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A B S T R A C T

Automatic sleep scoring is essential for the diagnosis and treatment of sleep disorders and enables longitudinal
sleep tracking in home environments. Conventionally, learning-based automatic sleep scoring on single-
channel electroencephalogram (EEG) is actively studied because obtaining multi-channel signals during sleep
is difficult. However, learning representation from raw EEG signals is challenging owing to the following
issues: (1) sleep-related EEG patterns occur on different temporal and frequency scales and (2) sleep stages
share similar EEG patterns. To address these issues, we propose an automatic Sleep scoring framework that
incorporates (1) a feature Pyramid and (2) supervised Contrastive learning, named SleePyCo. For the feature
pyramid, we propose a backbone network named SleePyCo-backbone to consider multiple feature sequences
on different temporal and frequency scales. Supervised contrastive learning allows the network to extract
class discriminative features by minimizing the distance between intra-class features and simultaneously
maximizing that between inter-class features. Comparative analyses on four public datasets demonstrate
that SleePyCo consistently outperforms existing frameworks based on single-channel EEG. Extensive ablation
experiments show that SleePyCo exhibited an enhanced overall performance, with significant improvements in
discrimination between sleep stages, especially for N1 and rapid eye movement (REM). Source code is available
at https://github.com/gist-ailab/SleePyCo.
1. Introduction

Sleep scoring, also referred to as ‘‘sleep stage classification’’ or
’’sleep stage identification’’, is critical for the accurate diagnosis and
treatment of sleep disorders (Wulff, Gatti, Wettstein, & Foster, 2010).
Individuals suffering from sleep disorders are at risk of fatal compli-
cations such as hypertension, heart failure, and arrhythmia (Torabi-
Nami, Mehrabi, Borhani-Haghighi, & Derman, 2015). In this context,
polysomnography (PSG) is considered the gold standard for sleep scor-
ing and is used in the prognosis of typical sleep disorders (e.g., sleep
apnea, narcolepsy, and sleepwalking) (Berthomier et al., 2007). PSG
consists of the biosignals associated with bodily activities such as
brain activity (electroencephalogram, EEG), eye movement (electroocu-
logram, EOG), heart rhythm (electrocardiogram, ECG), and chin, facial,
or limb muscle activity (electromyogram, EMG). Generally, experi-
enced sleep experts examine these recordings based on sleep scoring
rules and assign 20- or 30-s segments of the PSG data (called ‘‘epoch’’)
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to a sleep stage. Rechtschaffen and Kales (R&K) (Rechtschaffen, 1968)
and American Academy of Sleep Medicine (AASM) (Berry et al., 2012)
standards serve as typical sleep scoring rules. The R&K standard clas-
sifies sleep stages into wakefulness (W), rapid eye movement (REM),
and non-REM (NREM). NREM is further subdivided into S1, S2, S3,
and S4 or N1, N2, N3, and N4. In the AASM rule, N3 and N4 are
merged into N3, and it categorizes the PSG epochs into five sleep stages.
Recently, the improved version of R&K – the AASM rule – has been
widely utilized in manual sleep scoring. According to this rule, sleep
experts should visually analyze and categorize the epochs of the entire
night to form a hypnogram. Thus, manual sleep scoring is an ardu-
ous and time-consuming process (Malhotra et al., 2013). By contrast,
machine learning algorithms require less than a few minutes for sleep
scoring (Phan et al., 2021), and their performance is comparable to that
of sleep experts (Stephansen et al., 2018). Therefore, automatic sleep
scoring is highly desired for fast and accurate healthcare systems.
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Several methods have been developed for automatic sleep scoring
based on deep neural networks. Basic one-to-one schemes that utilize
a single EEG epoch and produce its corresponding sleep stage, were
proposed as early methods (Phan, Andreotti, Cooray, Chén, & De
Vos, 2018a, 2018b). In addition, one-to-many (i.e., multitask learn-
ing) (Phan, Andreotti, Cooray, Chén, & De Vos, 2018c) schemes have
been presented. Because the utilization of multiple EEG epochs of-
fers advantageous performance, several many-to-one methods (Cham-
bon, Galtier, Arnal, Wainrib, & Gramfort, 2018; Seo et al., 2020;
Sors, Bonnet, Mirek, Vercueil, & Payen, 2018; Tsinalis, Matthews,
Guo, & Zafeiriou, 2016), the method of predicting the sleep stage of
the target epoch with the given PSG signals, and many-to-many (i.e.,
sequence-to-sequence) (Phan, Andreotti, Cooray, Chén, & De Vos, 2019;
Phan et al., 2021; Supratak, Dong, Wu, & Guo, 2017) methods have
been proposed for automatic sleep scoring. The existing methods are
generally based on convolutional neural networks (CNNs) (Andreotti
et al., 2018; Chambon et al., 2018; Phan et al., 2018b, 2018c; Sors
et al., 2018; Tsinalis et al., 2016; Vilamala, Madsen, & Hansen, 2017),
recurrent neural networks (RNNs) (Phan et al., 2019), deep belief
networks (DBNs) (Längkvist, Karlsson, & Loutfi, 2012), convolutional
recurrent neural networks (CRNNs) (Korkalainen et al., 2020; Mousavi,
Afghah, & Acharya, 2019; Phan et al., 2021; Seo et al., 2020; Sun,
Chen, Li, Fan, & Chen, 2019; Supratak et al., 2017; Supratak & Guo,
2020), fully convolutional networks (FCNs) (Jia et al., 2021; Perslev,
Jensen, Darkner, Jennum, & Igel, 2019), transformer (Phan et al.,
2022), CNN+Transformer (Phan et al., 2018a; Qu et al., 2020), and
other network architectures (Huang, Ren, Zhou, & Yan, 2022; Sun, Fan,
Chen, Li, & Chen, 2019).

To obtain an improved representation from EEG, the architectures
are designed to extract multiscale features with varying temporal and
frequency scales (Fiorillo, Favaro, & Faraci, 2021; Huang et al., 2022;
Phan et al., 2018b; Qu et al., 2020; Sun, Chen, et al., 2019; Supratak
et al., 2017; Wang et al., 2022). Phan et al. (2018b) and Qu et al.
(2020) used two distinct widths of max-pooling kernels on the spec-
trogram. Supratak et al. (2017), Fiorillo et al. (2021), and Huang et al.
(2022) designed two-stream networks with two distinct filter widths
of the convolutional layer in representation learning. Further, Sun,
Chen, et al. (2019) and Wang et al. (2022) utilized convolutional layers
with two or more distinguished filter widths in parallel. These studies
utilized feature maps with different receptive field sizes to obtain richer
information from given input signals. However, they could not obtain
the advantages of multi-level features, which represent broad temporal
scales and frequency characteristics.

Automatic scoring methods based on batch contrastive approaches
have been proposed (Jiang, Zhao, Du, & Yuan, 2021; Mohsenvand,
Izadi, & Maes, 2020; Ye et al., 2021) to improve the representa-
tion of PSG signals without labeled data, as multiple self-supervised
contrastive learning frameworks have been proposed for visual rep-
resentation (Caron et al., 2020; Chen, Kornblith, Norouzi, & Hinton,
2020; He, Fan, Wu, Xie, & Girshick, 2020). These batch-based ap-
proaches have been extensively studied because they outperform the
traditional contrastive learning methods (Hadsell, Chopra, & LeCun,
2006) such as the triplet (Schroff, Kalenichenko, & Philbin, 2015)
and N-pair (Sohn, 2016) strategies. Mohsenvand et al. (2020) pro-
posed self-supervised contrastive learning for electroencephalogram
classification. Jiang et al. (2021) proposed self-supervised contrastive
learning for EEG-based automatic sleep scoring. CoSleep (Ye et al.,
2021) presented self-supervised learning for multiview EEG represen-
tation between the raw signal and spectrogram for automatic sleep
scoring. These studies only solve the problem of lack of labeled PSG
data and do not focus on accurate automatic scoring. Furthermore, they
do not leverage the large amount of annotated PSG data.

To address the aforementioned limitations, we propose SleePyCo,
a novel automatic Sleep scoring framework that jointly utilizes a fea-
ture Pyramid (Lin et al., 2017) and supervised Contrastive learn-
2

ng (Khosla et al., 2020). To incorporate the feature pyramid into T
automatic sleep scoring, we present the SleePyCo-backbone. This en-
ables the feature pyramid to consider various temporal scales and
frequency characteristics by leveraging multi-level features, resulting
in enhanced discrimination between sleep stages. Our training frame-
work, based on supervised contrastive learning, enables the network
to extract class discriminative features by simultaneously minimizing
the distance between intra-class features and maximizing the distance
between inter-class features. To verify the effectiveness of the feature
pyramid and supervised contrastive learning, we conducted an ablation
study on the Sleep-EDF (Goldberger et al., 2000; Kemp, Zwinderman,
Tuk, Kamphuisen, & Oberye, 2000) dataset. The results show that
SleePyCo exhibits an improved overall performance in automatic sleep
scoring by enhancing the discrimination between sleep stages, espe-
cially for N1 and REM stages. The results of extensive experiments and
comparative analyses conducted on four public datasets further corrob-
orate the performance of SleePyCo. SleePyCo achieves state-of-the-art
erformance by exploiting the representation power of the feature
yramid and supervised contrastive learning. The main contributions
re summarized as follows:

• We present a novel framework named SleePyCo that jointly uti-
lizes a feature pyramid and supervised contrastive learning for
automatic sleep scoring.

– We incorporate the feature pyramid for automatic sleep
scoring and propose the SleePyCo-backbone to account for
diverse temporal and frequency scales present in raw single-
channel EEG, resulting in improved discrimination between
sleep stages.

– We propose a training framework based on supervised con-
trastive learning, marking the first application of this ap-
proach to automatic sleep scoring. Our framework aims to
mitigate the ambiguity of sleep stage by extracting class
discriminative features.

• We demonstrate that SleePyCo outperforms the state-of-the-art
frameworks on four public datasets via comparative analyses.

. Model architecture

.1. Problem statement

The proposed model is designed to classify 𝐿 successive single-
channel EEG epochs into sleep stages for the 𝐿th input EEG epoch
(called the target EEG epoch). Formally, we define 𝐿 successive single-
channel EEG epochs sampled at 𝐹 Hz as 𝐗(𝐿) ∈ R1×𝐸⋅𝐹 ⋅𝐿, where 𝐸 is
he duration of an EEG epoch in seconds. The corresponding ground
ruth is denoted as 𝒚(𝐿) ∈ {0, 1}𝑁𝑐 , where 𝒚(𝐿) denotes the one-hot
ncoding label of the target EEG epoch and ∑𝑁𝑐

𝑗=1 𝑦
(𝐿)
𝑗 = 1. 𝑁𝑐 indicates

he number of classes and was set to 5, following the five-stage sleep
lassification in the AASM rule (Berry et al., 2012), which is briefly
ummarized in Table 1. 𝐗(𝐿) can be described as 𝐗(𝐿) = {𝒙1,𝒙2,… ,𝒙𝐿},
here 𝒙𝑖 ∈ R1×𝐸⋅𝐹 is a 𝐸-second single EEG epoch sampled at 𝐹 Hz.

.2. Model components

The network architecture of SleePyCo was inspired by IITNet (Seo
t al., 2020). As reported in Seo et al. (2020), considering the temporal
elations between EEG patterns in intra- and inter-epoch levels is
mportant for automatic sleep scoring because sleep experts analyze
he PSG data in the same manner. However, EEG patterns exhibit
arious frequencies and temporal characteristics. For instance, the sleep
pindles in N2 occur in the frequency range of 12–14 Hz between 0.5–
s, whereas the slow wave activity in N3 occur in the frequency range

f 0.5–2 Hz throughout the N3 stage. To address this, we incorporated
feature pyramid into our model to enable multiscale representation.

his is because a feature pyramid can consider various temporal scales
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Fig. 1. Model Architecture of SleePyCo. The purple, pink, and yellow regions indicate the backbone network, lateral connections, classifier network of SleePyCo, and their
corresponding outputs, respectively.
Table 1
EEG characteristics of each sleep stage according to the AASM rule (Berry et al., 2012);
bold indicates the fundamental rationale that scores the corresponding sleep stage.

Sleep stage EEG characteristics

Wake ∙ More than 50% of alpha rhythm (8–13 Hz)
∙ Beta rhythm (13–30 Hz)

N1 ∙ Vertex sharp waves (5–14 Hz)
∙ Low amplitude, mixed frequency activity (4–7 Hz)
∙ Less than 50% of alpha rhythm (8–13 Hz)

N2 ∙ K complex (8–16 Hz)
∙ Sleep spindle (12–14 Hz)
∙ Low amplitude, mixed frequency activity (4–7 Hz)
∙ Less than 50% of alpha rhythm (8–13 Hz)

N3 ∙ More than 20% of slow wave activity (0.5–2 Hz)
∙ Sleep spindle (12–14 Hz)

REM ∙ Sawtooth waves (2–6 Hz)
∙ Low amplitude, mixed frequency activity (4–7 Hz)
∙ Alpha rhythm (8–13 Hz)
∙ K complex (8–16 Hz)
∙ Sleep spindle (12–14 Hz)

and frequency characteristics, thereby enhancing discrimination be-
tween sleep stages. This is based on the rationale that a feature pyramid
considers various frequency components and spatial scales, such as
shape and texture, in computer vision (Hermann, Chen, & Kornblith,
2020).

As illustrated in Fig. 1, the proposed SleePyCo model comprises three
major components: backbone network, lateral connections, and classi-
fier network. The backbone network extracts feature sequences from
raw EEG signals with multiple temporal scales and channel dimensions.
Thus, we designed a shallow network based on previous studies because
they achieved state-of-the-art performance (Perslev et al., 2019; Phan
et al., 2021; Supratak & Guo, 2020). The lateral connections transform
feature sequences with different channel dimensions into the same
channel dimension via a single convolutional layer, resulting in a fea-
ture pyramid. For the classifier, a transformer encoder is employed to
capture the sequential relations of EEG patterns on different temporal
and frequency scales at sub-epoch levels.

2.2.1. Backbone network
To facilitate the feature pyramid, we propose a backbone network,

named SleePyCo-backbone, containing five convolutional blocks, as pro-
posed in Perslev et al. (2019), Seo et al. (2020). Each convolutional
block is formed by the repetition of unit convolutional layers in the
sequence of 1-D convolutional layer, 1-D batch normalization layer, and
parametric rectified linear unit (PReLU) (He, Zhang, Ren, & Sun, 2015).
All convolutional layers have a filter width of 3, stride length of 1, and
3

padding size of 1 to maintain the temporal dimension within the same
convolutional block. Max-pooling is performed between convolutional
blocks to reduce the temporal dimension of feature sequences. Addi-
tionally, a squeeze and excitation module (Hu, Shen, & Sun, 2018) is
included before the last activation function (PReLU) of each convolu-
tional block. The details of the parameters, such as filter size, number
of channels, and max-pooling size, are presented in Section 4.3.

Formally, SleePyCo-backbone takes 𝐿 successive EEG epochs as in-
put, obtaining the following set of feature sequences:

{𝐂(𝐿)
3 ,𝐂(𝐿)

4 ,𝐂(𝐿)
5 } = 𝑓 (𝐗(𝐿); 𝜃𝑓 ), (1)

where 𝐂(𝐿)
𝑖 denotes the output of the 𝑖th convolutional block of the

backbone network, 𝑓 (⋅) represents the backbone network, and 𝜃𝑓 in-
dicates its trainable parameters. The size of the feature sequence can
be denoted as 𝐂(𝐿)

𝑖 ∈ R𝑐𝑖×⌈3000𝐿∕𝑟𝑖⌉, where 𝑖 ∈ {3, 4, 5} represents the
stage index of the convolutional block, 𝑐𝑖 ∈ {192, 256, 256} denotes the
channel dimension of the 𝑖th feature sequence, 𝑟𝑖 ∈ {52, 53, 54} denotes
the temporal reduction ratio, and ⌈⋅⌉ signifies the ceiling operation.
Notably, the temporal reduction ratio 𝑟𝑖 is derived from the ratio of the
length of the input 𝐗(𝐿) to that of the feature sequence 𝐂(𝐿)

𝑖 . The feature
sequences from the first and second convolutional blocks were excluded
from the feature pyramid owing to their large memory allocation. Thus,
the stage indices of 1 and 2 were not considered in this study.

2.2.2. Lateral connections
Lateral connections were attached at the end of the 3rd, 4th, and

5th convolutional blocks to form pyramidal feature sequences (i.e.,
feature pyramid) with the same channel dimension. Importantly, the
channel dimension of the feature pyramid should be identical because
all pyramidal feature sequences share a single classifier network. Be-
cause the feature vectors in the feature pyramid represent an assorted
frequency meaning but the same semantic meaning (EEG patterns),
the application of a shared classifier is appropriate in our methods.
Formally, the feature pyramid {𝐅(𝐿)

3 ,𝐅(𝐿)
4 ,𝐅(𝐿)

5 } can be obtained using
the following equation:

𝐅(𝐿)
𝑖 = 𝑔𝑖(𝐂

(𝐿)
𝑖 ; 𝜃𝑔,𝑖), (2)

where 𝑔𝑖(⋅) denotes the lateral connection for the feature sequence
𝐂(𝐿)
𝑖 with the trainable parameter 𝜃𝑔,𝑖. Each lateral connection consists

of one convolutional layer with a filter width of 1 and results in
a pyramidal feature sequence 𝐅(𝐿)

𝑖 that describes the same temporal
scale with 𝐂(𝐿)

𝑖 . Thus, the size of the pyramidal feature sequences is
formulated as 𝐅(𝐿)

𝑖 ∈ R𝑑𝑓×⌈3000𝐿∕𝑟𝑖⌉, where 𝑑𝑓 is the channel dimension
of feature pyramid.
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2.2.3. Classifier network
The classifier network of SleePyCo can analyze the temporal context

n the feature pyramid and output the predicted sleep stage of the target
poch �̂�(𝐿). Formally, we denote the classifier network as ℎ(𝐅(𝐿)

𝑖 ; 𝜃ℎ),
here 𝜃ℎ is the trainable parameter. We utilized the encoder part
f the Transformer (Vaswani et al., 2017) for sequential modeling
f the feature pyramid extracted from the raw single-channel EEG.
verall, recurrent architectures such as LSTM (Hochreiter & Schmid-
uber, 1997) and GRU (Chung, Gulcehre, Cho, & Bengio, 2014) have
een extensively utilized in automatic sleep scoring. Interestingly, the
ransformer delivered a remarkable performance in various sequential
odeling tasks, including automatic sleep scoring (Phan et al., 2022;
u et al., 2020; Shi, Chen, & Zhang, 2021). Owing to the large number
f parameters of the original transformer, we reduced the model dimen-
ion 𝑑𝑚 (i.e., dimension of the query, key, and value in self-attention
nd output dimension of multi-head attention) and the feed-forward
etwork dimension 𝑑𝐹𝐹 in comparison to the original ones. We set
he number of heads 𝑁ℎ and the number of encoder layers 𝑁𝑒 to be
he same as the original transformer. The parameters are detailed in
ection 4.3.

Prior to the transformer encoder, a shared fully connected layer
ith PReLU is employed to transform the channel dimension of the

eature pyramid 𝑑𝑓 into the model dimension 𝑑𝑚. Specifically, we
enote the transformed feature pyramid as �̃�(𝐿)

𝑖 ∈ R𝑑𝑚×⌈3000𝐿∕𝑟𝑖⌉. This
ayer maps EEG patterns from various convolutional stages into the
ame feature space, and thus, the shared classifier considers the tem-
oral context, regardless of the feature level. Subsequently, because
he transformer encoder is a recurrent-free architecture, the positional
ncoding should be added to the input feature sequences to blend the
emporal information:
(𝐿)
𝑖 = �̃�(𝐿)

𝑖 + 𝐏(𝐿)
𝑖 , (3)

here 𝐏(𝐿)
𝑖 ∈ R𝑑𝑚×⌈3000𝐿∕𝑟𝑖⌉ denotes the positional encoding matrix for

he 𝑖th feature sequence. Herein, sinusoidal positional encoding was
erformed following a prior study (Vaswani et al., 2017). However,
ecause the same time indices are applicable at both ends of the
yramidal feature sequences, we modified the positional encoding to
oincide with the absolute temporal position between them by hopping
he temporal index of positional encoding. Thus, the element of 𝐏(𝐿)

𝑖 at
he temporal index 𝑡 and dimension index 𝑘 can be defined as

(𝐿)
𝑖 (𝑡, 𝑘) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

sin
(

𝑡𝑅(𝑖−3) + ⌊𝑅(𝑖−3)∕2⌋
10000𝑘∕𝑑𝑚

)

, if 𝑘 is even,

cos
(

𝑡𝑅(𝑖−3) + ⌊𝑅(𝑖−3)∕2⌋
10000𝑘∕𝑑𝑚

)

, otherwise,

(4)

where ⌊⋅⌋ denotes the floor operation and 𝑅 = 𝑟𝑖∕𝑟𝑖−1 indicates a
emporal reduction factor (set as 5 in our model). 𝐏(𝐿)

𝑖 (𝑡, 𝑘) degenerates
nto the original sinusoidal positional encoding for 𝑖 = 3.

The output hidden states 𝐇(𝐿)
𝑖 ∈ R𝑑𝑚×⌈3000𝐿∕𝑟𝑖⌉ for the 𝑖th pyramidal

eature sequence can be formulated as
(𝐿)
𝑖 = TransformerEncoder(𝐙(𝐿)

𝑖 ), (5)

here TransformerEncoder(⋅) denotes the encoder component of the
ransformer. To consolidate the output hidden states from the trans-
ormer encoder into a unified feature vector, we utilized the attention
ayer (Bahdanau, Cho, & Bengio, 2015; Luong, Pham, & Manning,
015) as employed in Phan et al. (2019). Foremostly, the output hidden
tates 𝐇(𝐿)

𝑖 were projected into the attentional hidden states 𝐀(𝐿)
𝑖 =

𝐚𝑖,1, 𝐚𝑖,2,… , 𝐚𝑖,𝑇𝑖}, where 𝑇𝑖 is ⌈3000𝐿∕𝑟𝑖⌉, via a single fully-connected
ayer. Thereafter, the attentional feature vector �̄�𝑖 of the 𝑖th pyramidal

feature sequence can be formulated via a weighted summation of the
attentional hidden states along the temporal dimension:

�̄�𝑖 =
𝑇𝑖
∑

𝛼𝑖,𝑡𝐚𝑖,𝑡, (6)
4

𝑡=1
where 𝛼𝑖,𝑡 is the attention weight at time step 𝑡 and 𝐚𝑖,𝑡 is the attentional
idden state at time step 𝑡. The attention weight at time step 𝑡 is
btained by applying the softmax function to the attention score over
he temporal dimension:

𝑖,𝑡 =
exp(𝐖att𝐚𝑖,𝑡)

∑

𝑡 exp(𝐖att𝐚𝑖,𝑡)
, (7)

here 𝐖att ∈ R1×𝑑𝑚 represents the trainable weight matrix used to map
he attentional hidden state to an attention score.

Upon using the attention feature vector �̄� obtained from Eq. (6),
he output logits of the 𝑖th pyramidal feature sequence, 𝐨𝑖, can be
ormulated as follows:

𝑖 = 𝐖a�̄�𝑖 + 𝐛a, (8)

here 𝐖a ∈ R𝑁𝑐×𝑑𝑚 and 𝐛a ∈ R𝑁𝑐 denote the trainable weight and
ias, respectively. Eventually, the sleep stage �̂�(𝐿) of the target epoch
as predicted based on the following equation:

�̂�(𝐿) = argmax(
∑

𝑖∈{3,4,5}
𝐨𝑖), (9)

here argmax(⋅) is the operation that returns the index of the maximum
alue.

. Training procedure

As illustrated in Fig. 2, our learning framework involves two train-
ng steps. The first step involves contrastive representation learning
CRL) to pretrain the backbone network 𝑓 (⋅) via supervised contrastive
earning (Khosla et al., 2020). In this step, the backbone network
(⋅) is trained to extract the class discriminative features based on

he supervised contrastive loss (Khosla et al., 2020). The second step
nvolves multiscale temporal context learning (MTCL) to learn sequen-
ial relations in feature pyramid. For this purpose, we acquire the
earned weights of 𝑓 (⋅) from CRL and freeze them to conserve the class
iscriminative features. The remaining parts of the network (𝑔(⋅) and
(⋅)) are trained to learn the multiscale temporal context by predicting
he sleep stage of the target epoch.

To prevent overfitting during the training procedures, we performed
arly stopping in both CRL and MTCL. Thus, validation was per-
ormed to track the validation cost (i.e., validation loss) at every certain
raining iteration (i.e., validation period, 𝜓), and the training was termi-
ated if the validation loss did not progress more than a certain number
f times (i.e., early stopping patience, 𝜙). Early stopping in our learning
ramework results in better pretrained parameters of the backbone
etwork and prevents overfitting at the MTCL step. The details of the
yperparameters used in the training procedure are summarized in
ection 4.4. Note that different validation periods, 𝜓1 and 𝜓2, were used
n CRL and MTCL, respectively. The specifics of the training framework
re described in the following sections and Algorithm 1.

.1. Contrastive representation learning

In CRL, we adapted the training strategy of supervised contrastive
earning (Khosla et al., 2020) to extract class discriminative features
rom a single EEG epoch. As illustrated in Fig. 2(a), the CRL aimed
o maximize the similarity between the two projected vectors based
n two different views of a single EEG epoch. Simultaneously, the
imilarity between two projected vectors from different sleep stages was
inimized as the optimization of supervised contrastive loss (Khosla

t al., 2020). Thus, we focused on reducing the ambiguous frequency
haracteristics by extracting distinguishable representations of the sleep
tage. Accordingly, a single EEG epoch was initially transformed by
wo distinct augmentation functions. Thereafter, the encoder network
nd projection network mapped them into the hypersphere, which
roduced a latent vector 𝒛. The details are explained in the following
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Fig. 2. Illustration of the proposed training framework. (a) Contrastive representation learning (CRL); (b) multiscale temporal context learning (MTCL); red arrow indicates first
backward path and blue arrow indicates 𝐴𝑢𝑔(⋅).
Algorithm 1 Training Algorithm
Input: 𝑑𝑎𝑡𝑎𝑡𝑟𝑎𝑖𝑛, 𝑑𝑎𝑡𝑎𝑣𝑎𝑙, early stopping patience 𝜙, learning rate 𝜂, validation

period 𝜓1, 𝜓2, early stopping counter 𝑝, iteration counter 𝑞, and trainable
parameter 𝜃𝑓 , 𝜃𝑝, 𝜃𝑔 , 𝜃ℎ
/* Step 1: Contrastive Representation Learning */

1: 𝑝← 0, 𝑞 ← 0
2: while 𝑝 ≤ 𝜙 do
3: Sample a minibatch (𝐗(1), 𝒚(1)) ∈ 𝑑𝑎𝑡𝑎𝑡𝑟𝑎𝑖𝑛
4: Calculate L𝑠𝑐 as Eq. (11)
5: Update 𝜃𝑓 and 𝜃𝑝 w.r.t L𝑠𝑐 by Adam with 𝜂
6: 𝑞 ← 𝑞 + 1
7: if 𝑞 mod 𝜓1 = 0 then
8: Calculate L𝑠𝑐 for 𝑑𝑎𝑡𝑎𝑣𝑎𝑙
9: if L𝑠𝑐 > previous L𝑠𝑐 then

10: 𝑝 ← 𝑝 + 1
11: else
12: Store 𝜃𝑓 , 𝑝 ← 0
13: end if
14: end if
15: end while

/* Step 2: Multiscale Temporal Context Learning */
16: 𝑝← 0, 𝑞 ← 0
17: Restore 𝜃𝑓 of the lowest L𝑠𝑐 , then freeze 𝜃𝑓
18: while 𝑝 ≤ 𝜙 do
19: Sample a minibatch (𝐗(𝐿), 𝒚(𝐿)) ∈ 𝑑𝑎𝑡𝑎𝑡𝑟𝑎𝑖𝑛
20: Calculate L𝑐𝑒 as Eq. (12)
21: Update 𝜃𝑔 and 𝜃ℎ w.r.t L𝑐𝑒 by Adam with 𝜂
22: 𝑞 ← 𝑞 + 1
23: if 𝑞 mod 𝜓2 = 0 then
24: Calculate L𝑐𝑒 for 𝑑𝑎𝑡𝑎𝑣𝑎𝑙
25: if L𝑐𝑒 > previous L𝑐𝑒 then
26: 𝑝← 𝑝 + 1
27: else
28: Store 𝜃𝑔 and 𝜃ℎ, 𝑝← 0
29: end if
30: end if
31: end while
32: return trainable parameter 𝜃𝑓 , 𝜃𝑔 , 𝜃ℎ

sections: Augmentation Module, Encoder Network, Projection Network, and
Loss Function, which constitute the major components of CRL.

Data Augmentation Module: The data augmentation module,
𝐴𝑢𝑔(⋅), transforms a single epoch of EEG signal 𝒙 into a slightly different
but semantically identical signal �̃� (i.e. a different perspective on a
5

Table 2
Data augmentation pipeline.

Transformation pipeline Min Max Probability

amplitude scaling 0.5 2

0.5 each

time shift (samples) −300 300

amplitude shift (μV) −10 10

zero-masking (samples) 0 300

additive Gaussian noise (𝜎) 0 0.2

band-stop filter (2 Hz width)
(lower bound frequency, Hz)

0.5 30.0

single EEG epoch 𝒙) as follows:

�̃� = 𝐴𝑢𝑔(𝒙). (10)

With a given set of randomly sampled data {𝒙𝑝, 𝒚𝑝}𝑝=1,…,𝑁𝑏 (i.e., batch),
two different 𝐴𝑢𝑔(⋅) result in {�̃�𝑞 , �̃�𝑞}𝑞=1,…,2𝑁𝑏 , called a multiviewed
batch (Khosla et al., 2020) as illustrated in Fig. 2(a), where 𝑁𝑏 is the
batch size and �̃�2𝑝−1 = �̃�2𝑝 = 𝒚𝑝. Because the augmentation set is
crucial for contrastive learning, we adapted the verified transformation
functions from previous studies (Mohsenvand et al., 2020; Supratak
& Guo, 2020). We sequentially applied six transformations, namely,
amplitude scale, time shift, amplitude shift, zero-masking, additive Gaussian
noise, and band-stop filter with the probability of 0.5. In addition,
we modified the hyperparameter of the transformation functions by
considering the sampling rate and characteristics of the EEG signal.
Table 2 lists the data augmentation pipeline details.

Encoder Network: The encoder network transforms an augmented
single-EEG epoch �̃� into a representation vector 𝒓 ∈ R𝑐5 . The encoder
network contains the sequence of the backbone network 𝑓 (⋅) and the
global average pooling operation 𝐴𝑣𝑔(⋅). Thus, the backbone network
initially transforms an augmented single-EEG epoch �̃� into the feature
sequence 𝐅(1)

5 . Then, the representation vector is obtained from the fea-
ture sequence via global average pooling along the temporal dimension.
Formally, the representation vector is evaluated as 𝒓 = 𝐴𝑣𝑔(𝐅(1)

5 ).
Projection Network: The projection network is vital for mapping

the representation vector 𝒓 into the normalized latent vector 𝒛 =
𝒛′

‖𝒛′‖2
∈ R𝑑𝑧 , where 𝒛′ = 𝑝(𝒓; 𝜃𝑝), 𝑝(⋅) denotes the projection network,

𝜃𝑝 represents its trainable parameter, and 𝑑𝑧 indicates the dimension of
the latent vector. We use a multilayer perceptron (Hastie, Tibshirani,
& Friedman, 2001) with a single hidden layer of size 128 to obtain a
latent vector of size 𝑑𝑧 = 128 as the projection network. For sequential
modeling, the 𝑝(⋅) is removed at the MTCL.



Expert Systems With Applications 240 (2024) 122551S. Lee et al.

w
m
𝒚
t
t

3

s
t
c
i
d
e
r

w
r
s
t

n
b
t
r
n
m
i

4

4

s
E
M
&
e
Z
e
d
E
S
p
e
a

n
w
d

2
c
d
i
t
j
e
A
e
N
c
W

(
m
S
d
a
a
S
o
s
t
w

t
H
P
O
u
1
r
f

a
o
o
w
a
r
s
w
U
s
r

4

w
a
p
b
2
U
d
t
S

t
t

Loss Function: For CRL, we employed the supervised contrastive
loss as proposed in Khosla et al. (2020). The supervised contrastive
loss simultaneously maximizes the similarity between positive pairs and
promotes the deviations across negative pairs. In this study, samples
annotated with the same sleep stage in a multiviewed batch are re-
garded as positives, and negatives otherwise. Formally, the supervised
contrastive loss function can be formulated as

L𝑠𝑐 = −
2𝑁𝑏
∑

𝑛=1

1
𝑁 (𝑛)
𝑝

2𝑁𝑏
∑

𝑚=1
log

1[𝑛≠𝑚]1[�̃�𝑛=�̃�𝑚] exp(𝒛𝑛 ⋅ 𝒛𝑚∕𝜏)
∑2𝑁𝑏
𝑎=1 1[𝑛≠𝑎] exp(𝒛𝑛 ⋅ 𝒛𝑎∕𝜏)

, (11)

here 𝑁 (𝑛)
𝑝 denotes the number of positives for the 𝑛th sample in a

ultiviewed batch excluding itself, 1[⋅] denotes the indicator function,
̃ 𝑛 denotes the ground truth corresponding to 𝒛𝑛, ⋅ operation denotes
he inner product between two vectors, and 𝜏 ∈ R+ denotes a scalar
emperature parameter (𝜏 = 0.07 in all present experiments).

.2. Multiscale temporal context learning

As illustrated in Fig. 2(b), the second step of SleePyCo executes 𝐿
uccessive EEG epochs 𝐗(𝐿) to analyze both the intra- and inter-epoch
emporal contexts (𝐿 = 10 in this study). The performance obtained
onsidering intra- and inter-epoch temporal contexts (Seo et al., 2020)
s better than that considering only the intra-epoch. However, it is
ifficult for the network to capture the EEG patterns of the previous
pochs, because only the label of the target epoch is provided. To
esolve this, we fixed the parameters of the backbone network 𝑓 (⋅)

to maintain and utilize the class discriminative features learned from
CRL. By contrast, the remaining parts of the network, which are lateral
connections 𝑔(⋅) and classifier network ℎ(⋅), are learned to score the
sleep stage of the target epoch based on the following loss function:

L𝑐𝑒 = −
∑

𝑖∈{3,4,5}

𝑁𝑐
∑

𝑗=1
𝑦(𝐿)𝑗 log

⎛

⎜

⎜

⎝

exp(𝑜𝑖,𝑗 )
∑𝑁𝑐
𝑘=1 exp(𝑜𝑖,𝑘)

⎞

⎟

⎟

⎠

, (12)

here 𝑦(𝐿)𝑗 denotes the 𝑗th element of one-hot encoding label, and 𝑜𝑖,𝑗
epresents the 𝑗th element of output logits from the 𝑖th convolutional
tage. This loss function follows the summation of cross entropy over
he output logits from each convolutional block.

Because all pyramidal feature sequences share a single classifier
etwork, the classifier network considers feature sequences across a
road scale. Thus, Eq. (12) facilitates the classifier network to analyze
he temporal relation between the EEG patterns at different tempo-
al scales and frequency characteristics. Consequently, the classifier
etwork ℎ(⋅) models the temporal information based on the pyra-
idal feature sequences 𝐅(𝐿)

𝑖 derived from analyzing the intra- and
nter-epoch temporal contexts.

. Experiments

.1. Datasets

Four public datasets, including PSG recordings and their associated
leep stages, were utilized to assess the performance of SleePyCo: Sleep-
DF (2018 version) (Goldberger et al., 2000; Kemp et al., 2000),
ontreal Archive of Sleep Studies (MASS) (O’reilly, Gosselin, Carrier,
Nielsen, 2014), Physionet2018 (Ghassemi et al., 2018; Goldberger

t al., 2000), and Sleep Heart Health Study (SHHS) (Quan et al., 1997;
hang et al., 2018). The number of subjects, utilized EEG channels,
valuation scheme, number of held-out validation subjects, and sample
istribution are presented in Table 3. In this study, the duration of an
EG epoch was set to 30-s (𝐸 = 30), and all EEG signals, except for the
leep-EDF dataset were downsampled to 100 Hz (𝐹 = 100) following
revious works (Perslev et al., 2019; Phan et al., 2021). We did not
mploy preprocessing to EEG signals except for downsampling. For
ll datasets, we discarded the EEG epochs with annotations that were
6

u

ot related to the sleep stage, such as MOVEMENT class. In addition,
e merged N3 and N4 into N3 to consider the five-class problem for
atasets annotated with R&K (Rechtschaffen, 1968).

Sleep-EDF: The Sleep-EDF Expanded dataset (Goldberger et al.,
000; Kemp et al., 2000) (2018 version) includes 197 PSG recordings
ontaining EEG, EOG, chin EMG, and event markers. The Sleep-EDF
ataset comprises two kinds of studies: SC for 79 healthy Caucasian
ndividuals without sleep disorders and ST for 22 subjects of a study on
he effects of Temazepam on sleep. In this study, the SC recordings (sub-
ects aged 25–101 years) were used based on previous studies (Mousavi
t al., 2019; Perslev et al., 2019; Phan et al., 2019, 2021, 2022).
ccording to the R&K rule (Rechtschaffen, 1968), sleep experts score
ach half-minute epoch with one of the eight classes {WAKE, REM, N1,
2, N3, N4, MOVEMENT, UNKNOWN}. Owing to the larger size of the
lass WAKE group compared to others, we included only 30 min of
AKE epochs before and after the sleep period.
MASS: The Montreal Archive of Sleep Studies (MASS) dataset

O’reilly et al., 2014) contains PSG recordings from 200 individuals (97
ales and 103 females). This dataset includes five subsets (SS1, SS2,

S3, SS4, and SS5) that are classified based on the research purpose and
ata acquisition protocols. The AASM standard (Berry et al., 2012) (SS1
nd SS3 subsets) or the R&K standard (Rechtschaffen, 1968) (SS2, SS4,
nd SS5 subsets) was used for the manual annotation. Specifically, the
S1, SS2, and SS4 subsets were annotated with 20-s EEG epochs instead
f SS3 and SS5 subsets. Because 30-s EEG samples are used in CRL, 5-s
egments of signals before and after the EEG epoch were considered for
he case of SS1, SS2, and SS4. In MTCL, an equal length of EEG signals
as used for all subsets (300 s in this study).

Physio2018: The Physio2018 dataset is contributed by the Compu-
ational Clinical Neurophysiology Laboratory at Massachusetts General
ospital and was applied to detect arousal during sleep in the 2018
hysionet challenge (Ghassemi et al., 2018; Goldberger et al., 2000).
wing to the unavailability of annotation for the evaluation set, we
sed the training set containing PSG recordings for 994 subjects aged
8–90. Thereafter, these recordings were annotated with the AASM
ules (Berry et al., 2012), and we employed only C3–A2 EEG recordings
or the single-channel EEG classification.

SHHS: The SHHS dataset (Quan et al., 1997; Zhang et al., 2018) is
multicenter cohort research that is designed to examine the influence
f sleep apnea on cardiovascular diseases. The collection is composed
f two rounds of PSG records: Visit 1 (SHHS-1) and Visit 2 (SHHS-2),
herein each record contains two-channel EEGs, two-channel EOGs,
single-channel EMG, a single-channel ECG, and two-channel respi-

atory inductance plethysmography, as well as the data from location
ensors, light sensors, pulse oximeters, and airflow sensors. Each epoch
as assigned a value of W, REM, N1, N2, N3, N4, MOVEMENT, and
NKNOWN according to the R&K rule (Rechtschaffen, 1968). In this

tudy, the single-channel EEG (C4–A1) was analyzed from 5793 SHHS-1
ecordings.

.2. Backbone networks for ablation study

A direct comparison between the automatic sleep scoring methods
ould not be justified depending on the experimental settings such
s the data processing method and training framework. For fair com-
arison with other state-of-the-art backbones, we implemented five
ackbones in our training framework: DeepSleepNet (Supratak et al.,
017), TinySleepNet (Supratak & Guo, 2020), IITNet (Seo et al., 2020),
-Time (Perslev et al., 2019), and XSleepNet (Phan et al., 2021). Ad-
itionally, we designed two experimental setups: the single-scale set-
ing and the multiscale setting, to examine the performance of the
leePyCo-backbone w/ and w/o the influence of the feature pyramid.

Specifically, in the single-scale setting, we utilized only the fea-
ure sequence from the last layer of the backbone network during
he MTCL step. In the multiscale setting, three feature sequences are

tilized as the feature pyramid, ordered in ascending order based on
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Table 3
Experimental settings and dataset statistics.

Dataset No. of
subjects

EEG
channel

Experimental setting Class distribution

Evaluation
scheme

Held-out
validation set

Wake N1 N2 N3 REM Total

Sleep-EDF 79 Fpz-Cz 10-fold CV 7 subjects 69,824
(35.8%)

21,522
(10.8%)

69,132
(34.7%)

13,039
(6.5%)

25,835
(13.0%)

199,352

MASS 200 C4-A1 20-fold CV 10 subjects 31,184
(13.6%)

19,359
(8.5%)

107,930
(47.1%)

30,383
(13.3%)

40,184
(17.5%)

229,040

Physio2018 994 C3-A2 5-fold CV 50 subjects 157,945
(17.7%)

136,978
(15.4%)

377,870
(42.3%)

102,592
(11.5%)

116,877
(13.1%)

892,262

SHHS 5,793 C4-A1 Train/Test:
0.7:0.3

100 subjects 1,691,288
(28.8%)

217,583
(3.7%)

2,397,460
(40.9%)

739,403
(12.6%)

817,473
(13.9%)

5,863,207
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their temporal dimension. The DeepSleepNet, TinySleepNet, and IITNet
ackbones were considered only in the single-scale setting owing to
heir large memory footprint and structural limitation. All backbones
ere trained and evaluated in the proposed framework on the same
atasets (Sleep-EDF, MASS, Physio2018, and SHHS).

DeepSleepNet Backbone: The structure of DeepSleepNet (Supratak
t al., 2017) consists of a dual path CNN for representation learn-
ng and two layers of LSTM for sequential learning. To compare the
epresentation power of the backbone network, we considered only
he dual-path CNN component of DeepSleepNet. The filter width of a
ingle path is smaller for capturing certain EEG patterns, and that of
he other path is larger to consider the frequency components from
he EEG. To aggregate features from each CNN path, interpolation
s performed after the CNN path with larger filters. Thereafter, we
oncatenated these two features and applied the two convolutional
ayers following (Seo et al., 2020). The output size was 128 × 16 with
single EEG epoch.

TinySleepNet Backbone: TinySleepNet (Supratak & Guo, 2020) is
omposed of four layers of CNN and two layers of LSTM for representa-
ion learning and sequential learning, respectively, similar to the archi-
ecture of DeepSleepNet (Supratak & Guo, 2020). For the comparison of
ackbone network, we utilized CNN component of TinySleepNet. With
iven a single EEG epoch, the output size of TinySleepNet backbone was
28 × 4.

IITNet Backbone: IITNet (Seo et al., 2020) uses the modified 1-
ResNet-50 for extracting the representation of the raw EEG signal.

imilar to the backbone network of SleePyCo, the backbone network
f IITNet forms a five-block structure. However, the backbone network
f IITNet has a deep architecture (49 convolutional layers), whereas
hat of SleePyCo is shallow (13 convolutional layers). Given a single
EG epoch of size 1 × 3000, the backbone network of IITNet outputs
eature sequences of sizes 16 × 1500, 64 × 750, 64 × 375, 128 × 94,
nd 128 × 47 from each convolutional block.

U-Time Backbone: U-Time (Perslev et al., 2019) is a fully convo-
utional network for time-series segmentation applied for automatic
leep scoring. Similar to previous fully convolutional networks (Long,
helhamer, & Darrell, 2015; Ronneberger, Fischer, & Brox, 2015), U-
ime is the encoder–decoder structure, with the encoder for feature
xtraction and the decoder for time-series segmentation. Accordingly,
e implemented only the encoder component to capture EEG patterns

rom raw EEG signals. The U-Time backbone comprises five convolu-
ional blocks, similar to the proposed backbone network. However, the
utput from the last convolutional block could not be calculated from
he single-epoch EEG because the encoder was designed to analyze 35
pochs of the EEG signals. To solve this problem, we lengthened the
emporal dimension of the feature sequences by modifying the filter
idth of the max-pooling layer between the convolutional blocks from
10, 8, 6, 4} to {8, 6, 4, 2}, respectively. Consequently, the sizes of the
eature sequences were 16 × 3000, 32 × 375, 64 × 62, 128 × 15, and
56 × 7 from each convolutional block for a single EEG epoch.

XSleepNet Backbone: XSleepNet (Phan et al., 2021) is a multi-
iewed model that acquires raw signals and time–frequency images
7

i

s inputs. Thus, XSleepNet includes two types of encoder network:
ne for the raw signals and the other for the time–frequency images.
o compare the raw signal domain, we used the encoder component
n raw signals in the ablation study. This encoder was composed of
ine one-dimensional convolutional layers with a filter width of 31
nd stride length of 2. The sizes of the output feature sequences were
6 × 1500, 16 × 750, 32 × 325, 32 × 163, 64 × 82, 64 × 41, 128 × 21,
28 × 11, and 256 × 6, as obtained from 3000 samples of input EEG
pochs.

.3. Model specifications

The details of the components of SleePyCo-backbone are presented
n Table 4. In addition, we used the one-dimensional operations of
he convolutional layer, batch normalization layer, and max-pooling
ayer. All convolutional layers in SleePyCo-backbone had a filter width
f 3, stride size of 1, and padding size of 1 to maintain the temporal
imension in the convolutional block. The max-pooling layers were
tilized with a filter width of 5 between each convolutional block to
educe the temporal dimension of the feature sequence. As explained in
ection 2.2.2, the lateral connections that follow the backbone network
ad a filter width of 1. The channel dimension of the feature pyramid
𝑓 was set to 128. For the transformer encoder of the classifier network,
he number of heads 𝑁ℎ was 8, the number of encoder layers 𝑁𝑒 was
, the model dimension 𝑑𝑚 was 128, and the feed-forward network
imension 𝑑𝐹𝐹 was 128. The number of parameters in our model was
.37 M (2.37 × 106).

.4. Model training

The networks were trained using the Adam optimizer (Kingma &
a, 2015) with a learning rate of 𝜂 = 1 × 10−4, 𝛽1 = 0.9, 𝛽2 = 0.999, and
= 1×10−8. L2-weight regularization was used with a factor of 1×10−6

o prevent overfitting. Because a large batch size benefits contrastive
earning (Chen et al., 2020; Khosla et al., 2020; Mohsenvand et al.,
020), a batch size of 1024 was employed in the CRL, whereas that of
4 was used in MTCL. For all datasets except SHHS, validation was
onducted to track the validation loss used for early termination at
very 50-th and 500-th training iterations (i.e., validation period, 𝜓)
n the CRL and MTCL, respectively. For the larger dataset SHHS, the
alidation period was 500 and 5000 in CRL and MTCL, respectively.
arly stopping was employed by tracking the validation loss, such that
he training was terminated if the validation loss did not decrease for
0 validation steps, (i.e., early stopping patience, 𝜙). At each cross
alidation, the model with the lowest validation loss was evaluated on
he test set. The networks were trained on NVIDIA GeForce RTX 3090.
ython 3.8.5 and PyTorch 1.7.1 (Paszke et al., 2019) were utilized in
his study. In this development environment, the total training time of
leePyCo was approximately 22.5 h for Sleep-EDF, 76.5 h for MASS,
1.5 h for Physio2018, and 23 h for the SHHS dataset. The inference
ime of our model was 14.5 ms for a single forward pass, computed
y averaging over 2000 iterations. The training and inference times,

ncluding the training time per fold, are summarized in Table 5.
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Table 4
Model Specification of SleePyCo-backbone. 𝐶: channel dimension, 𝑇 : temporal dimension, BN: Batch Normalization and SE:
Squeeze and Excitation (Hu et al., 2018).

Layer name Composition Output size [ 𝐶 × 𝑇 ]

𝐿 = 1 𝐿 = 10

Input – 1 × 3000 1 × 30000

Conv1 3 Conv + BN + PReLU 64 × 3000 64 × 300003 Conv + BN + SE + PReLU

Max-pool1 5 Max-pool 64 × 600 64 × 6000

Conv2 3 Conv + BN + PReLU 128 × 600 128 × 60003 Conv + BN + SE + PReLU

Max-pool2 5 Max-pool 128 × 120 128 × 1200

Conv3
3 Conv + BN + PReLU

192 × 120 192 × 12003 Conv + BN + PReLU
3 Conv + BN + SE + PReLU

Max-pool3 5 Max-pool 192 × 24 192 × 240

Conv4
3 conv + BN + PReLU

256 × 24 256 × 2403 Conv + BN + PReLU
3 Conv + BN + SE + PReLU

Max-pool4 5 Max-pool 256 × 5 256 × 48

Conv5
3 Conv + BN + PReLU

256 × 5 256 × 483 Conv + BN + PReLU
3 Conv + BN + SE + PReLU
Table 5
Training and inference times for SleePyCo: The training time is an approximate value, with the values in parentheses indicating
training time per fold.
Dataset Training time Inference time

CRL MTCL Total

Sleep-EDF 2.5 h (15 m/fold) 20 h (2 h/fold) 22.5 h (2.25 h/fold)

14.5 msMASS 7 h (20 m/fold) 69.5 h (3.5 h/fold) 76.5 h (4 h/fold)
Physio2018 3.5 h (40 m/fold) 28 h (5.5 h/fold) 31.5 h (6 h/fold)
SHHS 3 h 20 h 23 h
i
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4.5. Model evaluation

4.5.1. Evaluation scheme
To assess the performance of SleePyCo, we conducted 𝑘-fold cross

validation for the Sleep-EDF, MASS, and Physio-2018 datasets. Given
that the number of subjects in a dataset is 𝑁𝑠, the records with 𝑁𝑠∕𝑘
ubjects were used for model evaluation (i.e., test set), and the other
ecords were classified into training and validation data. The selection
f subjects for model evaluation was performed over all subjects by
equentially changing on 𝑘 folds. As listed in Table 3, we utilized 𝑘
s 10, 20, and 5 for the Sleep-EDF, MASS, and Physio2018 dataset,
espectively. The held-out validation set refers to the number of sub-
ects used for the validation set in a fold. For instance, subjects of the
ASS dataset were categorized into 180, 10, and 10 recordings for the

raining, validation, and test set, respectively. Unlike these datasets, the
HHS dataset was randomly divided in a ratio of 0.7 to 0.3 for training
nd validation, respectively. As performed in Phan et al. (2021), we
sed 100 subjects for the validation.

.5.2. Evaluation criteria
As the evaluation criteria, the overall accuracy (ACC), macro F1-

core (MF1), and Cohen’s Kappa (𝜅) (Sokolova & Lapalme, 2009)
ere used for the overall performance measurement and per-class F1-

core (F1) was used for class-specific performance measurement. The
espective equations for the evaluation criteria are as follows:

CC = TP + TN
TP + FP + TN + FN

, (13)

MF1 = 1
𝑁𝑐

𝑁𝑐
∑

𝑗=1
F1𝑗 =

1
𝑁𝑐

𝑁𝑐
∑

𝑗=1

2 × PR𝑗 × RE𝑗
PR𝑗 + RE𝑗

, (14)

=
ACC − P𝑒 = 1 − 1 − ACC , (15)
8

1 − P𝑒 1 − P𝑒
where TP is true positive, TN is true negative, FP is false positive, FN
s false negative, and F1𝑗 , PR𝑗 , and RE𝑗 are per-class F1-score, per-

class precision, and per-class recall of the 𝑗th class, respectively. In
Eq. (15), P𝑒 represents the hypothetical probability of chance agree-
ment. Typically, precision (PR) and recall (RE) can be defined as
follows:

PR = TP
TP + FP

, (16)

E = TP
TP + FN

. (17)

ACC is the intuitive performance indicator that is generally consid-
red in several classification tasks. However, the F1-score indicating
he harmonic mean of precision and recall is more valuable in class-
mbalanced tasks such as sleep stage classification. In addition, the F1-
core per class indicates the class-specific performance of the F1-score
y calculating Eq. (14) without averaging. Cohen’s Kappa 𝜅 indicates

the agreement by chance for imbalanced proportions of various classes
with a maximum value of 1.0 for ideal classification.

The mean Silhouette Coefficient (Rousseeuw, 1987) across all test
data (referred to as the Silhouette Coefficient, 𝑆) was employed to eval-
uate the class discrimination ability of SleePyCo. This metric quantifies
intra-class similarity and inter-class dissimilarity using the following
equation:

𝑆 = 1
|D|

∑

𝑖∈D
𝑠(𝑖), where 𝑠(𝑖) =

𝑏(𝑖) − 𝑎(𝑖)
max{𝑎(𝑖), 𝑏(𝑖)}

. (18)

In Eq. (18), D is a set of data, |D| represents its cardinality, and 𝑠(𝑖)
denotes the Silhouette Coefficient for the 𝑖th data. 𝑎(𝑖) and 𝑏(𝑖) represent
intra-class similarity and inter-class dissimilarity, respectively, and are
computed using the following equations:

𝑎(𝑖) = 1
|D | − 1

∑

𝑑(𝑖, 𝑗), (19)

𝐼 𝑗∈D𝐼 ,𝑖≠𝑗
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Table 6
Performance comparison between SleePyCo and state-of-the-art (SOTA) methods for automatic sleep scoring via deep learning; bold and underline indicate the best
and second best, respectively. Furthermore, the results indicated by † were not directly comparable because they employed a subset distinct from the corresponding
dataset. RS and SP denote Raw Signal and SPectrogram, respectively.

Method Overall metrics Per-class F1 score

Dataset System Input Subjects ACC MF1 𝜅 W N1 N2 N3 REM

Sleep-EDF SleePyCo (Ours) RS 79 84.6 79.0 0.787 93.5 50.4 86.5 80.5 84.2
Sleep-EDF XSleepNet (Phan et al., 2021) RS + SP 79 84.0 77.9 0.778 93.3 49.9 86.0 78.7 81.8
Sleep-EDF Korkalainen et al. (2020) RS 79 83.7 – 0.77 – – – – –
Sleep-EDF TinySleepNet (Supratak & Guo, 2020) RS 79 83.1 78.1 0.77 92.8 51.0 85.3 81.1 80.3
Sleep-EDF SeqSleepNet (Phan et al., 2019) SP 79 82.6 76.4 0.760 – – – – –
Sleep-EDF SleepTransformer (Phan et al., 2022) SP 79 81.4 74.3 0.743 91.7 40.4 84.3 77.9 77.2
Sleep-EDF U-Time (Perslev et al., 2019) RS 79 81.3 76.3 0.745 92.0 51.0 83.5 74.6 80.2
Sleep-EDF SleepEEGNet (Mousavi et al., 2019) RS 79 80.0 73.6 0.73 91.7 44.1 82.5 73.5 76.1

MASS SleePyCo (Ours) RS 200 86.8 82.5 0.811 89.2 60.1 90.4 83.8 89.1
MASS XSleepNet (Phan et al., 2021) RS + SP 200 85.2 80.6 0.788 – – – – –
MASS SeqSleepNet (Phan et al., 2019) SP 200 84.5 79.8 0.778 – – – – –

MASS† Sun, Chen, et al. (2019) RS + SP 147 86.1 79.6 0.795 85.1 50.2 89.8 84.0 89.0
MASS† Qu et al. (2020) RS 62 86.5 81.0 0.799 87.2 52.8 91.5 87.0 86.6
MASS† IITNet (Seo et al., 2020) RS 62 86.3 80.5 0.794 85.4 54.1 91.3 86.8 84.8
MASS† DeepSleepNet (Supratak et al., 2017) RS 62 86.2 81.7 0.800 87.3 59.8 90.3 81.5 89.3

Physio2018 SleePyCo (Ours) RS 994 80.9 78.9 0.737 84.2 59.3 85.3 79.4 86.3
Physio2018 XSleepNet (Phan et al., 2021) RS + SP 994 80.3 78.6 0.732 – – – – –
Physio2018 SeqSleepNet (Phan et al., 2019) SP 994 79.4 77.6 0.719 – – – – –
Physio2018 U-Time (Perslev et al., 2019) RS 994 78.8 77.4 0.714 82.5 59.0 83.1 79.0 83.5

SHHS SleePyCo (Ours) RS 5,793 87.9 80.7 0.830 92.6 49.2 88.5 84.5 88.6
SHHS SleepTransformer (Phan et al., 2022) SP 5,791 87.7 80.1 0.828 92.2 46.1 88.3 85.2 88.6
SHHS XSleepNet (Phan et al., 2021) RS + SP 5,791 87.6 80.7 0.826 92.0 49.9 88.3 85.0 88.2
SHHS Sors et al. (2018) RS 5,728 86.8 78.5 0.815 91.4 42.7 88.0 84.9 85.4
SHHS IITNet (Seo et al., 2020) RS 5,791 86.7 79.8 0.812 90.1 48.1 88.4 85.2 87.2
SHHS SeqSleepNet (Phan et al., 2019) SP 5,791 86.5 78.5 0.81 – – – – –
𝑏(𝑖) = min
𝐽≠𝐼

1
|D𝐽 |

∑

𝑗∈D𝐽

𝑑(𝑖, 𝑗), (20)

here D𝐼 is a set of data that belongs to the same class as 𝑖th data,
𝐽 is a set of data that belongs to a different class than 𝑖th data, and
(𝑖, 𝑗) is the distance between the 𝑖th and 𝑗th data, such as the Euclidean
istance. |D𝐼 | and |D𝐽 | represent their respective cardinalities. 𝑎(𝑖) is
he mean distance between the 𝑖th and all other data points in the same
lass, and 𝑏(𝑖) is defined as the smallest mean distance of 𝑖th data to
ll points in any other class to which 𝑖th data does not belong. The
ilhouette Coefficient ranges between −1 and 1, with higher values
lose to 1 indicating better class discrimination.

. Results and discussion

.1. Performance comparison with state-of-the-art (SOTA) frameworks

The performances of SleePyCo and SOTA frameworks are presented
n Table 6 according to the datasets, system name, input types for the
eep learning models, and number of subjects considered in the study.
ig. 3 illustrates the confusion matrices of SleePyCo on the Sleep-EDF,
ASS, Physio2018, and SHHS datasets. Fig. 4 represents a hypnogram

omparison of the best and worst scoring results predicted by SleeP-
Co and their corresponding ground truth for Sleep-EDF subjects. As
hown in Figs. 3 and 4, predictions of SleePyCo exhibit a remarkable
oncurrence with the sleep stage scores annotated by human experts.

For all datasets, SleePyCo achieved state-of-the art performance
ompared with other models based on single-channel EEG. Quantita-
ively, SleePyCo delivered the best performance in terms of overall ac-
uracy, MF1, and 𝜅: 84.6%, 79.0%, 0.787 for Sleep-EDF, 86.8%, 82.5%,
.811 for MASS, 80.9%, 78.9%, 0.737% for Physio2018, and 87.9%,
0.7%, 0.830 for SHHS, respectively. The performance differences
etween SleePyCo and the SOTA frameworks were +0.6%p, +1.1%p,

+0.009 for Sleep-EDF, +1.6%p, +1.9%p, +0.023 for MASS, +0.6%p, +0.3%,
9

+0.005 for Physio2018, and +0.2%p, +0.0%p, +0.002 for SHHS in overall
accuracy, MF1, and 𝜅, respectively. The proposed model achieved
SOTA performance with the introduction of the feature pyramid and
supervised contrastive learning. The network, particularly the classifier
network, could learn the feature sequences with various temporal and
frequency scales. Furthermore, contrastive learning enables the back-
bone network to extract class discriminative features, thereby reducing
the ambiguity associated with EEG characteristics of sleep stages.

The major advantages of SleePyCo over other SOTA frameworks in-
clude performance and use of single-channel EEG, as indicated in Table 6.
We achieved remarkable performance by solely utilizing raw single-
channel EEG signals as input, without requiring any preprocessing or
hand-crafted features. By contrast, existing SOTA frameworks utilize
both raw signals and time–frequency images (i.e., spectrogram) (Phan
et al., 2021, 2022). Because the performance of automatic sleep scoring
relies on several factors (Phan et al., 2021), the superiority of the raw
EEG signal in comparison to the spectrogram could not be verified.
However, the proposed model demonstrated SOTA performance by
utilizing raw signals with no information loss compared to the time–
frequency image. In addition, the number of parameters in SleePyCo
is 2.37 M, which is 59% lower than the popular XSleepNet (5.8 M
parameters) (Phan et al., 2021). Furthermore, under the same GPU
conditions, its inference time (14.5 ms/sample) is 2 times faster than
that of XSleepNet (29.7 ms/sample). Therefore, SleePyCo is suitable for
real-time sleep scoring because it takes the target epoch and its previous
epochs as input. This study can be expanded to classify other types of
time-series data, such as sound and biosignals, to exploit the advantages
of multiscale representation and supervised contrastive learning.

5.2. Ablation studies

To examine the effectiveness of SleePyCo, we conducted ablation
studies and discussed on the following four aspects: the backbone net-
work, feature pyramid (FP), contrastive representation learning (CRL),
and Silhouette Coefficient, which are explained in Sections 5.2.1, 5.2.2,
5.2.3, and 5.2.4, respectively. Note that the FP is accompanied by the
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Fig. 3. Confusion matrix of SleePyCo for Sleep-EDF, MASS, Physio2018, and SHHS dataset. The values in parentheses indicate per-class recall. AC and PC denote Actual Class and
redicted Class, respectively.
Fig. 4. Hypnogram scored by a human expert (top) and the hypnogram scored by SleePyCo (bottom). (a) and (b) represent the best and worst scoring results obtained from
Sleep-EDF subjects using SleePyCo, respectively.
MTCL procedure. The results of the ablation studies are presented in
Tables 7 and 8. In Section 5.2.1, we discuss the performance verifica-
tion for SleePyCo-backbone by replacing it with other SOTA backbones.
In Sections 5.2.2, 5.2.3, and 5.2.4, we demonstrate the effectiveness of
FP and CRL by eliminating the components. Section 5.2.4 describes
the Silhouette Coefficient analysis to demonstrate the enhancement in
the class discrimination ability achieved by SleePyCo. Notably, SleePyCo
that employs only 𝐅(𝐿)

5 , which was simultaneously trained from scratch,
was set as the BaseLine, denoted as BL. Without CRL, the entire network
of SleePyCo was trained from scratch using cross entropy loss. It is
important to note that all experiments in the ablation studies were
conducted under the identical conditions described in Section 4.4.

5.2.1. Performance of SleePyCo-backbone
The performances of SleePyCo-backbone and SOTA backbones on

Sleep-EDF, MASS, Physio2018, and SHHS are compared in Table 7.
In the single-scale setting, the proposed SleePyCo-backbone without
feature pyramid (i.e., w/o FP) displayed competitive or superior per-
formance compared to the SOTA backbones. The performance dif-
ferences between SleePyCo-backbone w/o FP and the best results of
the single-scale backbones in terms of accuracy, MF1, and 𝜅 were
+0.3%p, +0.2%p, +0.005 for Sleep-EDF, +0.0%p, +0.2%p, +0.000 for
10
MASS, +0.2%p, +0.5%p, +0.004 for Physio2018, and −0.3%p, −1.0%p,
−0.004 for SHHS, respectively. With the application of the feature pyra-
mid, the performance of the proposed model was superior to that of the
U-Time and XSleepNet backbones. The variations in overall accuracy,
MF1, and 𝜅 between SleePyCo-backbone and other SOTA backbones
were +0.2%p, +0.2%p, +0.004 for Sleep-EDF, +0.2%p, +0.5%p, +0.004
for MASS, +0.5%p, +0.6%p, +0.006 for Physio2018, and +0.1%p, +0.9%p,
+0.002 for SHHS, respectively.

The results of the extensive experiments revealed the superior per-
formance of the proposed SleePyCo-backbone compared to that of other
network architectures. Exceptionally, the IITNet backbone demon-
strated superior performance compared to the other backbones on
SHHS dataset in the single-scale setting. This result indicates that
the IITNet backbone, a deeper neural network with 49 convolutional
layers, is capable of effectively extracting rich features from a large
dataset, leading to improved performance compared to the other back-
bones (Seo et al., 2020), which have fewer convolutional layers (8,
4, 10, 9, and 13 for DeepSleepNet, TinySleepNet, U-Time, XSleepNet,
and SleePyCo, respectively). In addition, the feature pyramid tended
to improve the overall sleep scoring performance in the U-Time and
XSleepNet backbones. These results imply that the feature pyramid
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Table 7
Performance comparison of SleePyCo-backbone and SOTA backbones on experimental datasets; bold and underline indicate the first and second highest, respectively. SS and MS
denote Single-Scale and MultiScale, respectively.

Backbone Setting Sleep-EDF MASS Physio2018 SHHS

ACC MF1 𝜅 ACC MF1 𝜅 ACC MF1 𝜅 ACC MF1 𝜅

DeepSleepNet SS 83.8 78.2 0.775 86.2 81.4 0.801 79.6 77.3 0.721 87.1 79.4 0.818
TinySleepNet SS 83.6 77.4 0.772 86.3 81.9 0.803 79.8 77.5 0.723 87.2 79.1 0.820
IITNet SS 83.5 77.8 0.771 86.1 81.4 0.801 79.9 77.6 0.724 87.5 79.3 0.824
U-Time SS 83.6 78.1 0.773 86.4 81.6 0.804 80.1 77.8 0.726 87.1 79.1 0.817
XSleepNet SS 83.4 77.2 0.769 86.0 81.3 0.799 79.7 77.6 0.722 87.4 79.5 0.821
SleePyCo (Ours) SS 84.1 78.4 0.780 86.4 82.1 0.804 80.3 78.3 0.730 87.2 78.5 0.820

U-Time MS 84.4 78.8 0.783 86.6 82.0 0.807 80.4 78.3 0.731 87.8 79.5 0.828
XSleepNet MS 83.5 77.5 0.771 86.2 81.8 0.803 80.2 78.0 0.728 87.7 79.8 0.826
SleePyCo (Ours) MS 84.6 79.0 0.787 86.8 82.5 0.811 80.9 78.9 0.737 87.9 80.7 0.830
Table 8
Ablation study on Sleep-EDF; bold indicates the highest. BL, FP, and CRL indicate BaseLine, Feature Pyramid, and Contrastive Representation Learning, respectively.

Method Overall metrics Per-class F1 score Silhouette
coefficient

ACC MF1 𝜅 W N1 N2 N3 REM

BL 83.2 77.3 0.767 93.2 46.6 85.1 79.9 81.6 0.292
BL + FP 83.5 77.7 0.772 93.2 47.9 85.1 79.9 82.3 0.294
BL + CRL 84.1 78.4 0.780 93.2 49.3 86.1 79.7 83.5 0.317

BL + FP + CRL (Ours) 84.6 79.0 0.787 93.5 50.4 86.5 80.5 84.2 0.325
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improves the sleep scoring performance by imparting richer features
in SleePyCo-backbone as well as other architectures.

.2.2. Influence of feature pyramid
Table 8 shows the ablation study results for FP and CRL on the

leep-EDF dataset. The results indicate that the feature pyramid im-
roves the sleep scoring performance, regardless of the CRL. Upon

adding the feature pyramid to BL, the overall performances were
enhanced by 0.3%p, 0.4%p, and 0.005 in ACC, MF1, and 𝜅, respectively.
n the case of application to CRL, the feature pyramid enhanced the
leep scoring performance by 0.5%p, 0.6%p, and 0.007 in ACC, MF1, and
, respectively. Because the proposed model predicts the sleep stage
ith the summation of logits from each convolutional stage, the feature
yramid has the ensemble effect that enhances the performance based
n predictions from various models. As reported in the literature (Lin
t al., 2017), the feature pyramid provides richer information than
he single-scale representation, which result in overall performance
mprovement.

In terms of per-class performance, the F1 scores of entire classes
ncreased when feature pyramid was employed. On average, feature
yramid enhanced the F1 scores by 0.15%p for W, 1.2%p for N1,

0.2%p for N2, 0.4%p for N3, and 0.7%p for REM. The performance
improvement for N1, N3, and REM was greater than that for the other
sleep stages. This result indicates that low- and mid-level features
contribute to the network classification performance for N1, N3, and
REM. According to the AASM (Berry et al., 2012) rule, which is briefly
described in Table 1, the fundamental scoring rationales of N1 and
REM in EEG are low amplitude, mixed frequency (LAMF) activity as
a common feature, and vertex sharp waves and sawtooth waves as a
distinguishable feature, respectively. These rationales have a relatively
mid-range frequency (4–7 Hz for LAMF activity, 5–14 Hz for vertex
sharp waves, and 2–6 Hz for sawtooth waves) compared to the char-
acteristics of the other sleep stages. Moreover, N3 is principally scored
by the existence of slow wave activity that has a relatively low-range
frequency between 0.5–2 Hz.

To determine the relationship between the feature pyramid and
per-class performance, we evaluated the per-class F1 of each stage by
separating the output logits from each stage, as described in Table 9.
Consequently, the F1 of W and N2, which is scored according to
mid- and high-frequency characteristics (W: alpha (8–13 Hz) and beta
rhythm (13–30 Hz); N2: K complex (8–16 Hz) and sleep spindles (12–
14 Hz); REM: mixed frequency (2–14 Hz)), was the highest at stage
11

i

index 5. At the sleep stage of N1, where the mid-frequency range forms
the dominant frequency component (theta wave with 4–7 Hz), the
highest F1 occurs at stage index 4. In the case of N3, F1 is significantly
high at stage index 3 because N1 exhibits low-frequency characteristics
(slow wave activity with 0.5–2 Hz). The results indicate that the
specific frequency components were intensively considered according
to the feature level. These results demonstrate that the feature pyramid
provides more information to enable the consideration of the AASM
rules by the network instead of single-scale baselines. Furthermore, the
feature type extracted from the CNN varies with the feature level in
automatic sleep scoring as well as computer vision (Geirhos et al., 2019;
Hermann et al., 2020).

5.2.3. Effect of contrastive representation learning
As observed in Table 8 by comparing BL with BL + CRL and BL +

FP with BL + FP + CRL, the overall metrics were improved by CRL.
hen the baseline model w/o and w/ feature pyramid were trained on

RL, the overall performances in ACC, MF1, and 𝜅 were enhanced by
.0%p, 1.2%p, and 0.014, respectively. In particular, the F1 scores of N1,
2, and REM were significantly improved by 2.6%p, 1.2%p, and 1.9%p,

espectively, compared to the improvements of the other classes; 0.15%p
or W, 0.2%p for N3 with arithmetic mean. Following the AASM rule,
he categorization of sleep stages using only EEG is confusing owing to
heir similar frequency activities as described in Table 1. Specifically,
1, N2, and REM share a similar EEG characteristic, namely, LAMF
ctivity. Thus, ambiguous EEG characteristics between the sleep stages
s a primary factor that affects the sleep scoring performance on EEG
ignals. Based on these facts and experimental results, the proposed
raining framework enables the network to extract the discriminative
eatures between sleep stages more effectively, especially for N1, N2,
nd REM, than the vanilla-supervised strategy. Primarily, these factors
ontribute toward the improvement of the overall performance.

.2.4. Silhouette coefficient analysis
The first right-hand column of Table 8 lists Silhouette Coefficients

f attentional feature vector at the same convolutional level (�̄�5).
ilhouette Coefficients were computed by averaging the values across
ll folds using the test set. When FP was added to the BL and BL +
RL, the Silhouette Coefficients were enhanced by +0.002 and +0.008,
espectively. This demonstrates that the feature pyramid enhances the
etwork, particularly the classifier network, by extracting class discrim-

native features through the provision of rich information at various
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Table 9
Per-class F1 score evaluated on each stage index 𝑖 ∈ {3, 4, 5}; bold indicates the highest except values in the last row.
Stage index Overall metrics Per-class F1 score

ACC MF1 𝜅 W N1 N2 N3 REM

3 83.9 78.1 0.776 93.2 48.7 85.9 80.3 82.5
4 84.4 78.7 0.783 93.4 50.4 86.2 80.0 83.7
5 84.4 78.5 0.783 93.5 49.7 86.3 79.4 83.7

3, 4, 5 84.6 79.0 0.787 93.5 50.4 86.5 80.5 84.2
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temporal and frequency scales. In other words, the feature pyramid
improved the quality of information for discriminating EEG signals with
mixed frequencies. When adding CRL to BL and BL + FP, the Silhouette

oefficients increased by +0.025 and +0.031, respectively. Because
the objective of CRL is to increase both the intra-class similarity and
inter-class dissimilarity. The obtained results are straightforward.

In summary, the introduction of the feature pyramid and supervised
contrastive learning enhanced the overall performance of the baseline
by a considerable margin of 1.4%p, 1.7%p, and 0.02 in ACC, MF1,
nd 𝜅, respectively. For the per-class performance, the F1 scores of N1
nd REM were significantly improved by 3.8%p and 2.6%p, respectively,
ompared to the other classes (0.3%p for W, 1.4%p for N2, and 0.6%p
or N3). The Silhouette Coefficient, a measure of discrimination power,
as enhanced by 0.033 with the introduction of the proposed SleeP-
Co compared with the baseline. Furthermore, a higher increase in
he Silhouette Coefficient was observed when utilizing both elements
imultaneously as opposed to using them individually. These results
emonstrate the synergistic effect of the feature pyramid and super-
ised contrastive learning in enhancing the discrimination ability of
aw EEG signals. The feature pyramid enriches the information with
arious temporal and frequency scales, thereby improving the capacity
f the network, particularly the classifier network, to distinguish EEG
ignals with ambiguous patterns. Simultaneously, the proposed learn-
ng framework, based on supervised contrastive learning, enables the
ackbone network to extract discriminative features that are beneficial
or scoring the target epochs.

.3. Limitations and future work

The limitations of this study include the chronic problem affecting
he transformer, as reported in Carion et al. (2020), Zhuang et al.
2023). Specifically, training memory resources increase exponentially
n proportion to the feature size, which is related to the sequence length
𝐿). A detailed description of memory utilization is provided in Ap-
endix. As future work, we aim to achieve more accurate sleep scoring
ia supervised contrastive learning for multi-channel PSG signals.

. Conclusion

We presented SleePyCo, which incorporates a feature pyramid and
upervised contrastive learning for accurate automatic sleep scoring.
nspired by the evidence that EEG patterns reflecting the sleep stage can
e observed over various temporal and frequency scales, we proposed
deep learning model based on the feature pyramid. The proposed

raining framework, based on supervised contrastive learning, reduces
mbiguities between sleep stages by extracting discriminative features.
n ablation studies, SleePyCo-backbone outperformed SOTA backbones
nd the feature pyramid and supervised contrastive learning exhibited
synergistic effect in classifying the raw EEG signals. Therefore, the

eature pyramid improved the overall performance and discrimination
apacity of classifier network by considering various temporal and
requency scales of the feature sequences. According to the feature
evels and the analysis of the frequency characteristics of the sleep
tage, the proposed model exhibited a per-class performance effect.
he supervised contrastive learning contributes toward overall perfor-
ance improvement, which is attributed to the significantly enhanced
12

rediction of N1 and REM by reducing the ambiguity between sleep
stages. The comparative analysis demonstrated the SOTA performance
of SleePyCo on four public datasets of varying sizes: Sleep-EDF, MASS,
Physio2018, and SHHS. Furthermore, SleePyCo can be expanded to cat-
egorize other types of time-series data, which should focus on various
temporal and frequency scales and similar frequency characteristics
between classes.
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ppendix. Memory utilization of SleePyCo

In this section, we provide further details about the memory uti-
ization of SleePyCo. Based on our implementation, the memory usage
mounts to 22.3 GB for CRL and 52.9 GB for MTCL. During inference,
nly 1.5 GB of memory was required. A single GPU is required for
oth inference and CRL, whereas three GPUs are required for MTCL.
ig. 5 illustrates the memory utilization during MTCL as it varies
ith the sequence length (𝐿). As pointed out in Section 5.3, memory

esources increase exponentially in proportion to the sequence length
𝐿), as illustrated by the blue bar chart in Fig. 5. To address this
ssue, Rabe and Staats (2021) Rabe and Staats (2021) introduced a
emory-efficient self-attention mechanism that demands only 𝑂(

√

𝑛)
memory, in contrast to the original self-attention approach by Vaswani
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Fig. 5. Memory utilization of SleePyCo during MTCL varies with the sequence length (𝐿) from 1 to 10. The orange and blue bar charts indicate memory requirements when
memory-efficient self-attention is applied and when it is not, respectively.
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et al. (2017) which requires 𝑂(𝑛2) memory. This method has been in-
orporated into the latest versions of PyTorch (≥ v. 2.0). We integrated
his memory-efficient attention in SleePyCo (as illustrated in the orange
ar chart in Fig. 5). As a result, the training memory requirement
or SleePyCo under MTCL has been reduced to 5.4 GB, marking a 90

reduction from the original 52.9 GB (without the memory-efficient
elf-attention).
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