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ABSTRACT Inaccuracies in both measurements and parameter determination can generate biased results in
state estimation. The change in branch temperature precipitates fluctuations in resistance and branch flow
measurements. Even when flowmeasurements derived from remote terminal units are precise, the erroneous
resistance value can still render the estimation results inaccurate. In this paper, we propose a least absolute
value based, temperature-dependent, static state estimation method. The proposed method is formulated as
a linear programming, employing an L1 norm objective function and introducing a branch temperature with
the expanded Jacobian to consider thermal inertia. The proposed estimator not only estimates the state but
also estimates branch temperature along with the resistance. Therefore, our proposed method captures the
accurate system states robust against the parameter error and measurement error. Furthermore, the proposed
estimator can evaluate thermal inertia with higher accuracy compared to the existing method. The case
studies illustrate the robustness of the proposed method against parameter and measurement inaccuracies.
Additionally, it can estimate state and thermal inertia more effectively than the comparative estimator.

INDEX TERMS Branch temperature, least absolute value, power system state estimation, thermal inertia.

A. INDEXES
k index of bus k
ij index of line from bus i to bus j

B. PARAMETERS
e Measurement error vector
σ Standard deviation vector of measurement
E Covariance matrix of measurement
c Vector of ones
ε Residual threshold
γ Iteration threshold
z Measurement vector
Pij Measurement of active power flow at line ij
Qij Measurement of reactive power flow at line ij
Pk Measurement of active power injection at bus k
Qk Measurement of reactive power injection at bus

k
Rθ Thermal resistance
Xij Reactance at line ij
TRef ,ij Reference temperature at line ij

TF,ij Thermal constant at line ij

C. VARIABLES
x State vector
t Temperature vector
r Residual vector
Ht Jacobian matrix of measurement corresponding

to state
Ht Jacobian matrix of measurement corresponding

to temperature
∆z Linearized measurement vector
∆x Linearized state vector
∆t Linearized temeprature vector
N Iteration index
Tij Temperature at line ij
Vk Voltage magnitude at bus k
θk Phase angle at bus k
S Residual sensitivity matrix
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I. INTRODUCTION
The function of power systems state estimation (SE) primarily
lies in the consistent monitoring of system status. As the
adoption of renewable energy sources keeps on rising rapidly,
the importance of effectively monitoring power systems has
been accentuated. In light of this trend, accurately determin-
ing the status of power systems has become indispensable
for monitoring and control operations [1]. There have been
relentless endeavors to enhance the performance of power
systems state estimation. Notwithstanding these efforts, mea-
surement and parameter errors persist as formidable barriers
to accurate estimation. These errors often compromise the
ability to provide a reliable solution for state estimators,
leading to a challenging robustness problem [2].

In an attempt to mitigate this robustness issue, significant
strides have been made toward the development of robust
state estimators [3]–[5]. In [6], extended LAV (ELAV) which
is robust against measurement and parameter error was pro-
posed. In [7], ELAV which is robust against errors of con-
trol input for AC/DC grid is proposed. These algorithms are
grounded on the principles of weighted least squares (WLS)
and least absolute value (LAV). However, they provide a
relatively elementary approach to identifying and adjusting
outliers that amplify the value of the loss function. In [8],
[9], estimators based on maximum correntropy were pro-
posed which is robust against Gaussian noise and outliers.
In [10], a maximum likelihood estimator based on Maha-
lanobis distance calculates the optimal phasor measurement
units (PMU) buffer length. Nevertheless, these algorithms are
devoid of any physically based guidance.

Branch temperature has been identified as a signifi-
cant contributor to parameter error owing to its influence
on branch resistance. A temperature-dependent power flow
methodology that encompasses an estimation of branch tem-
peratures and resistances has been proposed [11], [12]. By in-
corporating the thermal inertia of the conductor, the resistance
can be rectified and consequently, more realistic power flow
outcomes can be realized. In response to this, temperature-
dependent weighted least squares (TDWLS) have been intro-
duced [13]–[15]. However, these methods are fundamentally
based on WLS, which inherently suffers from robustness
shortcomings; they have not been compared with other state
estimators. Given the inevitable presence of errors in mea-
surements and parameters, coupled with the nonlinear nature
of the system model, WLS estimators tend to minimize the
residual of bad data, meaning that estimated values are fit
to erroneous data. Consequently, the estimation outcomes of
WLS estimators might not represent the optimal solution [2].

Conversely, LAV serves as a robust state estimator that
rejects bad data by collecting measurements that have low
residuals. Utilizing this methodology, a robust state estimator
can be developed that uses sensibly corrected measurements,
even in scenarios characterized by low redundancy [3], [6].
Power systems comprise a significant number of measure-
ment errors and parameter errors. Over time, the precision
of transmission branch parameters tends to deteriorate [2].

The LAV state estimator includes partial data, which closely
approximate the truth values, in the base set. Employing these
data with the base set can facilitate the attainment of robust
estimation results.
In this paper, we propose a temperature-dependent least

absolute value (TDLAV) method, a variant of the LAV ap-
proach, to develop a robust temperature-dependent state esti-
mator. TDLAV takes into account thermal inertia by intro-
ducing a new variable, branch temperature, and expanding
the Jacobian. This physically-guided approach to thermal
inertia enables the estimation of not only the state but also the
branch temperature, which depends on branch resistance. By
factoring in branch temperature with an adjusted formulation,
robust state estimation results can be derived from the linear
programming (LP) solver. The contributions are outlined as
follows:

1) Proposing a LAV-based robust state estimation algo-
rithm to estimate the system state and branch temper-
ature simultaneously with the novel formulation when
the parameter error and measurement error exist.

2) The proposed state estimator displays resilience against
the parameter error induced by changes in branch tem-
perature. Furthermore, the L1 norm optimization of the
LAV-based estimator corrects sensible measurement
data and robustly estimates system states against the
parameter error and measurement error.

3) The proposed estimator effectively estimates the state
and thermal inertia of the branch. Compared to the
existing method, the proposed TDLAV state estimation
method demonstrates superior performance in estimat-
ing state and branch temperature.

The rest of this paper follows this structure: Section II
introduces the preliminaries for the proposedmethod. Section
III details the proposed TDLAV state estimation method. Sec-
tion IV presents case studies employing the proposedmethod.
Lastly, Section V concludes the paper.

II. PRELIMINARIES
A. CONVENTIONAL STATIC STATE ESTIMATION
Conventional state estimation algorithms seek to estimate
states that minimize the objective function. The most fre-
quently employed static state estimation techniques are WLS
and LAV. The nonlinear measurement equation is as follows:

z = h(x) + e, (1)

where x represents the state vector to be estimated, z denotes
the measurement vector, e is the measurement error vector,
and h(·) is the nonlinear function transforming x into z,
equivalent to the measurement function.

The objective function of the WLS state estimation is
defined as

min
x

J(x) = cT∥ 1

σ2
r∥22, (2)

where c is a vector of ones, r is a residual vector repre-
senting the difference of the measurement vector ∆z and the
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reconstructed measurement vector ∆ẑ = Hx∆x̂. The term
σ denotes the standard deviation vector of the measurement
error, whereas J(·) represents the objective function. Due to
the L2 norm property of the residual vector, the objective
function of the WLS state estimation is differentiable. Using
the calculated differential of the objective function ∂J/∂x, the
initialized states are iteratively updated with the update term
incorporating ∂J/∂x [16]. For Gaussian measurement errors,
WLS state estimation delivers highly accurate results.

However, regarding leverage errors, WLS SE tends to yield
biased results. Research into bad data detection and identifi-
cation methods, such as [17], [18], has been conducted to ad-
dress bias problems. Several robust SE techniques, including
LAV, have been proposed to mitigate these issues. The LAV
SEmethod can effectively identify a set of measurements less
affected by measurement errors with the residual constraint.
Consequently, it can exclude bad data and provide a robust
estimation that remains uninfluenced by such erroneous data.

The objective function of LAV SE is defined as

min cT∥r∥1

s.t. ∆z = Hx∆x + r , (3)

where r is the residual vector, Hx is the Jacobian matrix of
(1) and ∆x is the increment of state x used for updating.
The objective of LAV SE is to determine ∆x, which results
in the minimized residual vector r . The L1 norm, which is
not differentiable, is adopted for LAV SE. To minimize this
L1 norm objective function, LAV SE is formulated as a LP
problem. The formulation (3) is expressed as follows for
implementation.

min cT (r+ + r−)

s.t. ∆z = Hx∆x+ − Hx∆x− + r+ − r− (4)

∆x+,∆x−, r+, r− ≥ 0,

where the vectors r+, r−, ∆x+, and ∆x− are positive and
negative parts of the residual and state, as follows:

r = r+ − r− (5)

∆x = ∆x+ −∆x−, (6)

The difference of objective function between the WLS
estimator and the LAV estimator is described in Fig. 1. This
is the reason why the WLS and LAV estimators adopt the
Gauss-Newton method and LP method respectively. Through
the L1 norm objective function and residual constraint, the
LAV estimator, contrary to the WLS estimator, effectively
discards measurement error by correcting measurements with
the residual constraint and minimizing the sum of the residual
vector using LP solvers [6]. Also for the high residual as Fig.
1., the LAV estimator has a lower weight(derivative) than the
WLS estimator which does not overestimate the high residual
point and equally estimates the weight of residual. Hence, the
LAV state estimator is robust against measurement error.

FIGURE 1. Objective function of WLS and LAV

B. TEMPERATURE DEPENDENT RESISTANCE
Line temperature varies in response to power loss, whereas
resistance changes according to temperature. These variations
can be depicted with respective equations. The resistance of
metallic conductors, as outlined in [19], is given by

R = RRef ·
T + TF
TRef + TF

, (7)

where R represents the conductor resistance, T denotes the
conductor temperature, RRef is the conductor resistance at the
reference temperature, TRef represents the reference tempera-
ture, and TF is a temperature constant. The temperature con-
stant TF varies depending on the conductor metal: 234.5◦C
for copper and 228.1◦C for hard-drawn aluminum [19], [20].
Additionally, the thermal resistance Rθ, the ratio of steady-
state temperature rise to loss, is given by [20], defined as

TRise
PLoss

=
TRatedRise
PRatedLoss

= Rθ, (8)

where TRise indicates the device temperature rise above am-
bient temperature, PLoss(= I2R) represents the total loss
affecting temperature rise, TRefRise is the reference device tem-
perature rise, and RRefRise is the reference loss. By combining
equations (7) and (8), the generalized temperature model is
derived [11] as follows:

Tij = TAmb + Rθ,ij · PLoss,ij, (9)

PLoss,ij = Gij(V 2
i + V 2

j )− 2Gij · ViVj cos θij, (10)

where θij refers to the difference in phase angle between θi and
θj. Gij represents the conductance computed from resistance
and reactance. Consequently, according to (9) and (10), if
TF, TAmb and Rθ are provided, the branch temperature can
be calculated. The proportional relationship between power
loss and temperature is depicted in Fig. 2. This tempera-
ture rise leads to a change in branch resistance and conse-
quently causes deviations in the measurements from their
values before the temperature increase. The impedance of
a branch is sensitive to temperature fluctuations. Hence, the
influence of temperature variation on line impedance must be
taken into account. Consequently, the temperature-dependent
power flow was proposed in [11], which integrates line tem-
perature as a variable and computes the line temperature using
voltage magnitude and phase angle.

VOLUME 11, 2023 3

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3403154

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Yohan Park et al.: Least Absolute Value Based Temperature-Dependent Robust State Estimation

FIGURE 2. Conductor temperature according to power loss

C. LEVERAGE MEASUREMENT ERROR
The leverage measurement error is one of the main reasons
for the inaccuracy of state estimators. This leverage point
measurement can occur in situations such as below [2]:

1) A injection measurement point positioned at a bus that
connects to numerous branches.

2) A injection measurement point positioned at a bus
that connects to branches of significantly different
impedance.

3) A flow measurement along branches with impedances
significantly divergent from those of the others.

4) Using an exceedingly huge weight for a particular mea-
surement.

Shortly, leverage point measurements have much bigger
weights than the others. The non-interacting measurement er-
ror and the interacting measurement error are sort of leverage
measurement error [21], [22]. The updating term of the WLS
estimator is below:

∆x = (HTE−1H)−1HTE−1∆z

= G−1HTE−1∆z, (11)

where E is the covariance matrix of measurement and G =
HTE−1H . The residual sensitivity matrix is as follows:

S = (I − HG−1HTE−1), (12)

The residual sensitive matrix characterizes non-interacting
measurement error and interacting measurement error [23]. If
Sik ≈ 0, it is said to be non-interacting for measurements i and
k . In this case, the normalized residual test can identify the
erroneous data. If Sik is significantly large, the measurements
i and k are interacting. In contrast to the non-interacting error,
there are measurements in which the normalized residual
test fails: interacting conforming error. The measurement in
which the normalized residual test works is called interacting
non-conforming error.

III. PROPOSED METHOD
A. MEASUREMENT EQUATION
The estimation of states employs measurements assumed
to be acquired from remote terminal units, such as branch

active power flow Pij and branch reactive power flow Qij.
Additionally, the branch temperature mismatch Mij, a new
measure for power flow introduced in [11], is adopted for
the LAV state estimation. The branch temperature mismatch
Mij is a vector consisting solely of zeros; it is a defined,
not an acquired, measurement, thereby eliminating the need
for additional measurements. By minimizing the L1 norm
residual of the temperature mismatch Mij, the proposed es-
timator accurately estimates the initialized states x and t . The
temperature mismatch Mij converges to zero upon updating
the states. The measurement equation for each measurement
follows the approach presented in [11]:

Pij(V , θ, T ) = V 2
i − ViVjGij cos θij − ViVjBij sin θij, (13)

Qij(V , θ, T ) = −ViVjGij sin θij − V 2
i Bij

+ViVjBij cos θij, (14)

Mij(V , θ,T ) = Tij − (TAmb + Rθ,ij(Gij(V 2
i + V 2

j )

−2GijViVj cos θij)) = 0, (15)

whereGij and Bij are conductance and susceptance calculated
with the temperature-dependent resistance (7) as below:

Gij =
Rij

R2
ij + X2

ij
, (16)

Bij =
Xij

R2
ij + X2

ij
, (17)

where Xij is the branch reactance. The differential terms of
conductance and susceptance for constructing the Jacobian
matrix are as follows:

∂Rij
∂Tij

=
RRef ,ij

TRef ,ij + TF,ij
, (18)

∂Gij

∂Tij
=
X2
ij − R2

ij

R2
ij + X2

ij
·

RRef ,ij
TRef ,ij + TF,ij

, (19)

∂Bij
∂Tij

=
2XijRij
R2
ij + X2

ij
·

RRef ,ij
TRef ,ij + TF,ij

(20)

B. PROBLEM FORMULATION
For the estimation of temperature-dependent states, the TD-
LAV state estimation is formulated as follows:

min ∥r∥1 + ∥D∆t∥1
s.t. ∆z = Hx∆x + Ht∆t + r , (21)

where the state vector x comprises node phase angles θi
and node voltage magnitudes Vi. The newly introduced state
branch temperature t consists of Tij, which is a branch tem-
perature from node i to node j initialized by (9). Furthermore,
Ht = ∂H/∂t represents the Jacobian matrix corresponding to
temperature.

In [6], this scaling vector was adopted for scaling the
parameter vector which enables the estimation of differently
scaled variables. The TDLAV also incorporates the normaliz-
ing vectorD. The vectorD comprises elements di, where di is
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1 divided by the mean of the ith row of Ht . For the proposed
TDLAV, normalization is required because the branch tem-
perature values have different scales compared to the residu-
als. This normalization method is Lasso regularization which
is widely adopted to state estimation [24]–[26]. Through
Lasso regularization, the branch temperature can be estimated
adequately.

The proposed formulation is expressed as an LP problem:

min cT (r+ + r−) + DT (∆t+ +∆t−)

s.t. ∆z = Hx∆x+−Hx∆x−+Ht∆t+−Ht∆t−+ r+− r−

∆x+,∆x−,∆t+,∆t−, r+, r− ≥ 0,

(22)

where r and ∆x are the same as in (5) and (6). The newly
introduced variables∆t+ and ∆t− are defined as follows:

∆t = ∆t+ −∆t−, (23)

The Jacobian matrices Hx and Ht , which correspond to state
and temperature respectively, are defined as

Hx =

 ∂P/∂θ ∂P/∂V
∂Q/∂θ ∂Q/∂V
∂M/∂θ ∂M/∂V

 , (24)

Ht =

 ∂P/∂T
∂Q/∂T
∂M/∂T

 , (25)

C. SOLUTION STEPS
The proposed method estimates voltage magnitude, phase an-
gle, and branch temperature by incorporating updating terms
derived from the L1 norm state estimator in each iteration.
The resistance is updated with the estimated temperature
using the updated branch temperature obtained from (7) in
every iteration. The units adopted are per unit (p.u.) for the
voltage magnitude, with the voltage level of each bus serving
as the base, radians (rad.) for the phase angle, Celsius for the
branch temperature, and ohm for the resistance. The states
are initialized as ’’flat start’’ with voltage magnitude set as
1.0 p.u. and voltage phase angle as 0 for all buses. The
temperature is initialized as 25◦C for all lines. The solution
steps for TDLAV are described in Algorithm 1.

IV. CASE STUDIES
For the assessment of the proposed method, we implemented
TDLAV using the Python programming language; it was
simulated on the 33-node test feeder and 118-node test feeder.
The proposed TDLAV is compared with the WLS, LAV,
weighted least absolute value (WLAV), iteratively reweighted
least squares(IRLS), and TDWLS methods. The estimator
WLAV and IRLS are the reformulated state estimators from
the LAV that are weighted with the measurement vector and
residual vector respectively [27], [28]. These estimators are
robust against the measurement error. For the measurements,
active power flow Pij, reactive power flow Qij, active power

Algorithm 1 TDLAV
1: Data : measurement z ∋ {Pij,Qij,Pk ,Qk}
2: Results : state x ∋ {Vk , θk}, temperature t ∋ {Tij}
3: Initialize state x, temperature t;
4: while max r > ε ∧ N < γ do
5: Compute the linearized measurement vector;
6: ∆z← z− h(x)
7: Compute Hx ,Ht ;
8: Solve the LP problem by (22) and derive ∆x,∆t, r ;
9: Update state and temperature;
10: x ← x +∆x
11: t ← t +∆t
12: Update line resistance by (7);
13: Report x, t and line resistance;

injection Pk , and reactive power injection Qk are used to
estimate system state voltage magnitude Vk , voltage phase
angle θk and branch temperature Tij. In the case of a 33-node
test feeder, the numbers of each measurement and estimating
variables are 32, 32, 33, 33, 33, 33, and 32 concerning Pij,Qij,
Pk ,Qk ,Vk , θk , and Tij. In the case of a 118-node test feeder, the
numbers of each measurement and estimating variables are
173, 173, 118, 118, 118, 118, and 173 concerning Pij, Qij, Pk ,
Qk , Vk , θk , and Tij. Consequently, for the 33-node test feeder,
the redundancy, the ratio of the measurement and estimating
variables, is 1.32 for the TDWLS and TDLAV and 1.96 for
the other estimators. In the meanwhile, for the 118-node test
feeder, the redundancy is 1.42 for the TDWLS and TDLAV
and 2.46 for the other estimators.
The proposed TDLAV is assessed under three scenarios:

1) the presence of Gaussian measurement noise along with
changes in branch temperature and resistance; 2) the inclusion
of Gaussianmeasurement noise and interacting leveragemea-
surement error along with changes in branch temperature and
resistance; 3) the inclusion of Gaussian measurement noise
and non-interacting leverage measurement error along with
changes in branch temperature and resistance. The Gaussian
measurement noise is assumed as zero mean and is intro-
duced within the 5% limit. The interacting leverage errors are
imposed on randomly sampled measurements, amounting to
up to 25%. The non-interacting leverage errors are imposed
on randomly sampled measurements, missing the value and
remaining zero. The branch temperature change is set as
a rise of from 0◦C to 10◦C for all branches. For rational
analysis, 1000 simulations were performed and compared for
each scenario. In each simulation, themeasurement errors and
temperature variations are randomly imposed. The voltage
estimation results of each estimator are compared with a
target, which is the power flow result computed with the
correct resistance and non-erroneous measurements should
be estimated by each algorithm.
The accuracy of estimated values is evaluated as the mean

absolute error (MAE) for the voltage magnitude, voltage
phase angle, branch resistance, and branch temperature, for-
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mulated as follows:

MAE =
1

n

n∑
i=1

|xi − x̂i|, (26)

where n denotes the number of values, xi the actual value, and
x̂i the estimated value. Additionally, another equation total
vector error (TVE) is employed to assess the phasor voltage
without separating it into magnitude and phase angle, defined
as follows:

TVE =

√
(Re(X)− Re(X̂))2 + (Im(X)− Im(X̂))2

Re(X)2 + Im(X)2
, (27)

where X represents the complex actual value, X̂ represents
the complex estimated value, Re(·) denotes the real part, and
Im(·) represents the imaginary part. The TVE is appropriate
for phasor value evaluation by considering the amplitude and
phase differences together [29].

The assumptions, for the implementation of TDLAV, are as
below:

1) Target test feeders are balanced networks
2) Thermal constant TF,ij is equivalent for all lines as

228.1 ◦C (copper)
3) Inducing Gaussian measurement error within 5% limit

for all measurements
4) For leverage measurement error scenarios, leverage er-

ror occurs for 10% of the total measurements

A. SCENARIO 1: GAUSSIAN NOISE AND TEMPERATURE
CHANGE
In Scenario 1, the performance of the SE algorithms is evalu-
ated under a branch temperature increase of from 0◦C to 10◦C
along with the resistance and the measurements containing
Gaussian noise. This scenario encounters common random
errors in measurement devices during regular operations. For
the 33 test feeder, the estimated voltage magnitude, voltage
phase angle, and branch temperature are depicted in Fig. 3,
Fig. 4, and Table 1. The results of a single simulation for
node voltages and temperatures were depicted in Fig. 3a, Fig.
3b, and Fig. 4a. The MAE distribution results of the whole
simulation are depicted in Fig. 3c, Fig. 3d, Fig. 4b, and Fig.
4c. In table 1, the average TVE and MAE of each algorithm’s
estimation result are described. The results indicate that the
proposed TDLAV displays the lowest error for the estimated
voltage, temperature, and resistance among the algorithms in
the case of the 33 test feeder. In the meanwhile, the TDWLS
shows the highest error for TVE of voltage estimation, MAE
of temperature estimation, andMAE of resistance estimation.

For the 118 test feeder, the estimated voltage magnitude,
voltage phase angle, and branch temperature are depicted in
Fig. 5, Fig. 6, and Table 2. Unlike the 33 test feeder, the volt-
age magnitude estimation MAE of TDLAV was higher than
LAV,WLAV, and IRLS. However, in terms of the phase angle
estimation MAE, TDLAV shows the lowest error among the
estimators. Therefore, the TDLAV has the lowest TVE, rep-
resenting the error of phasor voltage. Also, like the 33-node

(a) (b)

(c) (d)

FIGURE 3. Scenario 1: 33-node test feeder. (a) voltage magnitudes, (b)
phase angles, (c) MAE distribution of voltage magnitudes, (d) MAE
distribution of phase angles.

(a)

(b) (c)

FIGURE 4. Scenario 1: 33-node test feeder. (a) branch temperature, (b)
MAE distribution of branch temperature, (c) MAE distribution of
resistance.

test feeder, the TDLAV shows lower MAE about temperature
estimation results. In contrast to the TDLAV estimator, the
TDWLS estimator has the second-highest error for voltage
estimation and the higher error for temperature and resistance
estimation.
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(a) (b)

(c) (d)

FIGURE 5. Scenario 1: 118-node test feeder. (a) voltage magnitudes, (b)
phase angles, (c) MAE distribution of voltage magnitudes, (d) MAE
distribution of phase angles.

(a)

(b) (c)

FIGURE 6. Scenario 1: 118-node test feeder. (a) branch temperature, (b)
MAE distribution of branch temperature, (c) MAE distribution of
resistance.

B. SCENARIO 2: GAUSSIAN NOISE, TEMPERATURE
CHANGE, AND INTERACTING LEVERAGE ERROR
In Scenario 2, the performance of the SE algorithms is eval-
uated under Gaussian measurement noise, branch temper-
ature increase from 0◦C to 10◦C, and interacting leverage
error. The interacting leverage error is imposed within 25%

TABLE 1. Estimation Performances for Scenario 1 : 33-node test feeder

Method TVE MAE
Ṽ V (p.u.) θ(rad.) T (◦C) R(Ω)

WLS 0.001032 0.000728 0.000530 - -

LAV 0.001032 0.000728 0.000530 - -

WLAV 0.001032 0.000728 0.000530 - -

IRLS 0.001032 0.000728 0.000530 - -

TDWLS 0.002635 0.001138 0.002132 0.874343 0.001134

TDLAV 0.000548 0.000343 0.000337 0.200964 0.000518

TABLE 2. Estimation Performances for Scenario 1 : 118-node test feeder

Method TVE MAE
Ṽ V (p.u.) θ(rad.) T (◦C) R(Ω)

WLS 0.346099 0.136645 0.344348 - -

LAV 0.169553 0.020217 0.169585 - -

WLAV 0.169227 0.020466 0.169271 - -

IRLS 0.169144 0.019869 0.169150 - -

TDWLS 0.335435 0.152609 0.325569 1.819309 0.297398

TDLAV 0.155450 0.030824 0.153086 0.497642 0.023998

for the randomly sampled 10% injection measurement and
10% flow measurement. This scenario encounters notable
outliers within the set of measurements. These exceptional
values simulate instances of equipment malfunction or data
manipulation. The estimation results for the 33 test feeder are
presented in Fig. 7, Fig. 8, and Table 3. The simulation results
of node voltages and temperatures for a single case were
depicted in Fig. 7a, Fig. 7b, and Fig. 8a. TheMAEdistribution
results for whole cases are depicted in Fig. 7c, Fig. 7d, Fig. 8b,
and Fig. 8c. The TDLAV shows the lowest TVE andMAE for
the voltage estimation among the estimators. Also, the MAE
for the temperature and resistance was lower than TDWLS.
Compared to scenario 1, due to the interacting leverage error,
the overall estimation error was higher.
For the 118 test feeder, estimation results are depicted in

Fig. 9, Fig. 10, and Table 4. The TDLAV estimator shows
the lowest TVE for phasor voltage estimation. It’s due to the
lowest MAE of phase angle estimation, even though it has
a higher MAE for the voltage magnitude estimation. In the
meantime, the TDWLS estimator has the second-highest TVE
for the phasor voltage estimation beside the WLS estimator.
The proposed TDLAV estimator significantly surpasses the
other algorithms in terms of the TVE for the phasor voltage
and MAE for temperature and resistance. The discrepancy
in performance arises from the difference in the accuracy
of branch temperature estimation, with TDWLS showing a
lesser degree of accuracy than TDLAV which demonstrates
a lower average MAE. The proposed TDLAV not only esti-
mates the branch temperature more accurately but also more
precisely determines the voltage estimation by incorporating
Jacobian terms differentiated for branch temperature, which
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(a) (b)

(c) (d)

FIGURE 7. Scenario 2: 33-node test feeder. (a) voltage magnitudes, (b)
phase angles, (c) MAE distribution of voltage magnitudes, (d) MAE
distribution of phase angles.

(a)

(b) (c)

FIGURE 8. Scenario 2: 33-node test feeder. (a) branch temperature, (b)
MAE distribution of branch temperature, (c) MAE distribution of
resistance.

minimizes temperature mismatch.

C. SCENARIO 3: GAUSSIAN NOISE, TEMPERATURE
CHANGE, AND NON-INTERACTING LEVERAGE ERROR
In Scenario 3, the estimation results are evaluated under
Gaussian measurement noise, non-interacting measurement
error, and branch temperature change. The branch tempera-

(a) (b)

(c) (d)

FIGURE 9. Scenario 2: 118-node test feeder. (a) voltage magnitudes, (b)
phase angles, (c) MAE distribution of voltage magnitudes, (d) MAE
distribution of phase angles.

(a)

(b) (c)

FIGURE 10. Scenario 2: 118-node test feeder. (a) branch temperature, (b)
MAE distribution of branch temperature, (c) MAE distribution of
resistance.

ture increases from 0◦C to 10◦C for all branches. The non-
interacting measurement error is assumed to be zero value.
This scenario reflects the cyber attack and malfunction of
the equipment. These values cause highly biased estimation
results. By replacing the value as zero, the weight becomes
huge which causes the off-diagonal values of the residual
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TABLE 3. Estimation Performances for Scenario 2 : 33-node test feeder

Method TVE MAE
Ṽ V (p.u.) θ(rad.) T (◦C) R(Ω)

WLS 0.001144 0.000804 0.000574 - -

LAV 0.001144 0.000804 0.000574 - -

WLAV 0.001144 0.000804 0.000574 - -

IRLS 0.001144 0.000804 0.000574 - -

TDWLS 0.003066 0.001177 0.001614 1.115052 0.001547

TDLAV 0.001102 0.000889 0.000343 0.358698 0.000894

TABLE 4. Estimation Performances for Scenario 2 : 118-node test feeder

Method TVE MAE
Ṽ V (p.u.) θ(rad.) T (◦C) R(Ω)

WLS 0.346752 0.137500 0.344903 - -

LAV 0.170122 0.021871 0.170089 - -

WLAV 0.170472 0.022568 0.170387 - -

IRLS 0.170122 0.021871 0.170089 - -

TDWLS 0.337326 0.154001 0.327496 3.398266 0.313847

TDLAV 0.155464 0.033995 0.152318 0.619079 0.025694

sensitivity matrix to be zero. The simulation results for the
33 test feeder are depicted in Fig. 11, Fig. 12, and Table
5. The comparative benchmarks are the same as those used
in Scenario 1. and Scenario 2. Also, the results of a single
simulation are depicted in Fig. 11a, Fig. 11b, and Fig. 12a.
MAE distribution results for whole simulations are depicted
in Fig. 11c, Fig. 11d, Fig. 12b, and Fig. 12c.

For the 33 test feeder, the TDLAV estimator shows the
lowest error for all criteria such as TVE of phasor voltage,
MAE of voltage magnitude, MAE of phase angle, MAE of
temperature, and MAE of resistance. In the meanwhile, the
TDWLS estimator shows the highest error for TVE of phasor
voltage,MAE of temperature, andMAE of resistance. It’s due
to a non-interacting measurement error which causes the non-
diagonal components of the residual sensitivity matrix to be
zero. This error induces more biased estimation results than
the other scenarios. For the 118 test feeder, the TDLAV shows
the lowest error for the TVE of phasor voltage, MAE of phase
angle, MAE of temperature, and MAE of resistance as shown
in Fig. 13, Fig. 14, and Table. 14b. The TDWLS shows the
second-highest error for the TVE of phasor voltage, MAE
of temperature, and MAE of resistance. It also happened
that non-interacting measurements caused biased estimation
results. Compared to the 33 test feeder case, the redundancy
is relatively high which helps the TDWLS estimator show
lower error. In Scenario 3, the lack of robustness problem was
most clearly described for the WLS estimator and TDWLS
estimator.

For all scenarios, the proposed TDLAV estimator demon-
strates superior performance over the other algorithms in
terms of TVE for the phasor voltage, MAE for temperature,

(a) (b)

(c) (d)

FIGURE 11. Scenario 3: 33-node test feeder. (a) voltage magnitudes, (b)
phase angles, (c) MAE distribution of voltage magnitudes, (d) MAE
distribution of phase angles.

(a)

(b) (c)

FIGURE 12. Scenario 3: 33-node test feeder. (a) branch temperature, (c)
MAE distribution of branch temperature, (d) MAE distribution of
resistance.

and MAE for resistance. Among the algorithms, TDLAV not
only exhibits superior accuracy in branch temperature and
resistance estimation but also estimates precise node voltage
estimation. In the case of TDWLS, the branch temperature
presents a higher error, which aligns with the findings of
all scenarios. The superiority for overall estimation results
demonstrated by the L1 norm-based TDLAV can be attributed
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(a) (b)

(c) (d)

FIGURE 13. Scenario 3: 118-node test feeder. (a) voltage magnitudes, (b)
phase angles, (c) MAE distribution of voltage magnitudes, (d) MAE
distribution of phase angles.

(a)

(b) (c)

FIGURE 14. Scenario 3: 118-node test feeder. (a) branch temperature, (b)
MAE distribution of branch temperature, (c) MAE distribution of
resistance.

to the LP problem solver’s robustness by sensible measure-
ments correcting [6]. In contrast, TDWLS demonstrates the
estimation results that are fit to erroneous measurements and
parameters without sensible selection of given data. Fur-
thermore, the TDLAV estimator shows the lowest TVE for
phasor voltage for all scenarios. This means the TDLAV has

TABLE 5. Estimation Performances for Scenario 3 : 33-node test feeder

Method TVE MAE
Ṽ V (p.u.) θ(rad.) T (◦C) R(Ω)

WLS 0.038949 0.035331 0.003834 - -

LAV 0.006234 0.005588 0.001027 - -

WLAV 0.006234 0.005588 0.001027 - -

IRLS 0.006234 0.005588 0.001027 - -

TDWLS 0.112002 0.013655 0.008111 327.403161 0.874247

TDLAV 0.005681 0.005114 0.000891 0.661708 0.001744

TABLE 6. Estimation Performances for Scenario 3 : 118-node test feeder

Method TVE MAE
Ṽ V (p.u.) θ(rad.) T (◦C) R(Ω)

WLS 0.346633 0.136554 0.345028 - -

LAV 0.172314 0.033334 0.169736 - -

WLAV 0.171754 0.034335 0.169057 - -

IRLS 0.172314 0.033334 0.169736 - -

TDWLS 0.335628 0.152463 0.325945 7.955575 0.293881

TDLAV 0.158859 0.054105 0.145531 0.714185 0.031325

superior performance even compared to conventional robust
state estimators like WLAV and IRLS.
Hence, the proposed TDLAV exhibits higher accuracy and

robustness than conventional SE algorithms. The simulation
results for each of the three scenarios, involving Gaussian
noise, interacting leverage error, non-interacting leverage er-
ror, and temperature change, consistently indicate superior
performance by the proposed approach over the traditional
WLS, LAV, WLAV, IRLS, and TDWLS in terms of static
state estimation. The major distinction from TDWLS is that
TDLAV has the ability to correct measurements, providing
accurate estimation results with a sensible set. This property
enables TDLAV to produce more robust estimation results,
whereas the comparative estimator TDWLS, which mini-
mizes residuals for all measurements, generates biased val-
ues.
A dilemma, lack of robustness which WLS-based state

estimators suffer, causes the inaccuracy of the TDWLS esti-
mator. The error in measurements induces biased estimation
results. In this regard, similar to the WLS estimator, the
TDWLS estimator has a high estimation error. Furthermore,
the TDWLS and TDLAV have lower redundancy (1.32 for the
33 test feeder and 1.42 for the 118 test feeder) than the other
estimators (1.96 for the 33 test feeder and 2.46 for the 118
test feeder) because the estimating variables are expanded to
temperature. According to [30], the variance of estimations
can increase when redundancy decreases. Due to this lack
of robustness and low redundancy, for the 33 test feeder,
the TDWLS not only has the biggest error but also has the
biggest variance of MAE in terms of voltage, temperature,
and resistance in Scenario 1 and Scenario 2. In Scenario 3
with non-interacting leverage error, even though the TDWLS
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has a lower variance than the WLS, it still exhibits a higher
variance of MAE than the other estimators. However, for the
118 test feeder, the TDLAV has a higher variance of MAE
in terms of voltage estimation in Scenario 1 and Scenario 2
as the redundancy of each estimator increases. Nevertheless,
the TDLAV has the lowest average TVE of voltage estima-
tion for all scenarios and test feeders by correcting sensible
measurements with the residual constraint from the given
measurement set [6].

For better estimator development, the thermal constant,
which is assumed in this paper, should be rationally deter-
mined. The thermal constant can be identified with data-
driven methods like [31], [32]. Identification of thermal con-
stant dynamics will lead to the enhancement of thermal inertia
assessment. Another issue, for the breakthrough, is measuring
the temperature. The proposed method estimates state and
temperature with the flow and injection measurement cor-
related to temperature. However, temperature measurements
are required for advanced research and assessment. Temper-
ature measurements can be collected through a Fiber Bragg
Grating sensor likewise [33], [34]. Also, by thermal image,
line temperature can be collected [35].

V. CONCLUSION
In this study, we proposed a LAV based temperature-
dependent robust state estimation methodology. The formula-
tion of LAV was extended to create TDLAV, which includes
branch temperature. TDLAV takes into account changes in
branch temperature in conjunction with resistance and flow
measurements. The results estimated by TDLAV show re-
duced errors in comparison to other estimators. The proposed
method offers enhanced levels of observability and more ac-
curate systemmodels by conducting robust estimation against
measurement and parameter errors due to temperature vari-
ation. This research lays the groundwork for SE and opens
avenues for extension into various systems. Future work can
involve assessing thermal dynamics, different topologies, and
actual systems.
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