-run gener all y shows a movement similar to 
the vehicle attempting to park. Ho w ever, when the vehicle collides 
and slightly shakes, it differs from the typical vehicle movement.
Ther efor e, to classify normal and abnormal cases, it is essential to 
extr act r ele v ant featur es accur atel y fr om the ima ges . T he current
a ppr oac h has been to utilize classical computer vision algorithms.
Se v er al methods have been proposed to recognize abnormal pat- 
terns by extracting hand-crafted features such as feature point 
detection and motion vector extraction. Common computer vi- 
sion tec hniques, suc h as Scale In variant F eatur e Tr ansform (SIFT),
Speeded-Up Robust Features (SURF) and Histogram of Oriented 

Gr adients (HOG) hav e been utilized for this purpose (Bay et al.,
2006 ; Dalal & Triggs, 2005 ; Lo w e, 2004 ). Ho w e v er, while these hand-
crafted methods perform well in specific situations, they are less 
accurate in other en vironments . 

In recent years, methods for automatically detecting abnor- 
mal situations have been proposed. These methods automati- 
call y extr act and classify featur es within the deep learning net- 
works such as convolution neural networks (CNNs), that gained 

enormous amount of popularity due to the r a pid de v elopment 
of GPUs and artificial neural networks . T his contrasts with the 
hand-cr afted method, whic h manuall y extr acts the featur es of 
the image and cannot be gener alized. Autoencoders, whic h ar e 
often used in deep learning, have good performance in one-class 
classification (Ribeiro et al., 2018 ). The autoencoder consists of 
an encoder and a decoder, which includes a CNN and a pool- 
ng la yer. T he autoencoder-based model can learn features of a
ormal region that are the main component of the data without
pecific labeling. The autoencoder model, which is learned only 
r om normal data, r econstructs it with normal data e v en if ab-
ormal values enter as input. Anomaly score is calculated us-

ng these properties and one-class classification is performed. Ad- 
itionall y, abnormalities ar e detected when sudden changes oc-
ur by measuring the amount of movement changes on the en-
ir e fr ames, using methods suc h as optical flow. Xu et al. ( 2015 )
sed optical flow and autoencoder-based models containing mo- 
ion information to learn normal data and used the trained model
o detect abnormal data. Hasan et al. ( 2016 ) used HOG and His-
ogram of Optical Flow (HOF) as hand-crafted elements for mo- 
ion c har acteristics and pr oposed an autoencoder based model.
iradar et al. ( 2019 ) extracted background images and performed
nomaly detection by separating static and dynamic objects. Sul- 
ani et al. ( 2018 ) attempted to predict the time of the accident
ased on the anomaly threshold by using weak labeling and pre-
r ained thr ee-dimensional (3D)-CNN as bac kbone. Yao et al. ( 2019 )
redicted the expected trajectory of the vehicle using the bound-

ng box information based on unsupervised learning to determine 
hether an accident occurred. Zhou et al. ( 2022 ) extracted spa-

ial features using the object detection technique and extracted 

empor al featur es using HOF and a multilayer neural network
o determine whether there was a traffic accident. Samani et al.
 2022 ) detected abnormal situations in COVID-19 situations us-
ng a 2D detector. Kim et al. ( 2022 ) proposed a real-time moni-
oring warning system that can be applied in e-scooter sharing
ervices. 

.2. Object detection and object tracking 

bject r ecognition tec hnology was initiall y de v eloped for detect-
ng people. If pedestrians can be detected accur atel y on cam-
ra, this can be used for front-end risk notification in the field of
utonomous driving and security monitoring. Object recognition 

ec hnology has pr e viousl y used hand-cr afted methods to detect
bjects . Viola and J ones ( 2001 ) proposed the Haar feature-based
ascade classifier, which is a classic and the most popular algo-
ithm. Dalal and Triggs ( 2005 ) proposed a HOG-based methodol-
gy to identify objects by extracting local gradient distribution 

 har acteristics of ima ges. Zhu et al. ( 2006 ) impr ov ed the speed by
 ppl ying the cascaded technique to HOG. They applied HOG by
r eating bloc ks of v arious sizes and positions . F elzenszwalb et al.
 2010 ) proposed a part-based model method that can detect not
nly by the overall appearance of an object but also by using the
art information of the object. This method can detect e v en when
he shape of the object changes. 

Recently, with the increase in computing po w er, the develop-
ent of deep learning and the discovery of CNNs, deep learning

as also begun to a ppl y in the field of object recognition and is
urr entl y showing outstanding r esults. Initiall y, the localization
r ocess, r egion pr oposal, and classification wer e conducted sep-
r atel y. In the region proposal phase, inefficient methods such
s sliding windows were initially used; ho w ever, computer vision
ec hnologies suc h as selectiv e searc h wer e utilized, or localization
r oblems wer e solv ed by selecting thr ough r egion pr oposal net-
orks, etc. (Girshick et al., 2014 ; Ren et al., 2017 ). When the candi-
ates of the object are determined by the corresponding method,
he object is classified through the classification model. The two- 
tage method has high accurac y; ho w ever, the processing speed
s slo w er than the one-stage method to be introduced later. The
w o-stage method inv olves performing the region proposal step
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nd classification together (Dai et al., 2016 ). The method of simul-
aneousl y performing r egion pr oposal and classification finds onl y
bjects of a predetermined location and size . T hese locations and
izes are selected to be used in most situations, such as anchor
oxes . T his method is r eferr ed to as the one-stage method (Liu et
l., 2016 ; Redmon et al., 2016 ). 

In the field of object tr ac king, a method has been proposed that
r ac ks onl y a single object (Held et al., 2016 ) suc h as utilizing CNNs
or the entire image (Wang et al., 2015 ) or Kalman filters using val-
es from object recognition results have been proposed (Wojke et
l., 2017 ). Attention mec hanisms hav e also been utilized (Lee et al.,
023 ). It is belie v ed that all these tec hnologies hav e exceeded the
e v el of human perception. 

Intelligent CCTV companies use object recognition and track-
ng technology for crime prevention. The system allows users to
esignate areas of interest. When new objects enter these areas,
n alarm is issued and the time is recorded. When this technol-
gy is applied to a hit-and-run, an ROI is designated around the
ffected v ehicle. Subsequentl y, when other v ehicles a ppr oac h the
rea of interest, that incident with the trajectory of those vehicles
s recor ded. Ho w ever, this methodology has the disadvantage of
eing inefficient in reducing the time used for the investigation.
his is because it provides a lot of unnecessary information, such
s the trajectories of vehicles that simply pass through the area
f interest without colliding with the affected vehicle. 

.3. Action recognition 

ction recognition in video covers various areas such as video
ummarization, surveillance systems, video retrieval, and video
rediction. Video summarization aims to reduce the amount of
ata in a video. Surveillance systems are used for security pur-
oses. Video r etrie v al helps in finding a specific content within
 video. Video prediction forecasts future events in videos. Action
ecognition is a longstanding and important computer vision task.
esearc hers hav e studied action r ecognition for man y years, as
emonstrated by the works of Bao and Intille ( 2004 ) and Zhang
nd Tao ( 2012 ). 

Action recognition is a process that aims to understand the
ovement of an object over time and identify it in an image. To

c hie v e this, motion information over time is often used. Optical
ow is a common method for obtaining motion information. The
otion information is added or processed based on the RGB infor-
ation of an image . T his helps correct for camera shakes, which

an affect the accuracy of the action recognition process (Poleg et
l., 2016 ). 

T here ha ve been significant changes in action recognition be-
ore and after the advent of deep learning. Before deep learn-
ng, spatial and temporal information was obtained using various
and-crafted elements . T hose include histograms of optical flows

Wang et al., 2013 ), SURFs with impr ov ed SIFT performance and
OG (La pte v & Lindeber g, 2006 ). These wer e used to enhance the
erformance of action recognition. 

After the advent of deep learning, attempts were made to solve
he action recognition problem using CNN. The features learned
sing 2D-CNN and the temporal characteristics can be captured
hr ough v arious fusion methods with m ultifr ame input (Kar pathy
t al., 2014 ). Furthermore, temporal information can be modeled
sing 2D-CNN, Recurrent Neural Network (RNN) and Long Short-
erm Memory (LSTM) (Donahue et al., 2015 ). Police signals have
lso been recognized using 2D-CNN and LSTM (Baek & Lee, 2022 ).

3D-CNNs have been developed to utilize temporal information.
he structure of the 3D-CNN network uses methods validated on
D-CNN (Ji et al., 2013 ; Tran et al., 2015 ). Attempts have also been
ade to use pr e-tr ained 2D-CNN weights with r elativ el y little data

Carr eir a & Zisserman, 2017 ). Optical flow and RGB were entered
s two main streams to separate spatial and temporal information
Simon yan & Zisserman, 2014 ). Alternativ el y, to minimize hand-
rafted elements, the same video was entered as two streams with
iffer ent fr ame r ates (Feic htenhofer et al., 2019 ). Curr entl y, man y
xperiments are being conducted to modify the backbone and
wo-str eam structur es showing high performances. Action r ecog-
ition can be classified into large categories such as sports and
ooking, as well as individual movements in sports or detailed
ehaviors such as walking, running, and gestures. It is expected
hat the c har acteristics of such action recognition can express the

ovement of the vehicle in detail. T herefore , in this paper, the
ction recognition methodology is used to distinguish between
mall shaking of the vehicle from other normal cases. 

The datasets used for action recognition research include Ki-
etics, Sports-1M, HMDB-51, and A V A (Gu et al., 2018 ; Karpathy et
l., 2014 ; Kay et al., 2017 ; Kuehne et al., 2011 ). In these datasets,
ach short video clip represents one class that includes se v er al
ultiple actions. Ho w ever, in the case of the hit-and-run dataset,
ost frames show normal vehicles that are parking and moving in

he scenes. And only a small fraction of the video includes the ac-
ual collision. It is necessary to pick or isolate the frames starting
rom the first frame of the shaking until the frame where the shak-
ng stops. In other w or ds only the r ele v ant fr ames should be used
s an input to the training model as being classed as a hit-and-
un case. We a ppl y the 3D-CNN to the isolated frames for further
r ocessing. Figur e 1 shows the ov er all structur e of the pr oposed
ystem. 

This paper contributes in three areas. First, it is shown that
it-and-run can be solved by applying 3D-CNN. The hit-and-run

s regarded as an action recognition problem that distinguishes
etween the cases where the vehicle is shaken and where it is
ot. Second, a hit-and-run dataset was collected using a radio-
ontrolled (RC) car to reduce the cost. The RC car was used to
im ulate the mov ement and collision of r eal v ehicles . T his method
ot onl y solv ed safety pr oblems that could r esult when r eal acci-
ents are performed but it also reduced costs by more than 100
imes as compared with the real-sized performances . T he filming
nvironment was configured to fit the size of the RC car by reflect-
ng the actual parking lot. Thir d, w e propose a data pr epr ocessing

ethod that reflects the characteristics of general action recog-
ition datasets and other hit-and-run datasets. In particular, we
ropose a method of introducing r values to input data only for
he parts needed for the problem-solving. The r value represents
he degree of the surrounding environment of the damaged ve-
icle. In other w or ds, it defines the margin of areas surrounding
he dama ged v ehicle. Finall y, we pr opose a method of analyzing
cenes that the network can misdetect and an enhancement in
he method by pr epr ocessing the dataset so that the scenes can
e more robustly distinguished. 

. Dataset 
n this section, we discuss how we constructed the environment
here the collisions were staged, design of the scenarios for the

raining, and data preprocessing. In the data preprocessing, vary-
ng lengths of video clips that were collected on the designed sce-
arios are quantized in a fixed-frame-lengths so that they can
e easily consumed and processed in the model training and
esting. 
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Figure 1: Ov er all structur e of the pr oposed system. 

Figure 2: RC cars for dataset collection. 
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3.1. Environment 
Obtaining hit-and-run clips fr om CCTV is c hallenging due to con- 
cerns regarding potential infringement of personal information. 
Ther efor e, it is necessary to collect the datasets dir ectl y to ensur e 
sufficient data. Direct collecting involves hiring actors to perform 

actions according to a designed scenario. Howe v er, following pr ob- 
lems must be handled pr operl y when datasets are collected di- 
r ectl y. First, guar anteeing the div ersity of datasets r equir es a lar ge 
number of v ehicles, whic h can be expensive to build and main- 
tain. Second, vehicle collisions incur repairment costs and results 
in lapse of time needed for the vehicle to be repaired. Third, there 
is a risk of human injuries and a safety manual must be estab- 
lished to pr e v ent suc h risks. 

To solve this problem, we used commercially available remote- 
contr olled miniatur e to y cars, as sho wn in Fig. 2 . By using to y cars 
instead of actual vehicles, costs can be reduced by more than 100 
times . T he RC car’s a ppear ance is similar to that of an actual vehi- 
cle; ho w e v er, the upper part of the car on which the infant rides is 
differ ent. To e v aluate the similarity between the RC cars and the 
actual vehicle, we compared the detection and tracking results of 
the RC cars by using the pr e-tr ained weights of the YOLOv5 and 

DeepSORT models trained for real vehicles . T hese models were 
trained using the BDD-100K dataset, which is a large dataset of 
r oad ima ges. Sample r esults ar e shown in Fig. 3 . We can see that 
the RC car was corr ectl y detected and tr ac ked, using the weights 
learned fr om r eal v ehicles . T he r esults of tr ac king the mov ements 
a  
f actual vehicles and RC cars were also similar. One concern was
he mismatch of the aspect ratio of the RC car to that of the actual
ehicle. Ho w ever, data augmentation techniques are often used
o expand the data to various aspect ratios (T. He et al., 2019 ). It
s widely accepted that by training with differently scaled aspect
atios, detection performance can be improved. Our experiments 
ave shown that within the r ange wher e the spatial c har acteris-
ics and features of the actual vehicle images are maintained, the
NN network is indifferent to different aspect ratios . Hence , we
sed the dataset collected from the RC car for training our model
o identify the minor impact collisions. 

The dataset was collected using a GoPro HERO6 BLACK camera,
ith shooting settings detailed in Table 1 . The aim was to ca ptur e

he a ppear ance of an under gr ound parking lot, wher e hit-and-
un accidents typically occur. To achieve this, we referenced CCTV
oota ge of under gr ound parking lots, as well as videos from web
ra wling and alleywa ys of r esidential ar eas. We also consulted
ith on-site police officers and car efull y consider ed the camer a’s

ocation, angle, shooting height, and the positioning of vehicles to
onstruct the shooting en vironment. T he shooting height was se-
ected as 80 cm, which is about one-third of the height of a typical
arking lot CCTV camera installation. This was chosen to match
he height of the RC car, which is one-third the height of an ac-
ual vehicle . T he shooting angle was set at 30 degrees , at which
oint the upper side of the camera was not visible. When pho-
ogr a phed with these settings, the resulting image resembled the
ctual parking lot shown on the left side of Fig. 4 . The comparison
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Figure 3: RC cars with object recognition and tracking. 

Table 1: Camera settings. 

Environment Specification 

Camera model GoPro HERO6 BLACK 

Frame per sec 30 
Aspect ratio 16:9 
Field of view 118.2 
Resolution 1920 ×1080 
Height from ground 0.8 m 

Distance from car 1.2 m 

Shooting angle 30 degrees 
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ncluding the location of the RC car and the camer a, ar e illustr ated
n Fig. 5 . 

Our collision detection system is designed to be highly robust,
ith the primary determining factor being any noticeable move-
ent of the vehicle that has been impacted. This detection is de-

endent on the r elativ e motion of the car with respect to the cam-
ra’s line of sight. We found that the primary failure scenario oc-
urs when the direction of the car’s movement is parallel to the
amera’s line of sight. To analyze the cause of this failure, we have
onducted a detailed analysis to determine the limiting distance
f movements that can be detected by a CCTV camera. Our cal-
ulations involve determining the field of view (FOV) of the cam-
ra, calculating the number of pixels per unit distance in both
orizontal and vertical resolutions, and then defining a threshold
igure 4: Actual parking lots (left panel) and collected datasets (right panel). 
or noticeable pixel differences. For a GoPro HERO6 Black camera
pecifications, we calculated that the camera can discern move-
ents of the impacted vehicle as long as it moves more than ap-

r oximatel y 5.4 mm horizontally and 7.0 mm v erticall y in the or-
 gy user on 22 April 2024
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Figure 6: Dataset scenario. 

 

 

Table 2: Collected dataset details. 

Directions Class Number of videos 

North A 48 
S 142 

South A 59 
S 190 

Left A 61 
S 170 

Right A 41 
S 122 

Total 833 
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thogonal direction to the line of sight. Detailed calculations for 
the horizontal and vertical resolutions δh and δv are as follows: 

δ
h = ( 2 ×L ×tan θh / 2 ) 

/ 

n h =5 . 4 mm / pixel 

δ
v = ( 2 ×L ×tan θv / 2 ) 

/ 

n v =7 . 0 mm / pixel 

where, L is the distance to target (10 m); θh the horizontal FOV (91.6 
degrees); n h the number of pixels of the Charge-Coupled Device 
(CCD) in the horizontal direction (3840); θv the vertical FOV (74.35 
degrees); and n v the number of pixels of the CCD in the vertical 
direction (2160). 

3.2. Dataset scenario 

To diversify the dataset, we photogr a phed six RC cars by alter- 
nating from four different directions, simulating a parking lot.
As under gr ound parking lots typicall y hav e no r ain and pr ovides 
consistent illumination, we conducted the data collection during 
r ain-fr ee daylight hours. Each video captured the vehicle’s actions 
based on specific scenarios, each lasting 10 to 15 s . T he recording 
started from the moment the v ehicle enter ed the parking lot and 

continued until the action was completed. 
Figure 6 illustrates four scenarios: parking, straight driving, col- 

lision, and wandering. The collision scenario is classified as class 
A, while the remaining scenarios are classified as non-collision 

class S. Parking refers to cases where the vehicle successfully 
parks and stops next to the r efer ence v ehicle. Str aight driving 
refers to cases where the entering vehicle drives straight pass- 
ing the r efer ence v ehicle without any special maneuvers. Colli- 
sion describes cases where a collision occurs while attempting to 
park. Wandering refers to cases where unexpected events occur,
such as temporarily stopping or approaching a reference vehicle 
while attempting to park in a straight driving scenario. The col- 
lected datasets include various situations . T he collision scenario 
was thor oughl y designed to r ecr eate v ehicle collisions fr om v ar- 
ious directions . T he wandering scenario, which does not in volve 
a collision, simulates situations where it may appear that a col- 
lision may occur any soon but does not actuall y ha ppen, suc h 
s closely approaching a reference vehicle while attempting to 
ark. The parking scenario not only positions the vehicle in the
arking space but also r ecr eates the movement trajectory, sim-
lating the actions of an actual driver during parking. In most
cenarios, the r efer ence v ehicle w as occluded b y another vehi-
le. We collected a total of 833 videos, with the collection details
resented in Table 2 . The hit-and-run dataset is available for free
ownload at the provided Kaggle URL ( https://www.kaggle.com/ 
atasets/inw oohw ang2/parking- vehicle- hit- an- run- dataset ). 

Data labeling was carried out by classifying each scenario ac-
ording to the image name. For class A, bounding box labeling was
mplo y ed to identify the vehicle involved in the collision. We la-
eled the frames in the r ange fr om the start of the vehicle’s colli-
ion up to and not including the frame when the shaking caused
y the collision stops . T his method allo w ed us to include frames
or the duration of two v ehicles actuall y making contacts and
t the same time demonstrating minor mo vements . For compar-
sons, we also extended by including some of the frames prior to
he start of the collisions during model testing. For class S, bound-
ng box labeling was performed on the two vehicles adjacent to
he parking space . T hese two vehicles are likely to be obscured by
he driving vehicle, so labeling them assists in tracking the driving
 ehicle’s mov ement. 

https://www.kaggle.com/datasets/inwoohwang2/parking-vehicle-hit-an-run-dataset
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Figure 7: Proposed data preprocessing method. 

F igure 8: P eripher al mar gin r ange of r efer ence v ehicle according to the r v alue. 

3
T  

m  

s  

i  

d  

d  

e
 

b  

d  

a  

a  

t  

p  

a  

t  

f  

f  

s  

w  

t  

c

 

t  

T  

v  

s  

a  

c  

t  

o  

w  

e  

i  

i  

e  

i  

T

 

t  

p  

j  

D
ow

nloaded from
 https://academ

ic.oup.com
/jcde/article/11/2/106/7610900 by G

w
ang Ju Institute of Science & Technology user on 22 April 2024
.3. Data preprocessing 

o ac hie v e optimal r esults in deep learning, the availability of
eaningful training data and the choice of the model used play

ignificant r oles. Additionall y, the pr epr ocessing method is also
mportant. For efficient learning, it is essential to utilize a reliable
ata pr epr ocessing method. This pr ocess includes classifying the
ata to align with the learning objective and r emoving an y unnec-
ssary data that might hinder the learning process. 

As pr e viousl y mentioned, w e emplo y ed a 3D-CNN netw ork-
ased action recognition algorithm. This algorithm was used to
etect hit-and-run incidents and distinguish between collision
nd non-collision scenarios. Two factors were considered when
 ppl ying the collected dataset to the network. The first factor was
he length of the input video clip. For class A, we performed ex-
eriments by dividing the length of each video clip into 9, 15,
nd 30 frames. In these divisions, the last frame corresponds
o the moment when the collision concludes . T he r efer ence
rame length for each class A is as follows. In 9-frame clips, the
oota ge contains onl y the r efer ence v ehicle alr eady cr ashing and
haking. In 30-frame clips, the vehicle approaches and collides
ith the r efer ence v ehicle, causing shaking. In 15-fr ame clips,

he pr operties wer e intermediate between 9-fr ame and 30-fr ame
lips. 
The second factor is the location of the damaged vehicle and
he degree to which the surrounding environment is incorporated.
he extent of the surr ounding envir onment is controlled by the
ariable r. In the case of a hit-and-run incident, this method is
traightforw ar d to implement because the location of the dam-
 ged v ehicle is alr eady known. Instead of utilizing a full image that
ontains unnecessary information as input, this method adjusts
he extent to which the affected vehicle and its surroundings are
bserv ed. The v ariable w c denotes the width of the cropped image,
hile w v r epr esents the width of the r efer ence v ehicle . T he refer-

nce vehicle is precisely positioned in the center of the cropped
mage. If centering is not possible, padding is added as illustrated
n Fig. 7 . The r v alue, r epr esenting the degr ee of the surr ounding
nvironment of the damaged vehicle, is shown in Fig. 8 . By chang-
ng the r value the training clips are augmented and expanded.
he 833 videos become 1457 video data. 

r = 

w c 

w v 

As the value of r decreases, the system concentr ates mor e on
he affected v ehicle. Consequentl y, it can be mor e focused on the
r oblem of r ecognizing a collision and pay less on the v ehicle’s tr a-

ectory. On the other hand, as the value of r increases, the model
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Figure 9: Images with ambiguous collision status. 

Table 3: The video clips used for training. 

Video clip frame Class Number of video clips Total 

9 Frame A 209 32 975 
S 32 766 

15 Frame A 209 19547 
S 19 338 

30 Frame A 209 9487 
S 9278 
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r elies mor e on the v ehicle’s tr ajectory. Ho w e v er, this may lead the 
model to incor por ate unr elated surr oundings, potentiall y r esult- 
ing in a misinter pr etation of the collision of the affected vehicle. 

The images below are all non-collision images. In the image 
depicted in Fig. 9 , it is challenging to tell whether the top three 
pictur es ar e displaying a state of collision. Additionall y, the a p- 
pearance of a slowly moving vehicle and a vehicle slightly dis- 
placed due to a collision are quite similar. To reduce the false 
alarm rate, it is necessary to differentiate between these two situ- 
ations . T her efor e, we divided the non-collision videos into frames 
of a specific length and added them to the training as labeled to 
be non-collision. The video augmented by the r value was also 
divided into frames of the same length. Table 3 summarized the 
number of video clips used for training. 

We used a fixed frame length for training data. Ho w ever , dur - 
ing the testing process, video data of different lengths can be used.
We utilized the sliding window method during testing. The entire 
video is segmented into frames of the same length as used in the 
tr aining pr ocess with a stride of one . T his causes m uc h ov erla p- 
pings between testing video clips. 

4. Model 
In this section, we compare between two choices of network mod- 
els for our purposes. First is the 2D-CNN-RNN model which com- 
bines 2D-CNN with RNN for tempor al consider ations. Second is 
the 3D-CNN model that considers time as a third dimension in 
pace ther efor e unifies the space and time. We also discuss about
he used data augmentation techniques and the better under- 
tanding of the proposed model through the use of the class acti-
 ation ma p (CAM) for highlighting wher e in the ima ge the network
s concentrating more to identify the accidents. 

.1. 2D-CNN-RNN model 
n the field of computer vision, effectiv el y handling continuous
ime series of images entails more than mer el y le v er a ging a CNN
unction. The system must also possess the ability to process se-
uential images. While CNNs are suitable for processing short- 
erm information, they are not ideally suited for learning tempo- 
al information across the entire dataset. Conversely, an RNN is
ell-suited for modeling sequence data; howe v er, it does not ex-

el at learning spatial information. Donahue et al. ( 2015 ) proposed
 combined CNN-RNN network that synergizes the strengths of 
oth neural network structures for video recognition. This net- 
 ork emplo ys a CNN as an encoder and an RNN as a decoder.
igur e 10 illustr ates the fundamental concept of the CNN-RNN
tructure. 

.2. 3D-CNN model 
he hit-and-run dataset pr esents distinctiv e c har acteristics that
 esemble gener al action r ecognition datasets . For example , in a
cenario involving a baseball player pitc hing, ther e ar e se v er al
istinct body mo vements , each contributing to the ov er all action
f pitc hing. Similarl y, the hit-and-run dataset comprises a scene
her e a v ehicle enters, attempts to park, and e v entuall y collides.
his process is crucial for reproducing the given situation. How- 
 v er, it is essential to understand that not all these movements
hould be categorized as a vehicle collision. In any given video, a
ollision should be inter pr eted as occurring only when the vehicle
akes direct contact and demonstrates discernible shaking. 
In the proposed method, the primary factor for distinguishing

hether a vehicle has collided or not is the shaking of the refer-
nce vehicle . T he trajectory information of the vehicle, based on
he r value , ma y also influence the collision determination. Ob-
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Figure 10: 2D-CNN-RNN model for action recognition. 
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erving vehicle shaking requires both spatial and temporal infor-
ation. Ther efor e, we c hose a 3D-CNN, whic h extends the concept

f 2D-CNN in the temporal direction, to effectively utilize both
ypes of information. 

As a video is an extension of an image along the time axis, an
ma ge serv es as the base . T he 3D-CNN structure extends the time-
xis concept of the 2D-CNN structure and incor por ates v arious
oncepts from 2D-CNN. It also adopts structures such as VGGNet,
esNet, and GoogLeNet which have shown strong performance in
D-CNN. 

The backbone network used in this study is based on Two-
tream Inflated 3D ConvNets (I3D), which leverages the benefits
f well-performing 2D-CNNs like ResNet and Inception (He et al.,
016 ; Szegedy et al., 2015 ) that r epr esent efficient oper ations in
D-CNN. T he I3D network structure , as depicted in Fig. 11 , ex-
ands the dimensions of the 2D-CNN structure . T his enables the
se of pr e-tr ained weights, ther eby enhancing both performance
nd capabilities . T he structure of the inception module, as shown
n Fig. 12 (Carreria & Zisserman, 2017 ), is utilized. The network ac-
epts a continuous RGB image as input. A 1 × 1 × 1 convolution is
mplo y ed at the network’s head to reduce the feature maps . T he
oftmax is then used to classify whether a collision has occurred
r not. 

Contrary to the conventional use of I3D, we decided not to uti-
ize optical flow. This decision stemmed from its apparent limi-
ations in detecting shakes in vehicles caused by collisions, par-
icularly when those vehicles are moving slowly. Furthermore,
he computational load r equir ed to generate optical flow images
r eatl y exceeds that of RGB images. Ho w ever, the slight improve-
ent in performance does not adequately justify the extra com-

utational expense. 

.3. Da ta augmenta tion 

ata augmentation is a w ell-kno wn method for improving the
erformance of deep learning models especially when the train-

ng dataset is not large enough to guarantee generalization. Data
ugmentation can vary for each image in image data. Ho w ever,
n the case of video data, all frames of the video should use the
ame data augmentation method. Augmented data should closely
esemble the original data. In this study, a data augmentation

ethod was selected that pr eserv es the c har acteristics of vehi-
le movement. Shaking is aimed to be simulated as close to the
eality as possible. For instance, we excluded the vertical flip from
ur methods . T his decision was made because CCTV cameras
r e r ar el y ov erturned completel y, causing the foota ge to be up-
ide do wn. Ho w e v er, a horizontal flip can div ersify the data while
aintaining reasonable image features. We applied color jitter to

r eate v arious illumination effects and r otation was used to pr o-
uce differ ent photogr a phic compositions. We also a pplied r an-
om crop to augment the dataset for the purpose of adding colli-
ions in restricted and occluded views. 

.4. Class activ a tion map 

hen CNN is used for classification problems, a fully connected
ayer is typically included at the end. Howe v er, flattening this last
ayer can result in the loss of localization information, which can
omplicate the identification of which part of the network deter-
ines the decision-making process . T he challenge is addressed
 y emplo ying the CAM, whic h le v er a ges global av er a ge pooling in-
tead of flattening. This method applies the feature map from the
ackbone to the fully connected layer and generates a new weight.
y m ultipl ying the weight with the featur e ma p, we can cr eate a
eat map for a specific class . T his heat map can help identify the
oundation of the network’s prediction for a particular class (Zhou
t al., 2016 ). Figur e 13 illustr ates the structur e of CAM. 

In the context of a 3D-CNN, we calculate the heat map similarly
o a 2D-CNN, using the final layer as the output. The heat map
ighlights the local areas of the image that r eceiv e mor e attention
y increasing intensity, indicating their relative importance to the
odel’s decision-making pr ocess. Figur e 14 pr ovides an illustr a-

ion of the CAM at the moment of collision, the point of contact
n the vehicle is highlighted in red, indicating that the network
onsiders both the vehicle’s shaking and the contact point. CAM
llows for the visualization of r ele v ant parts of the input data,
hereby enabling domain experts to understand the model’s be-
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Figure 11: I3D model for action recognition. 

Figure 12: Inception module. 
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havior better. Additionally, the results of this visualization can be 
used to enhance the model’s accuracy and interpretability. 

5. Experiments 

The comparison of the outputs from the two models that were 
used to identify the collisions is discussed in this section. The de- 
ailed specification of the experimental environment is shown in 

able 4 . 
The choice of different models on the results was e v aluated by

omparing the CNN-RNN and the 3D-CNN. The CNN-RNN algo- 
ithm was de v eloped using PyTorch. We utilized ResNet-152 pre-
r ained on Ima geNet. The CNN encoder tr ansforms all 2D ima ges
nto 1D vectors . Meanwhile , the decoder uses an LSTM to r eceiv e
 sequential input vector from the CNN encoder and output an-
ther sequence. For the final prediction, a fully connected layer 
 as emplo y ed. We set the batch size to 256 and the number of

pochs to 15. The learning rate was selected as 0.00 001 and we
sed the Adam optimizer. 

For training, 1164 out of a total of 1457 videos were used, and
he remaining 293 videos were used for testing. Among the 293
ideos used for testing, class A contained 41 videos and class S
onsisted of 252 videos . T he accuracy was calculated as follows: 

Accuracy : 
T P + T N 

T P + T N + F P + F N 

. 

The accuracy is a binary classification problem where Positive 
enotes the video was identified as an accident (class A) and non-
ccident (class S), otherwise . T he results of the CNN-RNN struc-
ur e ar e pr esented in T able 5 below . 

A bias to w ar ds the class S was tended to be exhibited by the
odel in the CNN-RNN arc hitectur e . T his is due to the fact that

umber of trained samples for class S outnumbered that of class
 by 50 to 1. There was no significant difference in accuracy based
n the r value size or the frame length. 

For the 3D-CNN arc hitectur e, we did not use pr e-tr ained
eights . T he hyper par ameters wer e set as follows . T he batch size
as set to 15. The number of epochs was set to 100. A learning rate
f 0.00 001 was set, and Adam was used as the optimizer. Early
topping was applied to prevent o verfitting. T he results of the 3D-
NN arc hitectur e ar e pr esented in Table 6 . 
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Figur e 13: C AM in I3D model. 

Figure 14: Result of CAM. 

Table 4: Computing environment. 

Parts Specification 

GPU Nvidia quadro RTX 8000 
CPU Intel(R) Xeon(R) Gold 6230R CPU @ 2.10GHz 
RAM 500 GB LRDIMM DDR4 
NVIDIA CUDA Cores 8 × 4608cores 
OS Ubuntu 18.04 Linux OS 
Language Python 
Fr ame work PyTorch 

Table 5: Action recognition accuracy comparison (2D-RNN). 

Frame length ( r) Recall False alarm Accuracy 

9 ( r = 1) 39.02% 3.17% 88.74% 

9 ( r = 1.5) 41.46% 0.40% 91.47% 

9 ( r = 2) 34.14% 1.19% 89.76% 

9 ( r = 2.33) 34.14% 3.57% 87.71% 

9 ( r = 3) 19.51% 5.56% 83.96% 

15 ( r = 1) 24.39% 5.16% 84.98% 

15 ( r = 1.5) 39.02% 0.79% 90.78% 

15 ( r = 2) 24.39% 3.57% 86.35% 

15 ( r = 2.33) 21.95% 3.17% 86.34% 

15 ( r = 3) 29.27% 5.95% 84.98% 

30 ( r = 1) 36.59% 14.28% 78.84% 

30 ( r = 1.5) 36.59% 6.75% 85.32% 

30 ( r = 2) 26.83% 4.37% 86.01% 

30 ( r = 2.33) 24.39% 4.37% 85.66% 

30 ( r = 3) 17.07% 3.17% 85.66% 

Table 6: Action recognition accuracy comparison (3D-CNN). 

Frame length ( r) Recall False alarm Accuracy 

9 ( r = 1) 80.49% 9.52% 89.08% 

9 ( r = 1.5) 68.29% 1.98% 93.86% 

9 ( r = 2) 80.49% 3.97% 93.86% 

9 ( r = 2.33) 63.41% 2.38% 92.83% 

9 ( r = 3) 43.90% 5.56% 87.37% 

15 ( r = 1) 85.37% 4.37% 94.20% 

15 ( r = 1.5) 56.10% 7.14% 87.71% 

15 ( r = 2) 75.61% 7.54% 90.10% 

15 ( r = 2.33) 58.54% 5.16% 89.76% 

15 ( r = 3) 63.41% 3.17% 92.15% 

30 ( r = 1) 92.68% 2.38% 96.93% 

30 ( r = 1.5) 85.37% 6.35% 92.49% 

30 ( r = 2) 80.48% 3.17% 94.54% 

30 ( r = 2.33) 53.66% 1.98% 91.81% 

30 ( r = 3) 63.41% 3.57% 91.81% 
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The 3D-CNN did not exhibit as m uc h biasing as the CNN-RNN
nd sho w ed significantly better performance . T he accurac y w as
ound to be better for smaller values of r. Additionally, longer
rame lengths resulted in better performance . T he best perfor-

ance was ac hie v ed with r = 1 and a frame length of 30 frames. 
In ov er all, 3D-CNNs outperformed CNN-RNN structur es for

e v er al r easons . T he CNN-RNN structur e r equir es determining
ptimal hyper par ameters for eac h network separ atel y. This is be-
ause the CNN model and the RNN model exhibit different char-
cteristics . T he CNN-RNN model is strong in preserving sequen-
ial time information but suffers from gradient vanishing prob-
em. Ho w e v er, in the context of classifying vehicle collisions and
on-collisions, the inclusion of sequential time information is not
ssential. The critical factor in this task is the shaking scene of
he vehicle. 

To e v aluate how our model performs on r eal data, we demon-
trate our performance on 20 actual hit-and-run videos. Figure 15
hows the snapshots of these actual data. The sources of the
ideos ar e giv en in the Appendix 1 . Although our primary fo-
us is on low-speed collisions, we acknowledge the importance of
onsidering high-speed scenarios. Items 5 and 18 in our dataset
 epr esent high-speed collisions, offering insights into the model’s
erformance under such conditions . T hese cases , along with rel-
 v ant foota ge (wher e av ailable), ar e included in Appendix 1 for
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Figure 15: Web crawling data. 
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further r efer ence. We used the optimal hyper par ameters of r = 1 
and a frame length of 30 frames based on our experimental re- 
sults . T his a ppr oac h ac hie v ed a r ecall of 75% (15 out of 20 videos).
To supplement the insufficient web crawling data, we augmented 

the accident videos. One a ppr oac h involv ed r earr anging the ob- 
stacles in the scenes to occlude the r efer ence v ehicle fr om v ar- 
ious angles. Additionally, we introduced variations in brightness 
to simulate day and night conditions, thereby expressing differ- 
ent lighting conditions . T here is a disparity in vibr ation c har acter- 
istics between r eal v ehicles and our mock-up models . T he differ- 
ence in tire damping between an RC car and a real car does lead to 
v ariations in vibr ation dur ation. Ho w e v er, for detecting the minor 
movement of the cars in collision, the amplitude of movement is 
critical. For this matter, the difference between the RC car and a 
real car is marginal and within acceptable limits for our purposes.

Figure 16 shows the augmented data, which consisted of 12 h 

of footage and 12 collision scenes . T he augmented data demon- 
strated similar performance to the web crawling data, achieving 
a recall of 83.33% in detecting 10 out of 12 collisions . T he results of 
the web crawling and augmented web crawling data can be found 

in Table 7 . 

6. Discussion 

Various effects to the performance of the model, including the 
mar ginal v alue r, ar e discussed in this section. 

6.1. Performance based on frame length 

Better ov er all performance than the CNN-RNN was exhibited by 
the 3D-CNN structure and here we analyzed its results. We found 

that the recall decreases when the length of the input frame is 
short. This means that there are many cases where a collision oc- 
curs with the r efer ence v ehicle; ho w e v er, it is not r ecognized as 
 collision. This issue arises because the input information is too
rief. Consequently, the network cannot distinguish between a sit- 
ation where another vehicle obstructs the reference vehicle as it
asses by and a scene where the vehicle shakes due to a collision.
cenes where a vehicle passes by without a collision, occluding
he r efer ence v ehicle, occur mor e fr equentl y than scenes wher e
 vehicle collides with and shakes the reference vehicle. Collision
ituations are more prone to be misinterpreted as non-collision 

 v ents by the model due to this imbalance. When the frame length
ncreases, the model can take in more information. It allows the

odel to discern the distinctive pixel changes between situations 
her e other v ehicles occlude the r efer ence v ehicle while passing
y and situations where collisions occur. 

.2. Performance based on marginal value r
he r value primarily influences the scope of visual data consid-
red in detecting collisions. When the r value is at its minimum,
ur detection model focuses exclusiv el y on the pixel values within
 tightly defined box encompassing the impacted vehicle . T his
arrow focus is designed to analyze the immediate visual changes
r ecisel y at the point of impact. Ho w e v er, as the r value increases,
ur algorithm expands its scope to include pixel values in the mar-
ins surrounding the impacted vehicle . T his broader view allows
or a more comprehensive analysis of the collision context, incor-
orating the behavior of nearby vehicles and environmental fac- 
ors. 

The purpose of adjusting the r v alue, ther efor e, is to meticu-
ousl y contr ol the extent to whic h surr ounding elements ar e fac-
ored into the collision determination process. By varying the r
alue, we can assess how the inclusion of adjacent areas influ-
nces the detection accuracy. This nuanced approach is critical 
or enhancing the ov er all accur acy and r eliability of our collision
etection system. 
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Figure 16: Results of augmented web crawling data. 

Ta ble 7: P erformance of w eb crawling video (3D-CNN). 
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Figure 17: Image incorrectly detected as class S. 

Figure 18: Image with reference vehicle occluded. 
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Based on the findings presented in Table 6 and Fig. 17 , it can
e inferred that when the input includes more areas surrounding
he vehicle, the model is more prone to fail to detect a collision,
 v en when one does occur. With an increase in the value of r, the
eatmap shifts focus to w ar ds the space betw een the vehicles . T his
uggests that the model identifies collisions based on the vehicle
r ajectories r ather than their shaking mov ements. 

As shown in Fig. 18 , when the value of r is small, the vehicle
assing the r efer ence v ehicle may cover most of the reference ve-
icle. Ho w e v er, the model does not recognize this as a collision.
his is because it is able to distinguish between the general move-
ent of the vehicle and the movement caused by the collision. 
. Conclusions 

 3D-CNN-based network for detecting small shaking of a vehicle
n hit-and-run is proposed in this paper. An RC car, due to its lo w er
tiffness and lesser mass compared with a real vehicle, would at
rst thought to exhibit a larger relative motion during an impact.
o w e v er, this is counterbalanced by the fact that the impacting
bject in our experiments was also pr oportionall y smaller and
ighter, similar to the RC car. Consequentl y, the observ ed motion
f the RC car during impact turned out to be significantly smaller
han what would be expected in a real vehicle collision. This dis-
repancy in the physical dynamics of the RC car impacts has a
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notable implication for our study. Our training dataset, which cap- 
tured these smaller scale impulsive mo vements , inadvertently led 

to our model being more sensitive to impact detection. This in- 
creased sensitivity is due to the model being trained on data where 
e v en minor impacts result in visible motion, a scenario less likely 
in r eal v ehicle collisions due to their gr eater mass and stiffness.
This a ppr oac h not onl y enhances the gener alizability of our model 
but also ensures that it remains sensitive and accurate when ap- 
plied to real-world scenarios involving actual vehicles. 

Our dataset includes RC cars, which sho w ed reasonably good 

object detection accuracy using YOLOv5 as compared with real 
vehicles. We utilized a modified I3D models that have performed 

well in the field of action r ecognition. We pr oceeded with a 1- 
stream network because optical flow information has a nega- 
tive effect on accuracy. We compared accuracy using two condi- 
tions . T hose are frame length in the 3D-CNN model and the in- 
put margin extent of the vehicle’s surroundings. Additionally, we 
applied CAM to visualize how the 3D-CNN model works. Our re- 
sults demonstrated that the model performed better with a frame 
length of 30 frames and with the smallest value of r. A high false 
alarm rate was observed for larger values of r. We collected our 
own dataset without utilizing publicly available open datasets. 
Our dataset only includes parking lots. We believe more data are 
needed to impr ov e the model’s performance. As for a future work,
more data collection is necessary to carefully learn diverse colli- 
sion behaviors in hit-and-run accidents. New locations to include 
are alleys or densely populated residential areas, and it is neces- 
sary to collect datasets that reflect the real situation, taking into 
account the angle of the cameras of the CCTV installed. We be- 
lie v e suc h effort will enable the creation of a model that can be 
r obustl y a pplied in mor e hit-and-run scenarios. 
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Video FPS Resolution Video length Accident time URL 

1 30 640 × 480 26 17 https:// www.youtube.com/ watch?v=l9KMgfV5BeU 

2 29.47 1280 × 720 2:55 46 https:// www.youtube.com/ watch?v=AH5jkmpq _ Jc 
3 29.97 1280 × 720 1:04 17 https:// www.youtube.com/ watch?v=4 _ 43LiZyfnQ
4 29.97 720 × 480 51 24 https:// www.youtube.com/ watch?v=X4qMykwdxNo 
5 29.78 1280 × 720 43 33 https:// www.youtube.com/ watch?v=nIuFYkC7y2Q
6 24.86 1280 × 720 1:54 47 https:// www.youtube.com/ watch?v=VwRT2tcsFmk 
7 30 1280 × 720 3:00 2:27 https:// www.youtube.com/ watch?v=Z-W96lVRhzI 
8 15 1920 × 1080 6:02 20 - 
9 29.67 1280 × 720 49 10 https:// www.youtube.com/ watch?v=OH3hD5C2HYs 
10 30 1280 × 720 14 10 https:// www.youtube.com/ watch?v=HhbkdO9VPn8 
11 10 528 × 190 6 4 https:// www.clien.net/ service/ board/ cm _ car/16653661?combin 

e=true&q=%EB%AC%BC%ED%94%BC%EB%8F%84%EC%A3%BC+ 
cctv&p=2&sort=recency&boar dCd=&isBoar d=false 

12 30 1280 × 720 15 6 https:// www.youtube.com/ watch?v=0D94uatULm0 
13 30 1280 × 720 22 11 https:// www.youtube.com/ watch?v=0zfObwJW5qE 
14 30 854 × 480 43 25 https:// www.youtube.com/ watch?v=X8DeXsAwnbU 

15 30 1280 × 720 2:00 46 https:// www.youtube.com/ watch?v=7cbeyX8OAZU 

16 30 1920 × 1080 1:13 37 https:// www.youtube.com/ watch?v=aIU4BpGLWSc 
17 15 1920 × 1080 6:28 2:26 - 
18 30 1280 × 720 1:32 1:12 https:// www.youtube.com/ watch?v=v9r3cMHdJ0s 
19 30 1920 × 1080 1:31 20 https:// www.youtube.com/ watch?v=9Ezgb3eJnaI 
20 30 480 × 360 25 7 - 
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