
1Scientific Data |          (2024) 11:343  | https://doi.org/10.1038/s41597-024-03144-z

www.nature.com/scientificdata

MultiSenseBadminton: Wearable 
Sensor–Based Biomechanical 
Dataset for Evaluation of 
Badminton Performance
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The sports industry is witnessing an increasing trend of utilizing multiple synchronized sensors for 
player data collection, enabling personalized training systems with multi-perspective real-time 
feedback. Badminton could benefit from these various sensors, but there is a scarcity of comprehensive 
badminton action datasets for analysis and training feedback. Addressing this gap, this paper 
introduces a multi-sensor badminton dataset for forehand clear and backhand drive strokes, based 
on interviews with coaches for optimal usability. The dataset covers various skill levels, including 
beginners, intermediates, and experts, providing resources for understanding biomechanics across 
skill levels. It encompasses 7,763 badminton swing data from 25 players, featuring sensor data on eye 
tracking, body tracking, muscle signals, and foot pressure. The dataset also includes video recordings, 
detailed annotations on stroke type, skill level, sound, ball landing, and hitting location, as well as 
survey and interview data. We validated our dataset by applying a proof-of-concept machine learning 
model to all annotation data, demonstrating its comprehensive applicability in advanced badminton 
training and research.

Background & Summary
Recent advances in wearable sensors have enabled the accurate recognition of human actions at a highly detailed 
level1,2. This, in conjunction with modern AI techniques, has facilitated the analysis of high-level actions in 
various fields, such as fall detection3–7, sports training8–15, healthcare16–19, assistive technologies for people with 
disabilities20,21, and rehabilitation22,23. While other fields focus on reducing the number and size of sensors used 
in research, the sports industry is adopting multimodal sensors to gain a comprehensive understanding of player 
movements and physical states. These sensors facilitate various analyses, from simple posture classification to 
performance analysis, and include inertial measurement units (IMUs)24–29, eye trackers30–32, pressure sensors33,34, 
skeleton tracking sensors35–40, electromyography (EMG) sensors41,42, and capacitive sensors43.

Multimodal sensors provide quantitative and objective performance data on players’ performance, a fea-
ture that can be exploited to maximize the training effect for each individual. By providing in-depth analyses 
into joint movement patterns15,35,36,38,44, muscle activation14,41, and gaze movements45, sensor-based tools offer 
a level of feedback that traditional coaching methods struggle to achieve46. The role of the human coach, which 
traditionally involves meticulous tracking of a trainee’s every motion, can be partly automated through these 
applications47–49. This shift allows coaches to focus on providing personalized feedback, including tracking a 
player’s progress, identifying areas for improvement, strengthening specific weaknesses14, or even injury pre-
vention50–52. These AI-assisted coaching methods offer a more accessible and inclusive approach to training, 
granting individuals 24/7 access to expert feedback49, or supplying an AI coaching service for those who might 
otherwise not have access to a coach36,38,40,45,47,53–56. Such ubiquity in training access ensures that a larger number 
of individuals, irrespective of geographical constraints or other limitations, can benefit from expert guidance 
and training programs.
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Likewise, several AI- and sensor-based diagnostic systems have been proposed for badminton training8–14. 
Since badminton performance largely depends on the correct execution of each stroke, which requires quick 
and complex reflexes, sensor-based action analysis can be especially advantageous. Specifically, performing an 
effective badminton stroke requires proper stance, power control, and arm speed12, all of which are difficult 
for a human coach to monitor simultaneously. In particular, for beginners who are not yet familiar with basic 
badminton movements, acquiring the proper swing posture and power control can often require a considerable 
period of training, sometimes extending over several months. Therefore, by utilizing wearable sensors and AI 
technology to collect data from players of various skill levels, a system could be developed that not only assists in 
the training process but also provides an objective metric to complement a coach’s assessment.

Despite the benefits and prevalence of computer-assisted applications in badminton training, there is a lim-
ited amount of publicly accessible badminton action data available for training system development. Badminton 
datasets typically fall into two categories: individual stroke data collection in controlled settings, and strategy 
analysis based on real-world match videos (see Table 1). However, most publicly available datasets57–60 focus on 
match data between professional players, with an emphasis on tactical aspects. These aspects include predicting 
an opponent’s shuttlecock trajectory and stroke types59,60, as well as detecting strokes and identifying players’ 
bounding boxes57,58. The unpredictable trajectory, speed, and timing of the shuttlecock in real-match scenarios, 
coupled with the players’ dynamic movements, make modeling and evaluating individual strokes particularly 
challenging, as it requires accounting for previous strokes and the opponent’s actions.

In contrast, individual stroke data collection in controlled setting, which is our primary area of focus, pro-
vides opportunities for stroke classification11,13,61,62, statistical comparisons across varying expertise levels9,63, 
and in-depth evaluation of each stroke14,62. Given the context in which the individual stroke data is used, gath-
ering it in a stable environment is crucial, allowing to focus entirely on the mechanics of badminton movements 
and accurately capture the full dynamics. Specifically, the controlled environment for stroke data collection 
increases the potential to gather diverse biometric and motion data through wearable sensors. This includes 
IMU sensor data12,13,61,62,64, motion capture data9,63 as well as collecting biometric information like electromy-
ography14,63,65 and foot pressure9. Such an environment also supports the use of cameras for analysis10,11.

However, there is a gap in the available datasets, particularly in terms of assessing the quality of badminton 
strokes. Existing research has not fully addressed key elements of badminton swings, such as the players’ skill 
levels, the final position of the shuttlecock after the swing, the quality of impact during the swing, and the hitting 
point. Furthermore, although most datasets focus mainly on data from one or two types of sensors, fully under-
standing player performance variations requires combining data from multiple sources, including motion, foot 
pressure, and muscle activity, to get a comprehensive view of stroke quality.

To address the gap identified in previous research, our study concentrated on evaluating the quality of indi-
vidual strokes for players at various skill levels rather than focusing on tactical strategies. This approach involved 
collecting data in controlled environments, where players executed strokes using a shuttlecock launcher63 while 
being monitored with various sensors. Our research specifically concentrated on collecting data for two primary 
strokes taught in beginner badminton club courses: the forehand clear and the backhand drive14,66–68. We aimed 
to assess how the quality of each player’s stroke varies with different postures. For this, we collected over 150 
swing data points per stroke type, involving players of various skill levels9. Therefore, we collected a multimodal 
badminton swing dataset incorporating both motion and physiological data, including full-body motion, foot 
pressure, gaze, and muscle activation data.

Our dataset surpasses previous approaches by incorporating a diverse range of data sources not included in 
existing badminton datasets. Our data collection setup, including the environment and sensor configuration, 

Datasets Years Modalities Target Population #Subject #Videos Tasks Context Publicly Available

Badminton IMU61 2016 IMU PR. 12 — CLA. C No

Badminton Olympic57 2018 Videos PR. — 10 LOC.&CLA. F Yes

BadmintonPose11 2019 Videos PR. 1 12 CLA. C No

Badminton Plantar9 2019 Foot pressure, Skeleton PR.&AM. 20 — STAT. C No

BAR62 2020 IMU PR.&AM. 11 — CLA.&ASS. C&F Yes

Badminton EMG14 2021 Videos, EMG (arm) PR. 4 — ASS. C No

BadmintonDB58 2022 Videos PR. 2 9 CLA. F Yes

BadmintonACC13 2022 Accelerometer, Gyroscope AM. 5 — CLA. C No

Badminton Landing Task63 2022 EMG (leg), Skeleton AM. 34 — STAT. C No

ShuttleSet59 2023 Videos PR. 27 44 CLA. F Yes

ShuttleSet2260 2023 Videos PR. 35 58 CLA. F Yes

MultiSenseBadminton (Ours)75 2024 Videos, Skeleton, Eye gaze, Foot 
pressure, EMG (arm, leg) PR.&AM. 25 225 CLA.&ASS. C Yes

Table 1.  Comparison of the MultiSenseBadminton dataset[64] with existing public and non-public badminton 
datasets: In the “Context” column, “C” denotes collecting badminton data in a constrained, controlled 
environment, while “F” indicates data collection in the field during actual competitive play between two or 
more players. In the “Task” column, “CLA.”, “ASS.”, “STAT.” stands for action classification, action quality 
assessment, and cross-player statistical analysis. In the “Target Population” column, “PR.” refers to professional 
players, and “AM.” refers to amateur players.
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was developed based on insights from interviews with badminton experts. Our dataset encompasses five types 
of sensor data streams captured simultaneously, along with expert interviews, surveys, and annotated data. The 
dataset also includes video recordings from different point of view (Front, Side, Whole, Eye, and Eye with Gaze 
Overlay). The annotation data includes stroke type, skill level, ball landing location, shuttlecock sound, and 
hitting position. By compiling this comprehensive dataset, we provide a detailed representation of badminton 
strokes and related characteristics. This dataset can be leveraged to develop training programs, performance 
analysis techniques, and coaching strategies in the sport of badminton.

Our research additionally introduces an initial framework for utilizing machine learning with our dataset in 
the Technical Validation section. This section outlines a methodology that includes preprocessing and feature 
extraction, emphasizing the suitability of our dataset for machine learning applications. This includes provid-
ing examples of classifying stroke type, skill level, horizontal and vertical landing position, hitting point, and 
stroke sound. We reported the accuracy of our annotations with state-of-the-art machine-learning techniques. 
To facilitate usage by a wide audience, including those not specialized in deep learning, we have provided 
examples and made our deep learning pipeline source code openly accessible on the project’s GitHub page.

Methods
Dataset design.  To build a badminton action dataset designed specifically to address the needs of the bad-
minton coaching field, we engaged three professional badminton coaches from a local club that boasts a mem-
bership of over 50 individuals. Each coach had undergone professional training and had a minimum of five years 
of coaching experience (Female: 1; Age: Mean = 36.7, SD = 11.3; Years of Experience: Mean = 11, SD = 5.1). Our 
main aim was to extract their knowledge, focusing particularly on insights related to the overall training process. 
This knowledge would then guide us in selecting an appropriate sensor set and designing a dataset to facilitate 
player performance analysis and feedback.

We centered our discussions around critical elements that expert coaches pay attention to when teaching 
swing techniques. This included their standardized training processes, strategies for providing feedback, and the 
strategies used for executing stroke actions. To prepare for the interviews, we sent the questions to the coaches 
in advance. Each interview lasted roughly an hour, and each coach received a compensation of $80 for their 
participation.

The following subsections provide an aggregated summary of the interview responses. While our dataset 
entails the complete answers to a total of six questions, this paper specifically highlights the four questions that 
directly influenced the design of the dataset (see Table 2). These four questions primarily focus on the types of 
data and annotations that should be included for the analysis of badminton stroke actions. The full set of six 
questions, providing comprehensive insights into the coaches’ views on the applicability of AI-based coaching 
systems, challenges faced in current training methodologies, and thoughts on coaching within a virtual environ-
ment, can serve as a useful guide for future dataset design efforts.

Question 1. What is the most important skill to teach during badminton training?  Summary of responses to 
Question 1.  The coach highlights the significance of grip, posture, swing, and step in badminton training. 
Grip training is emphasized as a continuous process to enhance racket control and precision. For begin-
ners, the coach prioritizes teaching proper posture, followed by improving swing accuracy and shot exe-
cution. Maintaining the correct swing involves generating power from the rotation of the torso, along with 
the coordinated movement of the arm and wrist. The evaluation of shot accuracy focuses on hitting the 
intended target or clearing the net correctly. In terms of step, the coach emphasizes positioning the dominant 
foot underneath the shuttlecock’s expected landing spot and highlights the importance of the split step for  
quick post-shot preparation. Overall, the coach underscores the importance of these elements in effective 
badminton training.

Question 2. What is the criterion for evaluating the success of badminton training?  Summary of responses to 
Question 2.  According to the interviews, coaches evaluated the badminton training process based on several 

Questionnaire List Summary of Responses

1. What is the most important skill to teach during badminton training? Grip, Stance, Swing, Step

2. What is the criterion for evaluating the success of badminton training?

Location of the hitting point,

Landing point of the ball (trajectory),

Stroke accuracy (sound),

Ball speed

3. How do you give feedback to trainees during training?

Verbal comments, Demonstration,

Self-video recording,

Comparison using videos of skilled players

4. What is the important data for making an effective badminton shot?

Appropriate timing of hits, Grip force,

Gaze, Body tracking, Hand pressure,

Foot pressure, Muscle activation,

Racket tracking, Ball tracking

Table 2.  Summary of Interview with Badminton Coaches.
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key factors. First, the point of impact at which the ball hits the racket is evaluated-specifically, whether the ball  
is in front of the body when hitting. Second, the trajectory and landing location of the ball are assessed to ensure 
that it travels through the target distance and direction. Third, the accuracy of the stroke, which is determined 
by assessing whether the ball makes contact with the center of the racket and the sound produced during this 
interaction, is evaluated. Finally, the speed of the ball is also monitored.

Question 3. How do you give feedback to trainees during training?  Summary of responses to Question 3.  Coaches 
typically employ four main methods to provide feedback to badminton students. First, the coaches provide verbal 
feedback to the students to inform them of their performance and whether they have executed the correct stroke. 
If a student still has difficulty maintaining the proper posture or executing the correct movement, the coach may 
demonstrate an example to clarify the appropriate form. Additionally, some coaches may use video feedback to 
help students track their progress or observe the correct motion of a skilled player. However, while video feed-
back can be effective for some students, it may not always be the most useful tool for everyone. Although videos 
can provide a visual aid for learning, many students may find it difficult to fully grasp the technique without the 
opportunity to physically practice and experience the movements themselves. In particular, providing feedback on 
concepts that are difficult to understand visually, such as the application of force or shifting one’s center of gravity, 
can present challenges for coaches. Therefore, coaches may need to tailor their feedback strategies to suit individual 
learning styles and preferences to optimize student learning and development during badminton training.

Question 4. What are the important data for an effective badminton stroke?  Summary of responses to 
Question 4.  Several factors contribute to the effectiveness of a badminton shot, including swing accuracy, 
footwork, and gaze processing, all of which collectively help to ensure the shuttlecock is hit at the optimal 
timing and trajectory. Executing a fast and precise swing entails a sequence of actions: visually tracking the 
ball, extending the arms, stepping towards the target, and delivering a forceful impact. Holding the racket 
correctly is also crucial in badminton to generate impact during a shot, enabling greater wrist flexibility and 
range of motion to execute various types of shots. Proper footwork is essential for maintaining appropriate 
body positioning and stable shots, relying on precise balance control and efficient movement patterns, which 
should be attentively practiced to direct the shuttlecock towards the intended direction at the desired speed. 
Consequently, sensor-based analysis of badminton strokes requires the collection of data on various factors, 
including tracking racket position, monitoring ball trajectory, measuring hand pressure, tracking eye move-
ments, monitoring body and foot positioning, assessing foot pressure, and analyzing muscle activity.

Interview-based dataset design.  In our study, we established the sensor set, data collection environment, target 
strokes, and annotation data through interviews with experts. The selection of the most suitable sensors, guided 
by insights from Question 4 in the interviews, emphasized the need for sensors that capture crucial data without 
impeding natural badminton swing movements. Therefore, we opted for a non-invasive, comprehensive sensor 
set suitable for players of various skill levels, including eye gaze tracking, EMG, IMU-based body tracking, and 
foot pressure sensors.

To avoid altering the racket’s weight or feel with attached sensors, we chose motion tracking technology worn 
on the hand (Perception Neuron studio) to measure racket movements. This decision was informed by studies 
in racket sports69–73, where IMU sensors on the hand provided stroke classification performance comparable 
to sensors on the racket74, and in some cases, even superior correlation with player performance-related meas-
ures72. This approach allows us to gather essential swing information via IMU sensor-based data from the hand, 
maintaining the racket’s natural feel and balance during play and offering proxy measures for racket dynamics.

For the data collection setting, we drew inspiration from typical badminton training environment where a 
coach throws shuttlecocks for the trainee to return, often providing real-time posture correction and feedback. 
To replicate this training environment consistently in our study, we employed a shuttlecock launcher for collect-
ing badminton stroke data63. We calibrated the launcher to consistently release shuttlecocks at the same angle 
for each stroke type, which enabled the collection of comparable swing data across different participants. This 
setup was instrumental in gathering data on how players of various skill levels respond to the same shuttlecock 
trajectory, thereby facilitating an analysis of the diversity in players’ responses to uniform strokes. To thoroughly 
observe the participants’ posture and the shuttlecock’s trajectory, we installed three external cameras, each cap-
turing a unique view. In addition, an eye tracker camera was utilized to record sound.

For our target strokes, we concentrated on two basic strokes essential for beginners in badminton training: 
the forehand clear and backhand drive. This focus was driven by the goal of our dataset, which is to evaluate the 
quality of individual strokes for building a badminton training system. By narrowing down to these fundamental 
strokes, we aimed to collect over 150 data points per participant, focusing on how players of different skill levels 
react to shuttlecocks with the same trajectory and how their responses vary. Drawing on answers from Question 2  
of our expert interviews, we established criteria to evaluate each badminton stroke and annotated these criteria 
to build a dataset on stroke quality. Our annotations included aspects such as the skill level of each player, the 
horizontal and vertical location of each strokes, the hitting point, and the sound quality produced during the 
hit. By concentrating on these specific strokes and detailed annotations, we sought to provide a comprehensive 
dataset that would offer insights into the nuances of stroke execution and quality across various skill levels in 
badminton.

Ethics statement for the multisensebadminton dataset.  The development of the MultiSenseBadminton 
dataset received ethical clearance from the Institutional Review Board (IRB) at the Gwangju Institute of Science and 
Technology75. This project was approved under the protocol code 20220628-HR-67-20-04 on July 21, 2022.
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Upon arrival at the data collection site, participants were presented with consent forms. These forms required 
thorough reading and written agreement from participants, confirming their willingness to contribute to the 
data collection process. A critical aspect of the MultiSenseBadminton dataset is its public availability. As such, 
explicit consent was also obtained for the public release of data that includes personally identifiable information 
(PII), specifically the video recordings of participants performing badminton swing. The videos have undergone 
mosaic or blur processing for participant confidentiality. The final MultiSenseBadminton dataset comprises 
video, annotation, personal information and sensor data from all 25 participants who participated in the study, 
each of whom consented to the release of their personal data for public access.

Participants.  In this study, data were collected from 25 participants (20 males and 5 females) aged between 
18 and 52 years (Mean = 26.8 years, SD = 6.59 years). The basic physical conditions of the participants were as 
follows: weight 48–108 kg (Mean = 76.4 kg, SD = 14.6 kg); height 160–190 cm (Mean = 174 cm, SD = 8.33 cm) 
(Shown in Table 3). The participants’ training experience varied between 0 and 22 years (Mean = 3.96 years, 
SD = 6.9 years). All participants demonstrated dominance in one hand and confirmed that they predominantly 
use this hand in badminton. Before data collection, the participants were briefed about the use of multiple wear-
able sensors and agreed to participate in the study. After collecting data, the participants were paid $40 for par-
ticipating. All participants consented to data disclosure, and data for all subjects were included in our dataset.

Sensors and data collection framework.  The sensor collection framework used in our study is an adap-
tation of the ActionSense framework76. The original framework encompassing codes, a graphical user interface 
(GUI), and sensor visualization capabilities was tailored for human-activity data collection from wearable devices 
during kitchen activities. We therefore modified this framework to align with our unique sensor set and dataset 
design. This involved customizing the GUI and real-time data visualization features of ActionSense for in-situ 
monitoring and time-synchronized annotation during data collection.

Our study utilized five types of wearable sensors: eye tracking, body tracking, foot pressure, and EMG sen-
sors. We supplemented these with three cameras and a shuttlecock launcher for comprehensive data collection 
focused on badminton stroke analysis (see Fig. 1). Each sensor’s data stream was integrated into the overarching 
ActionSense framework by connecting their respective Python API or stream layer API, thereby facilitating data 
import via TCP/IP communication.

To ensure easy data manipulation and seamless integration, we opted to save the collected data in an 
HDF5 file format77. This format offers cross-platform and cross-language compatibility, rendering it a versatile 
choice for storing and accessing large volumes of scientific data. Furthermore, the HDF5 format allows for the 

ID
Age 
[years]

Gender 
[M|F]

Weight 
[kg]

Height 
[cm]

Dominant 
hand

Dominant 
leg

Training time 
[years]

Self-reported skill 
level [7 Likert scale]

1 18 F 58 165 R R 0 1

2 24 F 65 164 R R 0 1

3 25 M 90 181 R R 0 2

4 21 M 65 175 R R 0 1

5 21 M 103 166 R R 0 2

6 19 M 90 187 R R 0 2

7 23 M 61 164 R R 0 2

8 24 M 85 170 R R 0 1

9 28 M 90 190 R R 0.83 3

10 26 M 64 171 R R 1 5

11 24 M 63 174 R R 0 1

12 52 F 58 160 R R 14 7

13 26 F 68 166 R R 2.5 5

14 26 M 70 169 L L 0.5 4

15 28 M 72 186 R R 18 7

16 38 M 83 170 R R 2 4

17 28 M 77 180 R R 0.25 2

18 24 F 48 161 R R 0 2

19 31 M 80 182 R R 2 3

20 28 M 82 180 R R 19 7

21 25 M 108 166 R R 14 7

22 24 M 75 178 R R 1 3

23 29 M 73 179 R R 2 4

24 32 M 90 176 R R 0 2

25 28 M 92 180 R R 22 7

Table 3.  Demographics and Training Experiences of Subjects: The self-reported skill level was recorded on a 7 
Likert scale; the higher the Likert value, the higher the skill level.
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hierarchical organization of multimodal heterogeneous data such as sensor readings. Given its capability for 
processing large data in concurrent threads and parallel I/O, the HDF5 format is particularly suitable for our 
data-rich configurations that involve five wearable sensors and three cameras in the simultaneous data stream 
channels.

We collected all data using Unix time to assist in analyzing the temporal relationship between different sensor 
data points. The structure of the sensor acquisition framework is illustrated in Fig. 2. Notably, even in the event 
of a sensor disconnection during data collection, the entire framework continues data acquisition seamlessly.

Eye tracking (Pupil Invisible Glasses).  In our study, we utilized Pupil Invisible glasses to collect 1) information 
on whether gaze data were successfully received; 2) 2D gaze data (horizontal and vertical); 3) ambient sound 
that participants were subject to; and 4) first-person videos through eye camera. The Pupil Invisible glasses are 
a wearable eye-tracking system designed to resemble a regular pair of glasses. The system includes two inner 
cameras on the frame to track eye movements, an exterior camera on the left temple with a wide field of view to 
record the environment, and a USB-C connector on the right temple that connects to a smartphone running the 
tracker application. The eye-tracker output comprises recorded videos displaying the participant’s gaze position 
and coordinates relative to the outside image. While the Pupil Invisible glasses autonomously estimate gaze data 
via an embedded convolutional neural network algorithm78, eliminating the need for traditional calibration, we 
adopted an additional step to enhance data robustness. Before collecting swing data, participants were asked to 
focus on monitor corners to verify the accuracy of the machine-predicted gaze data. The system weighs only 
46.9 g and comes with a lens kit; it can therefore be fitted with separate −3 to +3 diopter lenses in steps of 0.5. 
Network streaming was performed using a OnePlus 8 smartphone, and data were collected via a wired con-
nection between the phone and the glasses. This system provides robust gaze estimation in any environment, 
including outdoor settings, which is essential for this study. We collected data on Unix time, 2D gaze, and gaze 
worn value in real time at a sampling rate of 30 Hz using Pupil Invisible Companion and saved these data in 
HDF5 format.

Body tracking (perception neuron studio).  For the measurement of joint angles and positions in our study, we 
employed the Perception Neuron Studio application. Owing to its data stream reliability as reported in motion 
capture studies79–83, this system is frequently utilized for collection of human motion data. Furthermore, it has 
applications in motion balance and ergonomic analyses84,85. The system estimates body joint positions and 
angles based on the IMU. It is comprised of 17 trackers, each measuring 12.5 mm Ã— 13.1 mm Ã— 4.3 mm and 
containing a triaxle gyroscope (2000 DPS), magnetometer, and accelerometer (32 g). All 17 trackers were affixed 
to the body using a belt positioned at the specific joints designated for each sensor. Perception Neuron Studio 
also offers sensor calibration through its third-party software, requiring three poses for calibration: the T-pose, 
squat, and N-pose.

The data stream, including the local Euler angle, local quaternion, and local position, can be transmitted 
in real time via network communication. However, it is worth noting that owing to inherent limitations in the 
IMU, the global position may drift over time. In our study, we collected real-time data on the local position, local 
Euler angle, and local quaternion at a sampling rate of 96 Hz using Perception Neuron Studio’s Python API. We 
used these data to calculate the participant’s global position. As shown in Fig. 2, the resulting HDF5 file contains 
these four types of data.

Fig. 1  The sensors used for data collection during the experiment.
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Muscle activity (gForcePro+, Cognionics AIM).  We collected muscle activity data from both the dominant arm 
and dominant leg. As all participants held the racket with their dominant arm, the collected data allows us to scru-
tinize the muscle activity and force application timing of the racket-holding hand. We also included muscle activ-
ity data for the dominant leg based on a prior study indicating greater muscle activation in the dominant leg86.

To monitor electromyography on the upper and lower parts of the dominant arm, we used the gForce-
Pro + armband. This device communicates using the Bluetooth Low Energy (BLE) 4.2 Standard with a range of 
up to 10 meters, while being capable of measuring muscle activity across eight channels at a maximum sampling 
rate of 1000 Hz. We captured data from the following muscles: biceps brachii, triceps brachii, brachioradialis, 
flexor carpi ulnaris, and flexor digitorum superficialis. Access to read the raw EMG data of the gForcePro + API 
was provided through a Raspberry Pi 3, which was subsequently integrated into the main computer’s Python 
framework using TCP/IP communication as the API supports Linux-based environment only. Given that Unix 
time was retrieved alongside the data, no further adjustments for data latency were necessary during the inte-
gration process.

To measure muscle activity in the dominant leg, we utilized AIM, a physiological monitoring device from 
Cognionics. AIM measures muscle activation using EMG and collects wireless data through the CGX acqui-
sition software. These data were then integrated into Python via the lab streaming layer. Previous research 
reported that the rectus femoris and vastus medialis muscles exhibit the highest EMG and integrated EMG 
(IEMG) activity during badminton strokes87. Based on these findings, we attached the SkinTact electrodes to the 
participant’s dominant leg (see Fig. 3 (middle) for detailed contact positions), and CGX software was used to 
read EMG data at a sampling rate of 500 Hz (channel 1 for rectus femoris; channel 2 for vastus medialis; channel 
3 for vastus lateralis; and channel 4 for biceps femoris).

Foot-pressure sensor (Moticon).  We adopted Moticon insole sensors to measure foot pressure during badmin-
ton strokes. These sensors were wireless and equipped with 16 plantar pressure sensors and a 6-axis IMU, which 
captured both static and dynamic plantar pressure data as well as 3-axis acceleration and angular rate data. 
Real-time transmission of data was possible with a maximum sampling rate of 100 Hz through wireless connec-
tion to a computer or mobile device, and onboard recording was also an option for offline analysis. To ensure 
accurate measurement, the OpenGo android application was employed for calibration prior to data collection. 
The four-step calibration process included slow walking, standing still, rocking the center of gravity of the body 
back and forth, and rocking the center of gravity of the body left and right.

Shuttlecock launcher (SIBOASI SS-B2202A).  In this study, a shuttlecock launcher manufactured by SIBOASI 
was used to launch shuttlecocks following the same trajectory, ensuring consistency across trials shown in Fig. 4b. 
The launcher has a weight of 40 kg and can store up to 180 shuttlecocks. The device allows the user to adjust 
the frequency of the ball launches, with options ranging from 1.2 to 4.5 seconds. The speed of the ball can also 
be adjusted within a range of 20 to 140 km/h. Additionally, the launcher has a maximum elevation angle of 38 
degrees and a horizontal angle of 30 degrees. The device can be controlled remotely using a mobile application or 
remote control and can launch a variety of ball types, including net balls, smash balls, flat drives, horizontal serves, 
and vertical serves. The launcher features several modes, such as fixed-point ball, random ball, and combination 

Fig. 2  Sensor Data Collection Framework.
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ball modes, which enable the user to direct the ball to specific locations or deploy randomly. It is also possible to 
alternate between two ball types for continuous practice. In the fixed-point ball mode, we were able to select a 
specific location for the shuttlecock to be directed, within the horizontal 0–60 and vertical 10–60 range. For the 
purpose of our data collection, we set the launcher to horizontal 30 and vertical 50 for forehand clear. We set the 
launcher to horizontal 15 and vertical 30 for right-handers performing the backhand drive. For left-handers, we 
adjusted the settings to horizontal 45 and vertical 30. This allowed us to target specific areas on the court.

Cameras.  As mentioned earlier in the Dataset Design section, a total of three cameras were used to record 
movements from the front, side, and whole views to obtain information on the participant’s stroke. The place-
ment of the camera and the positions of the participants are shown in Fig. 4a. The front and side cameras 
recorded at a resolution of 640 × 480 pixels and a frame rate of 30 fps. The whole-view camera recorded at a 
higher resolution of 1920 × 1080 pixels, with the same frame rate. Furthermore, an eye camera mounted on 
Pupil Invisible glasses recorded the participant’s first-person perspective at a resolution of 1080 × 1088 pix-
els and a frame rate of 30 fps, and simultaneously recorded sound. Various features were extracted from the 
recorded videos through careful analysis, including the location of the hitting point, the subject’s posture, and 
the location of the hit ball. Overall, these cameras allowed for a detailed and accurate analysis of the participant’s 
performance during badminton strokes.

Fig. 3  The participant’s appearance while wearing the sensors. Left: front view; middle: position of electrodes 
attached to the dominant leg; right: side view (The individual depicted in this figure has provided informed 
consent for the open publication of their image.).

Fig. 4  Data Collection Environment. Left: Positions of the camera, the subject, and the analyst; Right: type of task.
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Survey data.  In addition to collecting sensor data, we also gathered survey data on the physical attributes of 
the participants, periods of badminton training, and their experience with wearing sensors. We gathered fun-
damental metadata such as age, and gender, as well as biometrics such as weight, height, joint length, and dom-
inant limbs from the participants. Furthermore, we obtained information on the duration of their professional 
training and their self-reported level of expertise to assess their skill levels. Moreover, to acquire information 
on the participants’ subjective experiences with wearing sensors, we collected data on the obtrusiveness of the 
five sensors and the performance similarity before and after wearing each sensor. The obtrusiveness refers to the 
extent to which a device or technology causes inconvenience, whereas the performance similarity is a metric 
that measures how closely a person’s regular badminton performance remains consistent, regardless of whether 
they are wearing a wearable sensor or not. By gathering data on the obtrusiveness of each of the five sensors and 
the performance similarity before and after wearing them, we were able to investigate how wearing the sensors 
affected the participants’ overall experience and data quality. The questionnaire was designed using a 7-point 
Likert scale, where higher values indicate greater levels of obtrusiveness and a higher degree of consistency in 
performance. The results showed that the Cognionics and Moticon sensors were associated with a low level of 
obtrusiveness, whereas the gForce and eye-tracking sensors were deemed to have relatively high obtrusiveness 
(see Fig. 5a). Despite the relatively high score for the latter two sensors, the majority of participants provided a 
score of 3 or less out of 7, indicating that the sensor devices did not cause significant discomfort. Regarding the 
performance similarity, the gForce sensor was reported to produce a low performance similarity, whereas the 
Cognionics and Moticon sensors demonstrated a high performance similarity (see Fig. 5b). In summary, the 
results suggest that wearing multiple sensors during the experiment did not significantly impact the participants’ 
wearable performance similarity or cause obtrusiveness. Moreover, the findings indicate that wearing the sen-
sors did not compromise the quality of the collected data.

Data annotation.  In addition to the badminton data on stroke types, we proceeded with annotations of five 
hierarchical levels for the skill level, hitting sound, shuttlecock location, and hitting point, as shown in Fig. 6. In 
the case of the hitting point and hitting sound annotation among the five annotations, three independent labelers 
proceeded with annotation and verified the annotation data through inter-rater reliability. As mentioned in the 
Dataset Design section, badminton coaches are typically able to objectively evaluate badminton strokes based on 
factors such as stroke impact, ball trajectory, and contact point. To incorporate these perspectives into the devel-
opment of a computer-aided evaluation system, we propose five levels of annotation.

Level 1 - Stroke type (Non-stroke, forehand clear, backhand drive).  We collected data on the types of strokes 
performed in badminton and annotated them accordingly. This involved identifying whether a stroke was a 
forehand clear, a backhand drive, or altogether not a stroke. We annotated the beginning and end of each stroke 
in real-time, using Unix time, while also recording the type of each stroke.

Level 2 - Skill level (beginner, intermediate, expert).  To annotate each participant’s skill level, we recruited 
three professional badminton coaches. Each coach had an average of 18 years of professional training and play-
ing experience, with over 7 years of coaching experience (Age: Mean = 36.7, SD = 11.3; Years of Educational 
Experience: Mean = 18, SD = 2.6; Years of Coaching Experience: Mean = 8.2, SD = 1.3). These coaches were 
assigned the task of observing participants’ videos and rating their forehand clears and backhand drives on a 
scale ranging from 1 to 7. Here, a score of 1 represents a beginner, and 7 represents an expert. The dataset incor-
porated the individual scores from each of these three experts. Based on the average scores among three experts, 
participants were categorized as follows: those with an average score between 1 and less than 3 were classified as 
beginners, those with scores from 3 to less than 6 as intermediates, and those with scores of 6 or above as experts.

Fig. 5  Survey Results.
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Level 3 - Horizontal and vertical landing position of the ball.  We annotated the landing positions of the shuttle-
cock on the court in both horizontal and vertical dimensions. Prior to collecting stroke data, we asked partic-
ipants to hit a shuttlecock toward the center of the court. By analyzing the landing position of the shuttlecock, 
we gathered information on the accuracy of the player’s stroke. As mentioned in the Dataset Design section, 
coaches often use the trajectory of the shuttlecock to evaluate a player’s training process and provide feedback. 
To capture the shuttlecock’s trajectory, we installed a camera to record the launch position, the participant, and 
the trajectory of the shuttlecock. Further, videos were recorded using Pupil Invisible glasses to determine the 
precise location of the shuttlecock landing. The horizontal position was annotated from −2 to 2, and the vertical 
position from 0 to 5, as depicted in Fig. 8, with the assigned numbers representing interval categories rather than 
meters. The left side of Fig. 8 illustrates the virtual baseline of the interval, while the right side shows physical 
lines that were utilized to create the virtual grid on the left. These data allowed us to analyze the accuracy of 
players hitting the shuttlecock at different locations on the court.

Level 4 - Hitting point (front, back, not contact).  To provide information on the stroke timing in relation to the 
player’s position and the shuttlecock, we annotated the point of contact, which indicates whether the shuttlecock 
was hit in front of or behind the player’s body. This factor is commonly utilized by expert coaches to assess a 
player’s badminton stroke posture and hitting accuracy. It is a generally taught principle that for optimal tech-
nique and power, the shuttlecock should be hit in front of the body, a point highlighted in the Dataset Design 
section. To record this, we installed a camera that captured a side view of the participant and filmed the par-
ticipant throughout the data collection. Similar to other annotation levels, the location of the hit points in the 
dataset was annotated by three researchers using the recorded video footage. If the shuttlecock was hit in front 
of the body, it was marked as “Front”, and if it was hit from behind, it was marked as “Back”.

Level 5 - Stroke sound (good, maybe, bad).  We annotated the hitting sounds produced during strokes as “good”, 
“maybe”, or “bad” to provide insight into the quality of the stroke and the skill of the player. As mentioned in the 
interview responses of badminton coaches in the Dataset Design section, making a good shot depends on the 
strike impact of the racket on the shuttlecock, and the sound generated during a stroke is an important factor in 
evaluating a player’s skill. The sound of the stroke was collected using the sensor mounted on the Pupil Invisible 
glasses and annotated using the recorded eye video. To ensure the validity of annotations, three HCI researchers 
performed the annotations, and inter-rater reliability was later calculated to measure the consistency of the 
annotation values between the researchers. We classified the sound as “good” when it resembled the sound made 
when a professional player hits the shuttlecock squarely. A sound from a weak hit was classified as “maybe”, 
whereas a sound from a missed strike was classified as “bad”.

Environment.  The data collection environment consisted of a shuttlecock launcher and three cameras that 
captured the front, side, and full views of the subjects (Fig. 4a,b). The shuttlecock launcher was positioned to 
ensure the ball always deployed in a constant trajectory according to the stroke type. The analyst was located 
at the edge of the badminton court with a computer for data collection and observed whether the collection of 
sensor data proceeded well. For efficient data observation, real-time visualization (demonstrated in Fig. 7) of the 
collected sensor data was applied to monitor the quality of the gathered data. Using this approach, the research 
team was able to identify any instances of sensor disconnection or poor attachment, as well as to detect drift in 
the IMU. In fact, some participants experienced such disruptions during the collection process, necessitating 
additional data collection.

Fig. 6  Annotation Levels.
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Data collection protocol.  The data collection process is summarized in Table 4. First, the participants were 
briefed regarding the types of sensors they would be wearing, the number and types of strokes to be performed, 
and relevant instructions well in advance. The participants then completed a preliminary survey that gathered 
basic human and physical information along with their badminton experience. Subsequently, the participants wore 
five sensors and underwent a calibration process during which the sensors were connected to a Python frame-
work. Once the calibration process was completed, the participants watched an instructional video on strokes and 
practiced hitting the shuttlecock at least five times while adhering to specific guidelines. The researcher provided 
guidance on the preparatory posture and instructed participants to hit the shuttlecock towards the center of the 
court. Both the calibration process and the practice stroke process have been stored in HDF5 format. Once the par-
ticipants had mastered the preparatory posture, more than 150 data points were collected for each type of stroke 
in a randomized order that varied between participants. During data collection, the researcher continuously mon-
itored the sensor collection visualization and conducted additional calibration in the event of missing sensor data 
or body-tracking drift. The researcher utilized a remote control to deploy a ball from the shuttlecock launcher, and 
based on this, annotated the start time, end time, and stroke type in real time. Upon completion of data collection, 
the participants were asked to complete a post-study survey to assess their level of comfort with the sensors, the 
extent to which their experience mirrored that of regular badminton play, and their willingness to have their data 
disclosed. The data collection process for each participant took approximately two-and-a-half hours to complete.

Data Records
The MultiSenseBadminton dataset75 is available on figshare. The collected dataset was a multimodal dataset that 
involved 25 participants of varying skill levels and had a total duration of 1,403 minutes (Mean = 56 minutes, 
SD = 7.48 minutes). In addition to physiological data such as EMG and gaze, the dataset contains behavioral data 
such as foot pressure and joint movement, as well as video data for sensor visualization and annotation data. The 
dataset also includes data summary files and survey data, in addition to sensor data.

All the data files are accessible on a hierarchical database, which facilitates navigation and retrieval of specific 
data. The organization of the dataset is depicted in Fig. 9, which provides a visual representation of the hierarchi-
cal structure of the dataset. The organization of the dataset follows a tree-like structure, with the top-level folder 
being an archive folder. The archive folder contains four types of files, a data-summary file, an interview file, an 
annotation data file, and a survey-data file, along with subject folders.

Each subject in the project has sensor-data HDF5 files labeled with the date of data collection and the partici-
pant ID. The HDF5 files can be easily accessed using HDF5 viewer software, and the Python code for reading these 
files is available on the project’s GitHub repository. The HDF5 file contains sensor stream data and Unix time.

Fig. 7  Real-time sensor-data visualization.

https://doi.org/10.1038/s41597-024-03144-z


1 2Scientific Data |          (2024) 11:343  | https://doi.org/10.1038/s41597-024-03144-z

www.nature.com/scientificdatawww.nature.com/scientificdata/

The annotation file records the Unix time, stroke number, and annotation value in five levels, providing 
detailed information about various aspects of badminton strokes. The survey data and data-summary files con-
tain information on all participants, such as demographic information and questionnaire responses, and can be 
used to understand the participants’ characteristics and study findings.

HDF5 file details.  The HDF5 file contains the following information: EMG values of leg, forearm, and arm 
start and stop time of strokes and calibration, eye gaze, foot pressure data, and motion capture data. Each sensor 
data structure is composed of “data”, “time s”, and “time str”. The “data” represents sensor data for each channel, 
“time s” represents Unix time for each data, and “time str” represents the global time for each data. The following 
subsections introduce the structure and composition of the dataset.

cgx-aim-leg-emg.  This dataset encompasses EMG values for the dominant leg, expressed in millivolts (mV), 
across four distinct channels. Each channel serves to characterize specific muscle information, with the unit 
being mV: channel 1 is designated for the rectus femoris; channel 2 corresponds to the vastus medialis; channel 3  
is allocated for the vastus lateralis; and channel 4 pertains to the biceps femoris.

experiment-calibration.  The calibration dataset, with its two channels, relates to EMG data for the arm, fore-
arm, and leg. The first channel marks the beginning and end of calibration. The second channel identifies the 
calibration pose used, either for gforce, involving three specific arm motions, or leg EMG, with two leg motions. 
The calibration pose for forearms includes lower arm inward pose and lower arm outward. And the calibration 
pose for the arm includes the upper arm inward pose. And the calibration poses for the leg include the leg forced 
pose and squat pose. The primary aim of this calibration is to obtain the maximum EMG value, aiding in the 
proper normalization and calibration of subsequent EMG measurements.

eye-gaze.  This dataset contains two types of data: gaze data and worn data. The gaze data is designed to capture 
eye-tracking data through the use of pupil-invisible glasses and is artfully constructed into two channels. The 
first channel precisely maps the X-coordinate of gaze positions, spanning from 0 to 1088. This span aligns with 
the horizontal resolution of the video, facilitating accurate monitoring of gaze movements across the horizontal 
axis. The second channel records the Y-coordinate of gaze positions, extending from 0 to 1080, reflecting the 
vertical resolution of the video. This enables a thorough examination of vertical gaze movements. In addition to 

Step Duration Descriptions

1. Description and pre-survey 15 min After a brief introduction to the sensor to be worn and the data collection process, a 
questionnaire on personal information was completed.

2. Wearing and calibrating sensors 20 min Wearing five sensors and calibrating each sensor

3. Watching a video about the stroke 5 min Watching a video about forehand clear or backhand drive.

4. Practice Strokes 3 min Five or more warm-up strokes after receiving instruction on the ready position

5. Data Collection (150 strokes) 25 min Collecting data for 150 rounds

6. Repeat steps 3 to 5 for other strokes 35 min Collecting data for another 150 rounds

7. Post-survey 10 min A post-survey on the experience of wearing the sensors was conducted.

Table 4.  Data Acquisition Procedure.

Fig. 8  Instruction of Annotation Level 3: The left figure illustrates the virtual baseline of the interval, and the 
right figure shows physical lines that are utilized to create the virtual grid. In the case of Annotation Level 3, the 
ball landing location was annotated with a horizontal scale ranging from −2 to 2 and a vertical scale ranging 
from 0 to 5. The moment when the ball hit the shuttlecock launcher was annotated as “Contact’’.
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these channels, the dataset includes a “worn” column. This column is designed to indicate whether the glasses 
were worn during the data capture, with a value of 1 denoting the glasses were on and a value of 0 indicating 
their absence. This binary value provides a clear indication of the presence or absence of the glasses, thereby 
informing the status of data prediction during the capture process.

gforce-lowerarm-emg.  This dataset furnishes EMG values for the lower arm, represented in normalized units 
ranging between 0 and 250 across eight channels.

gforce-upperarm-emg.  Analogous to the gforce lower arm dataset, this collection entails EMG values for the 
upper arm, comprising eight channels, with data normalized between 0 and 250.

moticon-insole.  The Moticon insole data contains five types of data. The first type of data is the Center of 
Pressure (COP). It is represented by four channels denoting the x and y coordinates of COP for both feet. The 
first channel denotes the COP x coordinates of the left foot, the second channel denotes the COP y coordinates 
of the left foot, the third channel denotes the COP x coordinates of the right foot, and the fourth channel denotes 
the COP y coordinates of the right foot. The second type of data is the acceleration. It captures the linear acceler-
ation of the foot across the x, y, and z directions, expressed in g (gravity). The first channel is the acceleration of 
x coordinates, the second is the acceleration of y coordinates, and the third is the acceleration of z coordinates. 
The third type of data is the angular velocity. It captures the angular velocity of the foot across the x, y, and z 
directions, measured in degree/s. The first channel is the angular velocity of x coordinates, the second is the 
angular velocity of y coordinates, and the third is the angular velocity of z coordinates. The fourth type of data is 
the pressure. It captures the pressure maps around the foot in 16 channels, measured in N/cmÂ². The fifth type 
of data is the total force. It captures the total force of each foot in 1 channel, measured in Newton (N).

pns-joint.  This dataset contains four types of data: information relative to joint global positions, joint local 
positions, quaternions, and Euler angles, encompassing the following parameters for 21 joints. And the order 
of the joints within the dataset is detailed as follows: hip, right up leg, right leg, right foot, left up leg, left leg, left 
foot, spine, spine 1, spine 2, neck, neck 1, head, right shoulder, right arm, right forearm, right hand, left shoulder, 
left arm, left forearm, left hand.

The first type of data pertains to the local position of each joint, measured in centimeters (cm). This data is 
structured across a total of 63 channels, comprising the x, y, and z coordinates for each joint. The second type of 
data pertains to the global position of each joint, measured in centimeters (cm). This data is structured across a 
total of 63 channels, comprising the x, y, and z coordinates for each joint. The third type of data pertains to the 
Euler angle of each joint, measured in degrees. This data is structured across a total of 63 channels, comprising 
the x, y, and z coordinates for each joint. The fourth type of data pertains to the quaternion of each joint, meas-
ured in degrees. This data is structured across a total of 84 channels, comprising the w, x, y, and z values for each 
joint.

Video and document file details.  In our dataset, we have included five distinct types of video recordings 
of the participants, capturing various perspectives: Front Video, Side Video, Whole Video, Eye Video, and Eye 
Video with Gaze Overlay. To protect the privacy of the participants, these videos have been made anonymous, 

Fig. 9  Hierarchical folder structure of the dataset.
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with some editing done to make sure that the participants cannot be identified. It should be noted that the Eye 
Video and Eye Video with Gaze Overlay contain appearances by the research team that are not anonymized; 
however, the researchers have given their consent for the release of this identifiable data. We also included survey 
data, annotation data, data summary files, and interview data in document files, in addition to sensor and video 
data from participants. The detailed descriptions of each file are as follows:

Data summary file.xlsx.  This file summarizes the collection status of sensor and video data for each partici-
pant. Each column includes the participant’s name, file name, stroke type, whether calibration is included, the 
inclusion of data from each sensor, and the inclusion of each type of video. A “circle” indicates that the data is 
included, an “X” signifies that the data is missing, and a “triangle” represents that some of the data is partially 
missing.

Annotation data file.xlsx.  This file marks each stroke at the annotation level for each participant. Each column 
contains detailed information on the subject number, annotation start time, annotation stop time, stroke num-
ber, and annotation level. Especially for annotation levels 4 and 5, the file also includes evaluations made by 
three raters for each level.

Skill level annotation detail file.xlsx.  The file contains data summarizing the skill level assessments for each 
clear and drive stroke by three expert badminton coaches. Each column includes the participant number, the 
skill level for each stroke, the reason for the skill level assessment, and annotation data indicating whether the 
participant was classified as a beginner, intermediate, or expert in our dataset.

Survey data file.xlsx.  The file includes survey information on participants’ basic personal information, physi-
cal attributes, and experience with data collection. Each column contains data on the participant number, age, 
gender, weight, dominant hand, dominant leg, lengths of 13 different joints, professional training experience, 
self-reported expertise level, experience with sensor attachment, and consent for data disclosure.

Interview data.  The file summarizes the questions and answers from a discussion with three experts prior to 
collecting badminton data. It includes topics such as their usual training processes, important aspects of bad-
minton coaching, and methods of providing feedback.

Technical Validation
Examining missing data.  The availability of data for each participant is summarized in a data summary 
file. The file indicates whether calibration data are present in each participant’s data folder, and whether sensor 
data from five sensors and video data are available. An “O” indicates data are available whereas an “X” indicates 
absence of data. Blank spaces represent data that were not originally collected.

Regarding wearable sensors, all sensor data are accessible, except for eye-tracking data from participants 
labeled Sub05, Sub06, and Sub08. For these participants, the eye-tracking camera was either broken, the gaze 
data were missing, or the gaze data were not collected; therefore, these data were excluded from the available 
data. Also, some videos were not recorded owing to program interruption during data collection. In preparation 
for this, multiple cameras were used to record concurrently to minimize missing annotation data. Nonetheless, 
when eye video data were not recorded, sound data were likewise not recorded, hence some data were missing in 
this regard. For Annotation Level 3, only 61 out of 7763 annotations were missing, accounting for 0.78% of total 
annotations. For Annotation Level 4, 19 annotations were missing, representing 0.24% of the total. Finally, in the 
case of Annotation Level 5, there were 857 missing annotations, accounting for 11.04% of the total annotations.

During the data collection process, some video data was missing. For the Side Video, data was missing for 
Sub00, Sub03, and Sub04. In the case of the Whole Video, data for Sub00, Sub03, Sub04, Sub05, and Sub15 was 
missing. For the Eye Video, there were missing data for Sub05, Sub10, Sub12, and Sub16. And for the Eye Video 
with Gaze Overlay, data was missing for Sub02, Sub05, Sub06, Sub07, Sub08, and Sub13. Due to these missing 
pieces, approximately 10% of the video data, which amounts to 25 videos, could not be collected, resulting in a 
total of 225 videos.

Evaluating inter-rater reliability in skill level annotation.  In video-based annotation, we analyzed 
inter-rater reliability across three skill levels: beginner, intermediate, and expert. Inter-rater reliability refers to 
the extent of agreement or consistency among different raters or annotators when assessing or scoring the same 
dataset. We calculated the inter-rater reliability between two coaches and among three coaches using Cohen’s 
kappa and Fleiss’ kappa values, respectively. Cohen’s kappa is a statistic used to measure the agreement between 
two raters, going beyond mere chance agreement. Fleiss’ kappa, on the other hand, is an extension of Cohen’s 
kappa for measuring the agreement between three or more raters.

Table 5 displays the inter-rater reliability among coaches, as determined by Cohen’s Kappa and Fleiss’s Kappa 
values, and the number of participants classified as beginners, intermediates, and experts through this annota-
tion. Overall, the inter-rater reliability among the coaches showed a moderate level of agreement, with values 
above 0.64.

Annotation distributions and inter-rater reliability for annotation levels 4 and 5.  The distri-
bution and frequency of annotations are shown in Fig. 10a,b, where the term “Not Contact” indicates that the 
participant did not make contact with the ball. The total number of stroke instances is 7,763 and we expressed 
each label as a percentile ratio.
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To estimate inter-rater reliability of Annotation Level 4 and 5, Krippendorff ’s alpha was calculated. 
Krippendorff ’s alpha is widely recognized as the most versatile reliability measure, particularly when not all 
strokes are assessed by every rater88,89. We also calculated the percentage of agreement for the three levels of 
annotation by determining the number of instances in which all three annotators assigned the same annotation, 
divided by the total number of annotations.

Figure 11 displays a heat map of Krippendorff ’s alpha coefficients and percentage of agreement calculated 
for three annotation levels measured on an ordinal scale. Annotation Levels 4 and 5 had high agreement percent 
(0.96 and 0.77, respectively), indicating a good agreement score. However, when considering Krippendorff ’s 
alpha value, Annotation Level 5 received a low score of 0.42. This can be attributed to the subjective nature of 
the task, where raters assessed the quality of a sound as Good, Maybe, or Bad. The final annotation data files for 
levels 4 and 5 contain both the consolidated annotation values that received agreement from multiple raters and 
the raw annotation values provided by each individual rater.

Preliminary learning pipelines.  In this section, we provide an initial pipeline for utilizing our multi-modal 
data, aiding easier use of our dataset for non-expert developers. Classification results for each annotation are 
demonstrated with an state-of-the-art neural network model. This structure can be tailored to fit individual 
researchers’ unique hypotheses and objectives. Much of the pipeline’s foundation is drawn from the ActionSense 
dataset76, from which we adapted preprocessing and analysis methodologies. The experimental methods and the 
results for dataset validity are elaborated are provided in the following sections.

Data preprocessing and feature extraction.  We derived six types of features from five distinct types of wearable 
sensors. These features encompassed gaze 2D data obtained from Pupil Invisible Glasses, joint Euler angles 
extracted from Perception Neuron Studio, EMG data collected from gForcePro + and Cognionics EMG sensors, 
as well as pressure and center of pressure data acquired from Moticon sensors. To synchronize these features, 
each sensor was integrated into the main computer’s data collection framework. This involved fetching the Unix 
time and data from each sensor server and transmitting these simultaneously. Based on this approach, the Unix 
time and sensor data were collected simultaneously for five different sensors. We performed preprocessing for 
each sensor, and the preprocessing process is summarized in Fig. 12. To facilitate further research in this area, 
the code used in this study for data preprocessing and classification was published on GitHub as an open-source 
project.

In the preprocessing stage, we extracted features from five sensors: 2 channels of 2D gaze data, 63 chan-
nels from 21 joint Euler angles, 16 channels for upper and lower arm EMG, 4 channels for leg EMG, and 
36 channels from insole sensors, which include both 32 pressure channels and 4 COP channels. To reduce 

Stroke # Beginner # Intermediate # Expert
IRR 
(R1&R2)

IRR 
(R1&R3)

IRR 
(R2&R3)

IRR 
(ALL)

Clear 11 8 6 0.70 0.63 0.59 0.64

Drive 11 9 5 0.82 0.82 0.64 0.75

Table 5.  Skill level annotation; # means the number of subjects.

Fig. 10  Distributions and frequencies of Annotation Levels 4 and 5 from three raters (R1, R2, R3): Not Contact 
indicates the shuttlecock and the racket do not make proper contact. The graph is designed with a logarithmic 
scale on the y-axis to account for data imbalance.
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noise and artifacts in the data, we applied a low-pass filter with cut-off frequencies of 5 Hz for the arm EMG, 
2D gaze and insole pressure, and 20 Hz for the leg EMG. The EMG value was rectified by taking its absolute 
value before applying a low-pass filter. Altogether, this process generates a total of 121 data channels, with 
each channel normalized within the range of [−1, 1]. Subsequently, we resampled all channels to a uniform 
time vector at a 60 Hz sampling rate, employing linear interpolation throughout to ensure consistent tempo-
ral alignment across the data. By segmenting each stroke example with a 2.5-second interval, we extracted 
a total of 7761 stroke instances from 18 participants. This total includes 2607 instances of backhand drive, 
2613 instances of forehand clear, and 2541 instances of non-strokes, where non-strokes refer to instances 
where no stroke was being performed. Utilizing our stroke dataset, we proceeded to classify the five types 
of annotations we collected; types of strokes, skill level, horizontal location, vertical location, hitting point, 
and sound.

Network architecture.  For our training process, we constructed models using deep learning architectures com-
monly employed for time-series data: ConvLSTM, Long Short-Term Memory (LSTM), and Transformer. These 
models were developed to effectively capture and analyze the temporal patterns inherent in our dataset. Our 
pipeline, implemented in Python 3.9 using Pytorch, utilized these architectures to accurately extract key features 
from sensor data for sequential information classification. We consistently applied these architectures across the 
classification of annotation data.

To evaluate the model’s performance, we used Accuracy, Balanced Accuracy, and F1 score as metrics, with 
the Adam optimizer and categorical cross-entropy as the loss function. The model’s performance was assessed 
using hyperparameters: learning rates of 0.0005 and 0.0001, and epochs of 200. We applied early stopping 
with a patience of 10. The dataset division into train + and test sets involved two validation methods: 10-fold 
cross-validation, where the dataset is split into ten equal parts, each part used once as a test set while the others 
serve as training data, ensuring all data is used in both roles; and leave-three-out (LTO) cross-validation, which 
involves selecting one subject from each skill level - beginner, intermediate, and expert - and using their data as 
the test set, while data from other subjects form the training set. Detailed reference numbers for subjects used in 
the LTO cross-validation, which demonstrate the unique combinations of participants from different skill lev-
els–beginner, intermediate, and expert–across ten iterations, are listed in Table 6. This approach tests the model’s 
ability to generalize to new subjects across different skill levels. Additionally, for comparison, we developed a 
baseline model that predicts the predominant class, serving as a benchmark to assess our models’ performance 
and effectiveness against this basic approach.

Stroke type and skill level classification results.  In the case of stroke type classification, the study involved cat-
egorizing three types of strokes (forehand clear, backhand drive, and non-stroke). Table 7 displayed the mean 
and standard deviation of accuracy, balanced accuracy, and F1 score, obtained through LTO validation. Overall, 

Fig. 11  Heat maps of inter-rater reliability measured by Krippendorff ’s alpha and percentage of agreement for 
each subject: The first four rows (blue text) indicate Krippendorff ’s alpha value, while the last four rows (red 
text) indicate the percentage of agreement. The columns show the respective metrics for each participant, and 
R1, R2, and R3 represent the raters.
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deep learning models outperformed the baseline in all metrics, with ConvLSTM demonstrating particularly 
superior performance across all metrics compared to other models.

In the case of skill level classification, the study involved categorizing three types of strokes (Beginner, 
Intermediate, and Expert), shown in Table 7. Overall, deep learning models outperformed the baseline in all 
metrics, with LSTM demonstrating particularly superior performance across all metrics compared to other 
models.

Annotation classification results for clear.  In the classification of annotation data related to clear strokes, Table 8 
presents an analysis results using different models, evaluated through both LTO and 10-fold cross-validation 
methods. In the horizontal landing location classification, the Transformer model stood out in the LTO results, 
with its efficacy closely matched in the 10-fold setting. In the vertical landing position classification, the baseline 
model unexpectedly outperformed others in the LTO approach. This could be attributed to the vertical landing 
position being relatively consistent across players of different skill levels, leading to higher baseline accuracy 
as the data for this category is less variable. Additionally, in the hitting point classification, a similar trend was 
observed where the baseline accuracy was significantly high, likely due to the predominant distribution of data 
being classified as “Front”, skewing the results. However, in the 10-fold cross-validation for vertical landing 
position, the LSTM model demonstrated superior performance. The hitting point classification showed strong 
performances from both the ConvLSTM and LSTM models, with the latter slightly edging out in the 10-fold 
cross-validation. Lastly, in the sound classification, the ConvLSTM model exhibited the best performance in 
all metrics in the LTO approach, while in the 10-fold cross-validation, the LSTM model led in both accuracy  
and F1 score.

Annotation classification results for drive.  Table 9 presents results across different models, evaluated using both 
LTO and 10-fold cross-validation. In the horizontal landing position classification, the performance varied between 
the LTO and 10-fold settings. In the 10-fold cross-validation, the Transformer model achieved the highest accuracy, 
while the ConvLSTM model had the highest balanced accuracy, and the LSTM model led in F1 score. In contrast, 
in the LTO results, the baseline model achieved the highest accuracy, ConvLSTM led in balanced accuracy, and 

Fig. 12  Data Preprocessing.

Iteration 
Number

Skill Level Iteration 
Number

Skill Level

Beginner Intermediate Expert Beginner Intermediate Expert

1 Sub00 Sub09 Sub11 6 Sub04 Sub09 Sub11

2 Sub01 Sub15 Sub14 7 Sub07 Sub15 Sub14

3 Sub02 Sub18 Sub19 8 Sub17 Sub18 Sub19

4 Sub03 Sub21 Sub20 9 Sub23 Sub21 Sub20

5 Sub04 Sub22 Sub24 10 Sub00 Sub22 Sub24

Table 6.  Leave-Three-Out reference subject number; This table provides the reference subject numbers for the 
LTO cross-validation process, facilitating a reproducible benchmark.
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the Transformer model scored the highest in F1 score. For the vertical landing position classification, the baseline 
model’s superior performance in the LTO approach can be attributed to the relatively consistent vertical landing 
positions across different players, resulting in less variable data and therefore higher baseline accuracy. In contrast, 
in the 10-fold cross-validation, the LSTM model showed the highest balanced accuracy and F1 score for vertical 
landing position. In the hitting point classification, the majority of the data was distributed in the “Front” category. 
This predominance led to no significant performance difference between the baseline and the top-performing 
models across two validation settings. Lastly, in the sound classification, varied performances were observed among 
the models. The Transformer model excelled in the 10-fold cross-validation, while the ConvLSTM and LSTM mod-
els displayed strong results in the LTO settings, particularly with LSTM leading in LTO for F1 score and accuracy.

The provided pipeline represents a preliminary implementation of a deep-learning application to evaluate 
the suitability of the MultiSenseBadminton sensor and annotation dataset75. An important consideration in our 
study is the imbalance in data distribution across participants, particularly evident in the annotations for hori-
zontal landing position, vertical landing position, and hitting point. This imbalance inherently leads to higher 
baseline accuracy in certain cases, as the majority class tends to dominate the dataset. This phenomenon is espe-
cially notable in the vertical position and hitting point classifications, where the baseline accuracy occasionally 
surpasses that of the deep learning models. Such an outcome underscores the challenges posed by imbalanced 
data in machine learning, especially in the context of sports analytics where participant variability can signifi-
cantly impact model performance. It highlights the need for careful consideration of data distribution and par-
ticipant variability when interpreting model accuracy and effectiveness in classifying stroke-related annotations.

Annotation Model

LTO Results

Accavg (SD) BalAccavg (SD) F1avg (SD)

Stroke Type

Transformer 83.15 (7.53) 83.16 (7.52) 82.85 (7.82)

ConvLSTM 90.03 (6.92) 90.07 (6.91) 89.99 (6.96)

LSTM 82.85 (6.86) 82.85 (6.84) 82.83 (6.88)

Baseline 33.89 (0.22) 33.33 (0.00) 17.16 (0.19)

Skill Levelclear

Transformer 40.60 (10.27) 41.84 (10.72) 40.11 (12.21)

ConvLSTM 45.69 (11.79) 45.87 (12.66) 44.50 (16.23)

LSTM 46.56 (8.65) 48.35 (11.73) 44.92 (10.28)

Baseline 34.53 (0.55) 33.33 (0.00) 17.73 (0.49)

Skill Leveldrive

Transformer 42.60 (11.36) 42.71 (11.43) 39.17 (9.45)

ConvLSTM 46.39 (12.46) 46.33 (12.46) 42.02 (15.27)

LSTM 46.98 (12.92) 47.02 (12.86) 44.56 (13.16)

Baseline 33.79 (0.23) 33.33 (0.00) 17.07 (0.20)

Table 7.  Stroke Type Classification Results; models with the highest performance in each metric are highlighted 
in bold.

Annotation Model

LTO Results 10-Fold Results

ACCavg (SD)
BalACCavg 
(SD) F1avg (SD) ACCavg (SD)

BalACCavg 
(SD) F1avg (SD)

Horizontalclear

Transformer 79.47 (4.83) 24.37 (3.90) 70.49 (6.59) 79.42 (3.28) 27.73 (3.93) 73.96 (4.26)

ConvLSTM 70.94 (10.23) 25.50 (5.66) 69.05 (6.96) 61.35 (7.55) 32.77 (4.10) 63.92 (6.76)

LSTM 77.62 (4.43) 24.68 (3.96) 70.91 (5.16) 76.93 (3.29) 28.90 (2.88) 73.86 (3.70)

Baseline 79.45 (4.84) 24.33 (3.94) 70.43 (6.63) 79.06 (2.78) 23.50 (2.42) 69.84 (3.82)

Verticalclear

Transformer 37.27 (10.70) 15.39 (3.68) 33.19 (13.70) 75.51 (3.11) 49.28 (4.62) 73.72 (3.16)

ConvLSTM 31.64 (14.54) 18.30 (8.25) 30.36 (16.36) 68.10 (5.31) 52.79 (2.95) 68.66 (3.89)

LSTM 36.99 (8.44) 15.52 (2.62) 33.60 (11.38) 75.34 (2.65) 51.19 (6.46) 73.94 (3.09)

Baseline 55.99 (7.24) 15.90 (2.37) 40.45 (8.40) 39.08 (1.99) 14.52 (0.75) 21.99 (1.92)

Hit Pointclear

Transformer 95.38 (6.66) 48.32 (19.95) 93.25 (9.73) 95.11 (1.77) 53.28 (10.08) 94.56 (2.07)

ConvLSTM 81.16 (9.99) 42.75 (15.70) 85.47 (7.63) 78.87 (8.86) 62.34 (10.98) 84.29 (6.26)

LSTM 95.29 (6.60) 48.25 (19.76) 93.21 (9.70) 95.25 (1.20) 49.84 (11.02) 94.59 (1.75)

Baseline 95.40 (6.67) 48.33 (19.95) 93.26 (9.73) 94.53 (1.22) 35.00 (5.27) 91.88 (1.79)

Soundclear

Transformer 56.25 (8.01) 39.63 (7.55) 53.38 (8.98) 86.65 (1.67) 62.40 (10.36) 86.35 (1.85)

ConvLSTM 64.23 (15.88) 47.82 (19.09) 60.89 (17.58) 85.61 (4.94) 65.89 (12.65) 85.45 (4.93)

LSTM 59.87 (8.05) 42.36 (12.23) 58.00 (8.68) 88.38 (3.04) 59.23 (2.04) 88.08 (3.01)

Baseline 54.48 (3.03) 35.00 (5.27) 38.47 (3.54) 57.47 (2.74) 36.67 (7.03) 41.98 (3.28)

Table 8.  Clear Classification Results; models with the highest performance in each metric are highlighted in bold.
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Usage Notes
Sensor-data visualization.  We developed a data visualization tool to visualize sensor data and enable visual 
comparison of strokes, as shown in Fig. 13. The tool code is available on the project’s GitHub page, providing the 
capability to select various parameters for comparison, such as participant number, stroke type, stroke number, 
and sensor. These features allow for a comprehensive analysis of stroke patterns by facilitating the comparison of 
sensor data across different participants and strokes.

Data limitations.  The MultiSenseBadminton dataset75 has certain limitations that need to be addressed. 
First, some of the wearable sensors used in this study were susceptible to noise, drift, and connectivity issues 
during data collection. For instance, the body tracking sensor caused position drift, which is a common problem 
with IMU-based motion tracking sensors90,91. Although we mitigated this issue by calibrating the motion track-
ing sensors for each session and recalibrating them upon detection of discrepancies between participants’ actual 
movements and the corresponding joint data, the inherent nature of the IMU sensor inevitably introduces some 
drift-related error. Further, the Cognionics AIM sensor generated spike values during the stroke, and we therefore 
wrote preprocessing code to process the spike values. The preprocessing code has been uploaded to the GitHub 
page. There was also an interruption in the streaming of data from the gForce EMG armband during the data 
collection process. To address this issue, the badminton stroke was stopped and the stream was reconnected to 
resume data collection. This ensured that the collected data corresponded to actual badminton strokes and were 
free from interruptions or inaccuracies.

The second limitation of the MultiSenseBadminton dataset75 is that the data were collected in a constrained 
environment, designed to mimic a typical badminton coaching scenario. In this setup, participants responded to 
shuttlecocks launched by a machine, similar to how a coach might throw shuttlecocks to a trainee. This method 
ensured that shuttlecocks were delivered in a uniform trajectory, allowing us to gather consistent sensor data across 
various aspects such as movement, muscle activity, and center of pressure shifts among players of different skill 
levels. While this approach is useful for controlled training exercises, future studies should aim to collect data in 
real-world match environments. In this real-match scenario, it’s essential to use wearable sensors that do not restrict 
the participants’ movement. Therefore, we recommend utilizing non-intrusive sensors, such as insole-based foot 
pressure sensors and cameras, to ensure free and natural player movement. Additionally, for a more effective and 
realistic data collection, it is advisable to recruit participants with intermediate or higher skill levels who are capa-
ble of engaging in actual gameplay. This method of data collection in real-match settings will provide insights into 
player strategies and movements, enhancing the understanding of competitive badminton dynamics.

Third, the location of the wearable sensor presented limitations that prevented the collection of whole-body 
data on badminton strokes. The sensor was attached to a specific part of the body, which restricted data col-
lection to that particular area. As a result, we were unable to obtain a comprehensive understanding of the 
mechanics of badminton strokes across the entire body. For instance, the use of wearable sensors in this study 
was limited by the number of available sensors, and as a result, EMG sensors were only attached to the dominant 
arm and foot. Moreover, the discomfort associated with wearing multiple sensors can affect the accuracy of bad-
minton stroke data. This is a significant limitation of wearable sensors that needs to be addressed. In fact, some 
participants in the study reported various discomforts when wearing eye-tracking glasses and EMG armbands. 
They also reported slightly different experiences when sporting sensors during badminton motion than when 
not wearing any. Therefore, after collecting such data, it is essential to conduct additional research to reduce the 
number of sensors by analyzing the correlations between them.

Annotation Model

LTO Results 10-Fold Results

ACCavg (SD)
BalACCavg 
(SD) F1avg (SD) ACCavg (SD)

BalACCavg 
(SD) F1avg (SD)

Horizontaldrive

Transformer 68.88 (8.26) 22.46 (5.56) 57.71 (10.73) 73.99 (3.04) 37.70 (11.59) 70.93 (3.80)

ConvLSTM 39.74 (13.02) 24.81 (7.06) 39.57 (12.92) 56.21 (6.49) 41.96 (8.75) 58.36 (6.12)

LSTM 64.61 (6.13) 23.07 (8.38) 57.64 (9.62) 73.89 (2.16) 37.11 (6.03) 71.51 (2.95)

Baseline 69.82 (8.32) 22.33 (5.34) 57.67 (10.98) 70.19 (3.18) 23.00 (2.58) 57.93 (4.14)

Verticaldrive

Transformer 38.85 (11.60) 20.75 (5.91) 42.48 (11.32) 75.32 (2.19) 44.28 (2.58) 73.73 (1.95)

ConvLSTM 47.40 (19.98) 21.32 (4.47) 44.63 (19.47) 75.21 (2.08) 48.70 (5.48) 73.87 (2.01)

LSTM 42.95 (18.07) 23.02 (5.37) 44.02 (18.60) 75.82 (3.33) 48.35 (7.28) 74.93 (3.49)

Baseline 50.01 (15.09) 16.05 (1.82) 34.57 (16.63) 42.19 (2.40) 14.52 (0.75) 25.08 (2.45)

Hit Pointdrive

Transformer 99.15 (0.65) 50.00 (19.25) 98.73 (0.98) 99.06 (0.64) 53.33 (17.21) 98.59 (0.96)

ConvLSTM 89.36 (9.27) 44.17 (13.28) 93.40 (5.05) 89.31 (6.54) 54.67 (17.35) 93.43 (3.58)

LSTM 99.15 (0.65) 50.00 (19.25) 98.73 (0.98) 99.06 (0.60) 46.67 (7.03) 98.59 (0.89)

Baseline 99.15 (0.65) 50.00 (19.25) 98.73 (0.98) 99.06 (0.54) 51.67 (18.34) 98.59 (0.81)

Sounddrive

Transformer 60.01 (11.69) 39.17 (7.67) 57.37 (11.92) 90.08 (1.07) 59.58 (0.98) 89.63 (1.21)

ConvLSTM 62.40 (14.67) 43.71 (9.47) 59.79 (16.39) 83.45 (6.90) 58.37 (4.68) 83.57 (6.67)

LSTM 64.39 (10.74) 41.56 (9.43) 60.24 (12.89) 89.79 (1.68) 59.48 (1.19) 89.37 (1.68)

Baseline 59.27 (5.73) 35.00 (5.27) 44.26 (6.86) 65.74 (2.61) 35.00 (5.27) 52.17 (3.36)

Table 9.  Drive Classification Results; models with the highest performance in each metric are highlighted in bold.
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Fourth, the use of video-based annotation limits the accuracy of annotation data. We used three cameras to 
record participants from different angles during data collection. As it was difficult to record aspects such as the 
hitting sound, hitting point, and landing position during the data collection process, the annotations for Levels 
3, 4, and 5 were conducted after the data collection by three annotators. The inter-rater reliability was assessed 
to ensure the accuracy of the annotations. The inter-rater reliability value for Level 3 was relatively low owing to 
the subjective nature of the hitting sound. Moreover, even in the case of Levels 4 and 5, some annotations had 
missing values, or the agreement between annotators was low. To overcome these limitations, future research 
should focus on developing a system that can automatically detect ball trajectories and hit points. This would 
significantly improve the accuracy and reliability of annotation data and provide researchers with more compre-
hensive insights into the mechanics of badminton strokes.

Finally, our dataset focused on only two strokes, the forehand clear and backhand drive. Since our dataset’s 
objective was to assess the quality of badminton strokes across all skill levels, from beginners to experts, we 
concentrated on these two fundamental strokes. However, we recognize that focusing exclusively on these two 
strokes is a limitation. Moving forward, it is crucial to target players at intermediate levels and above, who are 
proficient in a broader range of advanced badminton techniques. Our future aim is to build a dataset for evaluat-
ing the quality of strokes involving more complex techniques such as hairpin, net shots, smashes, and drop shots, 
thereby expanding the scope and utility of our research in badminton stroke quality assessment.

Code availability
Software is available on GitHub and can be accessed via the following link. https://github.com/dailyminiii/
MultiSenseBadminton. This comprehensive software package includes examples for reading and parsing HDF5 
files, performing data preprocessing by extracting and filtering, and displaying the results. Additionally, it offers 
functionality for training a deep-learning model using the preprocessed data, generating a T-SNE plot based on 
the preprocessed data, and creating a visualization video based on the raw data presented in Fig. 13.
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