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A B S T R A C T

Out-of-distribution (OOD) detection involves binary classification whether the given data is from outside the
training data or not. Previous studies proposed outlier exposure (OE) that trains the model on an outlier
dataset designed to represent potential future OOD data, thereby enhancing OOD detection performance.
However, obtaining an outlier dataset representing all possible future OOD data can be challenging, and
such dataset may be unavailable in some cases. This study proposes a novel approach to expose the model
to jigsaw puzzles generated from training images as the outlier data. Specifically, the model is trained to
have a low LogitNorm for given jigsaw puzzles. We argue that jigsaw puzzles can effectively represent future
OOD data because they contain similar background information as the in-distribution data but with their
semantic information destroyed. Our experimental results demonstrate that our approach outperforms previous
competitive OOD detection methods and effectively detects semantically shifted OOD examples. Our code is
available at https://github.com/gist-ailab/jigsaw-training-OOD.
. Introduction

In machine learning, out-of-distribution (OOD) detection aims to
ecognize images outside trained data. This is important because mod-
ls trained on a specific data distribution may not generalize well to
ata outside that distribution, leading to unreliable or incorrect pre-
ictions (Hendrycks and Gimpel, 2017; Liu et al., 2020). To illustrate
his concept, consider a model trained to classify images of cats and
ogs using a large dataset of related images. The model can accurately
lassify new images of these animals with high accuracy. However,
f presented with an image of a car, the model performs poorly in
lassification because it has not encountered this type of data during
raining. Examples are illustrated in Fig. 1. In this case, it would be
mportant for the model to have the ability to detect that the image is
n OOD case and to alert the user that it is unusable for the model.

Various approaches have been employed to differentiate between
n-distribution (ID) and out-of-distribution (OOD) data using neural
etwork outputs. Output probability (Hendrycks and Gimpel, 2017;
iang et al., 2018) and output energy (Liu et al., 2020) are among the
ommonly used indicators. The output of a neural network is deter-
ined by a feature and a weight vector from the feature extractor and

lassification layer, respectively. In addition, training methods that pro-
uce deactivated features, resulting in low output confidence on data
acking in-distribution information, have been studied. For instance,
E (Hendrycks et al., 2019) uses an auxiliary dataset containing OOD
bjects to train the model, whereas virtual outlier synthesis (VOS Du
t al., 2022) employs sampling strategy to generate OOD feature and
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train the model to produce low confidence on them. Compounded
Corruptions (CnC Hebbalaguppe et al., 2023) uses hard augmentation-
based corruption technique to generate OOD images and train the
model to classify them as 𝐾 + 1 category. Exposing the model to proxy
OOD, which are images used to represent OOD (2), has improved OOD
detection performance. More recently, jigsaw puzzles have been used to
identify the most appropriate block for OOD detection after completing
the training (Yu et al., 2022). Therefore, we argue that jigsaw puzzles
can serve as a proxy OOD to enhance OOD detection performance, as
seen in previous pre-hoc methods.

This study investigates using jigsaw puzzles as proxy OOD during
training stage to improve OOD detection performance. Specifically, we
use jigsaw puzzles generated from the training images as proxy OOD
so that the model is trained to produce relatively low 𝐿2-norm of the
logit (dubbed as LogitNorm). We argue that jigsaw puzzles have no
spatial relationship, unlike ID images. Thus, model training with them
can makes the model to produce high LogitNorm for given ID images
while producing low LogitNorm for given OOD images during inference
stage.

We provide analyses of our proposed training method with jigsaw
puzzles. We conduct experiments on common OOD detection bench-
marks and show that our simple method is effective. The key results
and contributions of our study are summarized as follows:

• We introduce a novel training method to improve the OOD detec-
tion performance with jigsaw puzzles, where the model is trained
to produce low LogitNorm for given jigsaw puzzles. Novelty of
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Fig. 1. Illustration of in-distribution (ID) and out-of-distribution (OOD) images (a) for a
model trained to classify cats and dogs. The concept of the OOD detection is illustrated
in (b). A reliable OOD detector should classify cat as ID and horse as OOD.

Fig. 2. Comparison of proxy OOD of various methods. For the given training images,
outlier exposure (OE) exposes the model to auxiliary images (a), virtual outlier synthesis
(VOS) exposes the model to OOD features, which are sampled from low-likelihood
region of the class-conditional distribution estimated in the feature space (b), compound
corruptions (CnC) exposes the model to corrupted images, generated by patch-based
convex combination (e.g., Mixup Yun et al., 2019) and hard-augmentation (c), and
proposed method exposes the model to jigsaw puzzles (d).

the paper lies in exposing the model to jigsaw puzzles as proxy
OOD, which have not been previously investigated to the best of
our knowledge.

• We conduct comprehensive experiments and show that our
method consistently improves the OOD detection performance of
the model and outperforms previous baselines.

• We conduct extensive analyses that demonstrates the effective-
ness of our proposed method.

. Related works

.1. Out-of-distribution detection

Many areas in deep learning aim to detect unknown or novel input,
hich are different from the seen input in training distribution. For
xample, novelty detection aims to determine if a test data sample
s normal or anomalous (known class vs. novel class) (Salehi et al.,
2

2021; Almohsen et al., 2023; Lo et al., 2023). Similarly, OOD detection
aims to determine if a test sample is from in-distribution or out-
of-distribution. The main difference is that the novelty detection is
based on the generative model for one-class training set, while OOD
detection is based on discriminative model for multi-class training set.
For instance, Salehi et al. proposed to use augmented auto-encoder with
adversarial samples to determine input by degree of reconstruction,
while Hendyricks et al. proposed to use output confidence. Although,
novelty detection uses generative model mainly, insight from these
approaches can also be used in OOD detection.

OOD detection with discriminative models can be categorized as
post-hoc or pre-hoc methods. Post-hoc methods do not require mod-
ifications to the training method or architecture and can be applied
to off-the-shelf models. Examples of post-hoc methods include max-
imum softmax probability (MSP Hendrycks and Gimpel, 2017) and
its enhanced version (ODIN Liang et al., 2018), which uses input
preprocessing and temperature scaling to distinguish the confidence
of ID and OOD samples. In addition, the energy function (Liu et al.,
2020) is also post-hoc method that utilize energy as an OOD indicator.
Recently, Yu et al. (2022) proposed using the norm of the feature map
for OOD detection.

In contrast, pre-hoc methods involve modifying the model to im-
prove its OOD detection performance during the training stage. For
example, OE (Hendrycks et al., 2019) trains the model to have low
confidence in auxiliary data, resulting in enhanced OOD detection per-
formance when combined with post-hoc methods. IsoMax loss (Macêdo
et al., 2021), which replaces the softmax cross-entropy loss and follows
the maximum entropy principle, is another pre-hoc method. Although
OE-based approaches can significantly enhance OOD detection perfor-
mance, they require access to an auxiliary dataset, which may not
always be practical. Recently, Du et al. (2022) proposed to generate
proxy OOD feature which are sampled from low-likelihood region of
the class-conditional distribution. Also, Hebbalaguppe et al. (2023)
proposed to generate proxy OOD using patch based convex combina-
tion and hard-augmentation. Our proposed method involves OE with
augmented jigsaw puzzles and can be considered a pre-hoc method.
Hence, we compare our method with pre-hoc methods.

2.2. Jigsaw puzzles in neural networks

The jigsaw puzzle technique was first introduced for use in com-
puter vision tasks (Noroozi and Favaro, 2016) to predict image patch
sequences. It demonstrated that solving jigsaw puzzles can help the
model extract features for the original task. Jigsaw puzzles are actively
used for pretext tasks learning in representation learning. For example,
iterative reconstruction of jigsaw puzzles in high-dimensional space is
used to initialize a network with transfer learning (Wei et al., 2019). In
addition, Paumard et al. proposed Deepzzle that solves jigsaw puzzles
with the network, which predict relative positions of two fragments
and shortest path optimization on the graph (Paumard et al., 2020).
Similarly, the jigsaw clustering method that clusters fragments from dif-
ferent images revealed enhanced performance (Chen et al., 2021). Also,
Salehi et al. proposed novelty detection method using autoencoder,
where the model is trained to solve anti-shortcut jigsaw puzzles for
normal data and detect abnormal samples by choosing test samples fail
to solve puzzles (Salehi et al., 2020). Unlike this work, we use jigsaw
puzzles as proxy OOD for training a classification model and detect
the OOD sample in the inference-stage by choosing test samples fail to
produce meaningful logit. More recently, jigsaw puzzles are utilized as
proxy OOD to select the more appropriate block for OOD detection (Yu
et al., 2022). However, this is not pre-hoc method since it does not
modify any training loss. In this work, we use jigsaw puzzles as proxy
OOD for improving the OOD detection performance of neural networks
during training.
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Fig. 3. Proposed framework where the model is exposed on jigsaw puzzles and trained
to minimize the norm of logits for given jigsaw puzzles (a). During the inference stage,
the test image is considered as ID when the logit is higher than the threshold (b);
otherwise, the image is considered as OOD.

3. Proposed method

This study proposes the framework using jigsaw puzzles during
training stage to improve OOD detection performance. This framework
is based on the concept that the network that has learned about spatial
relationships of ID objects will produce low confidence for the given
OOD objects with destroyed spatial relationship of ID objects. The
model learns to classify ID images with correct spatial relationships
while also training to output low LogitNorm for jigsaw puzzle images
where spatial relationships have collapsed. Therefore, we train the
model to have low LogitNorm for given jigsaw puzzles. Fig. 3 illustrates
the proposed framework.

We first describe the general setting of image classification and
jigsaw puzzle generation to ease understanding (Section 3.1). Next, we
describe the training procedure of our framework (Section 3.2). Lastly,
we present the OOD detection method with the network (Section 3.3).

3.1. Preliminaries

We first provide an overview of the supervised learning problem in
the image classification network. Specifically, the network is trained us-
ing cross-entropy loss on a training dataset denoted as 𝐷𝑖𝑛 = (𝑥𝑖, 𝑦𝑖)

𝑁
𝑛=1,

here 𝑥𝑖 ∈ R3×𝑊 ×𝐻 represents the RGB image input, and 𝑦𝑖 ∈ 1, 2,… , 𝐾
epresents the label with 𝐾 class categories. The OOD detection method
ualifies as a post-hoc method if it does not modify during the training
hase and as a pre-hoc method otherwise.

We generate jigsaw puzzles from the training images to incorporate
hem into model training. We create 3 × 3 jigsaw puzzles, a format
ommonly used in previous research studies (Esteva et al., 2021; Chen
t al., 2021). Our primary objective is to leverage jigsaw puzzles as a
roxy OOD to improve OOD detection performance, as they lack spatial
elationship, rather than to enhance the jigsaw puzzle itself.

.2. Training loss: exposure on jigsaw puzzles

To train the model with training images and jigsaw puzzles, which
re generated from training images, we utilize two loss: (1) cross-
ntropy loss and (2) 𝐿2-norm loss as shown in Fig. 3-a. We use the cross-
ntropy loss for training the classification network and the 𝐿2-norm
oss to improve the OOD detection performance of the classification
 l
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etwork. Our design of the 𝐿2-norm loss is based on the previous re-
search that the norm of the logit affects the confidence of the model (Xu
et al., 2020; Wei et al., 2022). Also, we do not utilize ReLU function in
the training stage unlike the inference stage as it helps us to produce
more calibrated model. Therefore, the model will produce confidence
according to the spatial relationship by training the model to have low
confidence on the jigsaw puzzles and high confidence on the original
training images.

In particular, the training loss of the model, , is formulated as
follows:

 = 𝑐𝑒 + 𝜆𝑛𝑜𝑟𝑚, (1)

where the 𝐿𝑐𝑒 is the cross-entropy loss between the probability dis-
tribution produced for training images and ground truth. Moreover,
𝑛𝑜𝑟𝑚 and 𝜆 refer to the loss for jigsaw puzzles and their corresponding
weight, respectively. 𝑐𝑒 and 𝑛𝑜𝑟𝑚 are formulated as follows:

𝑐𝑒 = E(𝑥,𝑦)∼𝐷𝑖𝑛
[log(𝑝𝑦)] (2)

𝑛𝑜𝑟𝑚 = E(𝑥)∼𝐷𝑗𝑖𝑔𝑠𝑎𝑤
‖𝑣‖22, (3)

where 𝑝𝑦, 𝑣, and ‖⋅‖22 refer to probability for given ground-truth class 𝑦,
calculated logit for jigsaw puzzles, and 𝐿2-norm for the given vector,
respectively. Thus, the model is trained to have zero norm value for
jigsaw puzzles to minimize 𝑛𝑜𝑟𝑚. Moreover, the model is trained to
classify the original image as the ground-truth class to minimize 𝑐𝑒.
For the weight parameter 𝜆, we use 1.0 for all experiments.

3.3. OOD detection: using LogitNorm

For the OOD detection task, we use the norm of the elements
larger than the threshold 𝛼 in the logits for the given test image as an
indicator value showing closeness of the test image to the ID images
(i.e., ID-ness). We consider the larger elements in logits, as the small
elements can be in logits for given OOD images (e.g., negative value or
confused small positive value in a logit also increases the norm). Thus,
to improve the OOD detection performance, we filter the unnecessary
value below the confident threshold 𝛼 (i.e., the small values that do not
contribute to the decision of final prediction). The 𝛼 is calculated by
simply averaging the second-largest element in the logit for all training
images as follows:

𝛼 = 1
𝑁

𝑁
∑

𝑖=1
𝑣̂𝑖, (4)

where the 𝑁 and 𝑣̂𝑖 refer to the number of training images and the
second-largest value in 𝑖th logit respectively. Note that the second-
largest value represents the model’s confusing score for the incorrect
class, while the largest value represents the model’s confident score for
the correct class. Thus, 𝛼 can be interpreted as the confident threshold
in the logit.

Subsequently, if LogitNorm is sufficient, we consider the test image
as an ID image as shown in Fig. 3-b. The OOD detection using our
framework is formulated as follows:

𝐺(𝑥; 𝑓 ) =

{

ID if ‖ReLU(𝑣 − 𝛼)‖22 > 𝜏
OOD 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

(5)

where ‖𝑣‖22 is the norm of the logit for the given test image 𝑥. 𝜏 is
he chosen threshold so that 95% of the ID data is correctly classified
i.e., true positive rate of 95%) using the trained network 𝑓 . Thus, our
OD detector classifies the image as ID and OOD when the norm of the

ogit is sufficiently high and low, respectively.
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Table 1
Performance of OOD detection on CIFAR benchmarks. The methods have no access to OOD data during training and validation. The best result is indicated in bold. All values are
percentages averaged over five runs.

In-distribution Method OOD Average

SVHN Textures LSUN(c) LSUN(r) iSUN Places365

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

CIFAR10

Baseline 26.30 96.15 9.54 97.98 25.24 96.30 30.27 95.51 28.69 95.72 25.90 95.13 24.32 96.13
VOS 8.09 98.31 1.59 99.48 8.45 98.19 13.10 97.59 11.82 97.83 13.02 97.06 9.34 98.08
CnC 0.30 99.93 0.02 99.99 0.95 99.77 6.51 98.46 8.21 98.07 0.00 100.00 2.67 99.37
Ours 2.60 99.40 0.03 99.99 0.36 99.93 1.29 99.75 1.58 99.67 0.04 99.99 0.98 99.79

CIFAR100

Baseline 68.05 83.91 55.41 88.08 63.09 86.32 61.11 87.43 65.00 85.60 65.83 84.39 63.08 85.95
VOS 34.07 92.13 17.46 96.65 38.75 92.27 38.40 92.40 43.27 90.96 40.93 91.35 35.48 92.63
CnC 2.65 99.33 0.28 99.93 16.91 96.22 28.04 93.14 35.51 90.13 0.04 99.99 13.91 96.46
Ours 20.95 94.18 0.52 99.49 6.66 98.44 8.76 98.00 17.65 95.77 0.03 99.57 9.10 97.57
4. Experiments

In this section, we compare our proposed framework with other pre-
hoc methods. Following previous works (Du et al., 2022; Liu et al.,
2020; Sun et al., 2021; Yu et al., 2022), we use CIFAR (Krizhevsky et al.,
2009) benchmarks with CIFAR10 and CIFAR100 as the ID datasets, and
SVHN (Netzer et al., 2011), Textures (Cimpoi et al., 2014), LSUN (Yu
et al., 2015), iSUN (Xu et al., 2015), and Places365 (Zhou et al., 2018)
as OOD datasets. Detailed experimental settings are as follows.

4.1. Training settings

We use a vision transformer (ViT; Dosovitskiy et al., 2021) with a
patch size of 16, input image size of 224, depth of 12, and embedding
size of 192 (a.k.a. ‘Tiny’ variant or ViT-T/16) for experiments. ViT
was pretrained with ImageNet (Deng et al., 2009) using the open-
released checkpoint by timm repo (Wightman, 2019) and finetuned
on ID dataset. Since the ViT is pretrained on ImageNet, we train the
ViT with an initial learning rate of 0.003 using SGD optimizer with
momentum 0.9. In addition, the model is finetuned using a batch size
of 128 for 15 epochs with a weight decay of 0.0005. All input image
were resized to 224 × 224. For the weight parameter of 𝑛𝑜𝑟𝑚 𝜆, we use
1.0.

4.2. Evaluation metrics

We adopted the two commonly used evaluation metrics: FPR95 and
AUROC.

• FPR95 refers to the false positive rate (FPR) at a true positive
rate (TPR) of 95% (i.e., FPR@TPR95); that is, the OOD detec-
tion threshold is set to obtain TPR 95%. Thus, a smaller FPR95
indicates better OOD detection performance.

• AUROC stands for the area under the receiver operating charac-
teristic curve. It can be interpreted as the probability of correctly
classifying an OOD sample as OOD for the given randomly se-
lected sample. A higher AUROC indicates better performance in
detecting OOD samples.

4.3. Baseline methods

We compare our method against a baseline method and two pre-hoc
methods that use proxy OOD during the training stage. The methods
used are as follows:

• For Baseline (Hendrycks and Gimpel, 2017), we use the cross-
entropy-trained ViT. The OOD detection performance of MSP

indicates the low limit of OOD detection performance using ViT.

4

• For VOS (Du et al., 2022), we expose the ViT with OOD features
sampled from the low likelihood region of the class-conditional
distribution estimated in the feature space using the last block.
For other hyperparameters, we followed the setting for CIFAR10
in Du et al. (2022). Moreover, we use the same training setting to
train the ViT with generated proxy OOD features and use energy
as the OOD score after training.

• For CnC (Hebbalaguppe et al., 2023), we follow their settings to
generate proxy OOD for CIFAR10 benchmark. Subsequently, we
train the ViT to classify generated proxy OOD as 𝐾 + 1 category
with our training setting and use the probability of 𝐾+1 category
as the OOD score after training.

5. Results

We provide our experimental results on CIFAR benchmarks in Ta-
ble 1. We report the performance of OOD detection for the ViT ar-
chitecture using previous pre-hoc OOD detection methods. The perfor-
mance is calculated using FPR95 and AUROC on six OOD datasets:
(1) SVHN (Netzer et al., 2011), (2) Textures (Cimpoi et al., 2014),
(3) LSUN(c) (Yu et al., 2015), LSUN(r) (Yu et al., 2015), iSUN (Xu
et al., 2015), and Places365 (Zhou et al., 2018). LSUN(c) and LSUN(r)
refer to the dataset containing center-cropped and resized image from
the original dataset. Our proposed method achieved the best average
performance on CIFAR10 and CIFAR100. Our method reduces the
average FPR95 by 62.92% and 25.52% compared to the second best
results on CIFAR10 and CIFAR100, respectively.

As shown in Table 1, the performance of CnC on SVHN outperforms
our method, where SVHN consists of blurred images. We argue that the
hard augmentation of CnC contributes towards improvement, where
the model is exposed to blurred images generated by hard augmenta-
tion. In contrast, our method outperforms other methods on LSUN(c),
LSUN(r), and iSUN which does not contain blurred images.

6. Discussion

This section provides extensive experiments and analysis to explain
the proposed framework. First, we give the classification accuracy on ID
test set (Section 6.1). Then, we provide the OOD detection performance
using various post-hoc methods instead of LogitNorm on the network
trained by our framework (Section 6.2). Subsequently, we provide the
performance when detecting semantically shifted OOD using our model
(Section 6.4). Lastly, we demonstrate the location of jigsaw puzzles in
the feature space (Section 6.4).

6.1. Classification accuracy evaluation

Maintaining high in-distribution classification accuracy is also a
significant challenge for pre-hoc based OOD detection methods in real-
world scenarios. Our approach trains the model with 𝐿2-norm loss for
given jigsaw puzzles during the training stage. It may reduce classifi-

cation accuracy since it forces the network to produce low confidence



Y. Yu, S. Shin, M. Ko et al. Computer Vision and Image Understanding 241 (2024) 103968
Table 2
Classification accuracy evaluation of various pre-hoc methods. The best result is
indicated in bold. All values are percentages averaged over five runs.

Training method ID training set

CIFAR10 CIFAR100

Baseline 97.37 87.35
VOS 96.55 87.45
CnC 97.09 87.20
Ours 97.45 87.19

Table 3
Average OOD detection performance using various post-hoc methods on our model.
The best result is indicated in bold. All values are percentages averaged over five
runs.

Training method Detection method Average performance

FPR95↓ AUROC↑

Baseline MSP 24.31 96.13

𝐿2-Norm loss (Ours)

MSP 3.19 99.42
ODIN 1.69 99.66
Energy 1.40 99.73
LogitNorm (Ours) 0.98 99.79

Table 4
Performance of detecting OOD in different in-distribution dataset. The models are
trained on ImageNet and MNIST and evaluated on detecting OOD. The best result
is indicated in bold and the second-best result is indicated in underline.

Method In-distribution dataset

ImageNet MNIST

FPR95↓ AUROC↑ FPR95↓ AUROC↑

Baseline 68.59 80.49 3.54 98.87
VOS 51.03 85.68 2.42 99.47
CnC 73.40 76.26 6.37 98.50
Ours 49.91 86.47 1.90 99.47

for given similar images with different spatial relationship. To evaluate
our approach in this perspective, we present a classification accuracy
for ID test set in Table 2. Our method results in a small improvement in
classification accuracy for CIFAR10 compared to the baseline trained
by cross-entropy loss. However, our model has a small reduction for
CIFAR100. We argue that this small reduction in classification accuracy
is acceptable for improving the OOD detection performance. Moreover,
the model trained with our framework has similar accuracy as models
trained by other pre-hoc based OOD detection methods.

6.2. Comparison with other post-hoc methods

As other post-hoc OOD detection methods can be applied to our
model after the training stage, we evaluate the performance of these
methods using our model. The results are provided in Table 3. Our
model performs better than other post-hoc methods, but using the Log-
itNorm to detect OOD outperforms them. For example, OOD detection
performance of our model significantly outperformed the OOD detec-
tion performance of baseline models. Moreover, OOD detection perfor-
mance using LogitNorm outperformed OOD detection performance of
MSP, ODIN, and energy methods.

We argue that our model works well with the LogitNorm because we
train the model to produce high LogitNorm for ID and low LogitNorm
for jigsaw puzzles, which do not have spatial relationship. Nevertheless,
since producing low LogitNorm can be interpreted as generating low
confidence, other methods that use confidence or logit, may benefit
from our training framework.

6.3. Results in other datasets

To validate our method in other datasets, we use ImageNet (Deng
et al., 2009) and MNIST (Deng, 2012). For the OOD dataset, iNatural-
ist (Van Horn et al., 2018), SUN (Sun et al., 2016), Places (Zhou et al.,
5

Table 5
Performance of detecting semantically-shifted OOD. The models are trained on CIFAR10
and evaluated on detecting CIFAR100 as OOD. The best result is indicated in bold. All
values are percentages averaged over five runs.

Method CIFAR100

FPR95↓ AUROC↑

Baseline 36.24 93.86
VOS 25.77 94.91
CnC 45.62 87.46
Ours 19.39 95.70

Table 6
Averaged performance (FPR95↓) of OOD detection using various number of jigsaw
puzzles. The best result and the second-best result are indicated in bold and underline,
respectively. All values are percentages averaged over three runs.

In-distribution Number of jigsaw puzzles (𝑛2)

2 3 4 5 7 9

CIFAR10 1.76 0.98 0.97 1.12 1.23 2.50
CIFAR100 17.93 9.10 9.76 9.73 18.24 21.67

2018), and Textures (Cimpoi et al., 2014) are used for ImageNet bench-
mark following other research (Li et al., 2023; Sun et al., 2022). Also,
Fashion-MNIST (Xiao et al., 2017) and Kuzushiji-MNIST (Clanuwat
et al., 2018) are used as OOD dataset for MNIST. Specifically, we use
the same setting for the CIFAR benchmark for both dataset except
ViT-small variant and zero weight decay are used for ImageNet and
initial learning rate of 0.0003 and weight decay of 1e-04 are used for
MNIST. We report the average FPR95 and AUROC for these bench-
marks in Table 4. We find that our method shows competitive OOD
detection performance in other datasets as well. This demonstrates the
generalizability of our method across various datasets.

6.4. Detecting semantically-shifted OOD

According to previous research, semantically shifted OOD is the
most difficult OOD to detect (Hsu et al., 2020). However, it is more
common than non-semantically shifted OOD. Typically, object infor-
mation, such as a novel object category, is considered the semantic
meaning of an image, while non-object information, such as textures
or colors, is considered non-semantic. Hence, detecting semantically
shifted OOD is challenging but crucial.

To evaluate our framework’s ability to detect semantically shifted
OOD, we tested its OOD detection performance on CIFAR100 using
a CIFAR10 trained network. The results are presented in Table 5.
Our framework perform better in detecting semantically and non-
semantically shifted OOD. Our results reduced the FPR95 by 25.34%
compared to the second-best result (VOS). Since semantically shifted
OOD have different spatial relationships compared to ID data, we
argue that our training framework can effectively improve detection
performance in this area. However, other methods, such as VOS, do
not consider spatial relationships and only focus on whether features
are outside of the training distribution, whereas CnC method considers
images that are corrupted by hard augmentation. Therefore, these
methods do not effectively detect semantically shifted OOD.

6.5. Effect of the number of jigsaw puzzles

To demonstrate the effect of jigsaw puzzles numbers, we conducted
an experiment to evaluate the OOD detection performance for trained
models with various numbers of jigsaw puzzles. In Table 6, we provide
the OOD detection performance with different puzzle numbers. We
observed that the number of jigsaw puzzle affects the OOD detection
performance of the model. Specifically, when the number of jigsaw
puzzles is two (i.e., total number is four), we find that the model has
low in-distribution accuracy (e.g., 87.19 → 86.45) because the resulting
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Fig. 4. Visualization of the feature distribution (a), confidence map of baseline model (b), and confidence map of our model (c). In feature space (a), Class-wise features are
ndicated by color, with ID, jigsaw puzzles, and OOD represented by a circle, inverted triangle, and cross shape, respectively. In the confidence map, yellow and dark blue areas
epresent high and low confidence, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 7
Computational burden for various training methods. The time consumption refers to
the training-time for an epoch.

Method Time consumption Memory consumption

Baseline 28.90 s 6710 MB
VOS 31.12 s 6750 MB
CnC 260.39 s 11,366 MB
Ours 57.40 s 11,366 MB

jigsaw puzzles are close to original samples and fail to divide the object
in image sometimes. Also, large number of jigsaw puzzles drops the
OOD detection performance. We argue that this is because the jigsaw
puzzles with too much destroyed semantic information do not work
well for proxy OOD. For example, the model can only focus on the
dividing edge of the jigsaw puzzles rather than the spatial relationship.
Thus, we believe that 3, 4 or 5 for jigsaw puzzles number is more
appropriate for generating proxy OOD.

6.6. Jigsaw puzzles in feature space

To illustrate the working mechanism of our framework, we provide
t-SNE (van der Maaten and Hinton, 2008) visualization of the feature
distribution of ID, jigsaw puzzles, and OOD in Fig. 4. Specifically, we
visualize the following: (i) the feature produced from the last attention
block of ViT for the given ID, jigsaw puzzles, and OOD images (Fig. 4-
a); (ii) we visualize the confidences produced from baseline model
which trained by cross-entropy loss (Fig. 4-b); (iii) our model trained by
the proposed framework (Fig. 4-c). In these visualizations, confidence
refers to the MSP for the given images.

Fig. 4-a shows that the ID features are clustered around the same
class features, while OOD features are outside the class-wise decision
boundary. Jigsaw puzzles are located between ID and OOD features.
Subsequently, as shown in Fig. 4-(b,c), baseline and proposed models
produce high confidence on ID images since it is trained to classify
them. However, our model produces low confidence on images with
different spatial relationships compared to the one of ID (i.e., jigsaw
puzzles and OOD images), while the baseline model produces relatively
high confidence. Our model generates low confidence for jigsaw puzzles
and OOD images is because it is trained to produce a low LogitNorm
for jigsaw puzzles used as proxy OOD. Using jigsaw puzzles aids the
model in more precisely learning the decision boundary for the ID class,
resulting in the model generating a low logitnorm for OOD images.

6.7. Limitations

We provide the computational burden for various training methods
in Table 7. The experiments are conducted using Pytorch with Nvidia
RTX4090. The time consumption and memory consumption are calcu-
lated for one Epoch. Time consumption refers to the elapsed time to
6

train the ViT-tiny model for 50,000 CIFAR100 images using batch size
of 128. Also, Memory consumption represents the allocated GPU mem-
ory for a given batch (size of 128). We find that our method require
twice as much time for training and GPU memory since it process the
jigsaw puzzle as well as original training images. However, it is much
faster than CnC since it requires much more time for processing hard
augmentations to create a proxy OOD.

Also, another observation is that our method does not achieve state-
of-the-art performance in the ResNet18 architecture. Specifically, we
use an ImageNet-pretrained ResNet18 for the CIFAR100 benchmark,
using the same settings reported in the experiment section. We ob-
served that our method improves OOD detection performance (FPR95
is reduced from 38.35 to 14.47 and AUROC is 92.94). However, when
we utilize the CnC method with ResNet, the FPR95 is 20.66 and AUROC
is 95.85. This demonstrates that the CnC method and our method
have similar performances for the ResNet architecture despite that our
method outperforms CnC when using ViT. We argue that this is because
the CNN lacks the ability to connect spatial relationships between
image patches, unlike ViT.

7. Conclusion

In this study, we introduce a novel training framework, a simple
yet effective approach for improving OOD detection performance by
teaching the network the spatial relationship of ID objects. Specifi-
cally, we propose 𝐿2-norm loss that forces the network to have a low
norm of the logit for given jigsaw puzzles generated from training
images, while training to classify the category of training images using
cross-entropy loss. We compare our framework with other pre-hoc
OOD detection methods and demonstrate that it outperforms other
methods on CIFAR benchmarks. Specifically, our method achieves the
best average performance on CIFAR10 and CIFAR100. It reduces the
average FPR95 by 62.92% and 25.52% compared to the second best
results on CIFAR10 and CIFAR100, respectively. Moreover, extensive
experiments demonstrated that our framework does not decrease the
ID accuracy and benefits of detecting semantically shifted OOD. Finally,
we provided the visualization of ID, jigsaw puzzles, and OOD features
to explain the working mechanism of our framework. We hope our
study will benefit other OOD detection methods considering spatial
relationships for OOD detection.
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