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ABSTRACT: We study the pole-skipping phenomenon within holographic axion theories, a
common framework for studying strongly coupled systems with chemical potential (x) and
momentum relaxation (f). Considering the backreaction characterized by p and 3, we
encounter coupled equations of motion for the metric, gauge, and axion field, which are
classified into spin-0, spin-1, and spin-2 channels. Employing gauge-invariant variables, we
systematically address these equations and explore pole-skipping points within each sector
using the near-horizon method. Our analysis reveals two classes of pole-skipping points:
reqular and singular pole-skipping points in which the latter is identified when standard linear
differential equations exhibit singularity. Notably, pole-skipping points in the lower-half plane
are regular, while those elsewhere are singular. This suggests that the pole-skipping point in
the spin-0 channel, associated with quantum chaos, corresponds to a singular pole-skipping
point. Additionally, we observe that the pole-skipping momentum, if purely real or imaginary
for p = f = 0, retains this characteristic for p # 0 and 8 # 0.
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1 Introduction

The holographic correspondence [1-4], also known as holography or AdS/CFT correspondence,
has become instrumental in the study of strongly interacting many-body quantum systems
through the lens of retarded Green’s functions [5-9], which characterize the system’s near-
equilibrium behavior. In particular, in recent years, studies in the framework of AdS/CFT
correspondence have revealed a remarkable and universal property associated with Green’s
functions of holographic systems, known as pole-skipping [10-12].

Pole-skipping is a phenomenon that takes place when the dual boundary Green’s function
in the complex momentum space (w, k) becomes ill-defined or multi-valued at a special point
(wx, ky), called pole-skipping point. Within the context of holography, the pole-skipping
phenomenon can be elucidated by studying the equations of motion of bulk fields in the
vicinity of black hole horizons, as the dual Green’s functions are linked to bulk fluctuations.

Following standard holographic techniques (e.g. [13]), Green’s functions are determined by
solving the bulk equations of motion in complex Fourier space and imposing specific boundary
conditions at the AdS boundary and black hole horizon. Since the equations of motion
are typically second-order differential equations, two linearly independent solutions arise,
which can be taken as satisfying ingoing and outgoing boundary conditions at the horizon.
Generally, imposing ingoing boundary conditions uniquely specifies (up to an overall factor)
the solution and corresponding boundary Green’s function. However, at the pole-skipping
point (wy, ks ), imposing ingoing boundary conditions is no longer sufficient to guarantee the
uniqueness of the solution because both solutions become ingoing at the horizon, rendering
Green’s function non-uniquely defined [10, 12, 14-16]. The non-uniqueness of the ingoing
bulk solution at the horizon offers a straightforward method for identifying pole-skipping
points [12, 15], termed the near-horizon method.



The phenomenon of pole-skipping was initially discovered in the study of the many-body
quantum chaos within the framework of holography [10-12]. Within this context, the pole-
skipping point of the energy density Green’s function is associated with both the Lyapunov
exponent (A7) and butterfly velocity (vg), which characterize the behavior of out-of-time-
ordered correlators (OTOCs).! Therefore, the pole-skipping phenomenon can in principle
provide an approach to directly extract quantum chaos properties (A, vp) from the energy
density Green’s two-point function, without the need for computing OTOCs. Because of its
connection to quantum chaos, the pole-skipping phenomenon has been extensively investigated
from both physical and mathematical perspectives in various scenarios [12, 14-16, 18-49].
The exemplary of its implications include, for example, a universal bound on transport
coefficients (such as diffusivity) in many-body systems [12, 32, 35, 46], and the reconstruction
and constraints of collective excitations (i.e., quasi-normal modes) [25, 42, 46]. Early studies
of pole-skipping phenomena from the point of view of the boundary theory include pioneering
works in SYK chains [23] and two-dimensional CFTs with large central charges [24, 50].

In this work, we systematically investigate the pole-skipping phenomenon in a five-
dimensional Einstein-Maxwell theory coupled with massless scalar fields (‘axions’). Specifically,
we focus on analyzing the linear axion model proposed in [51], which offers a holographic?
framework for studying strongly coupled systems at finite chemical potential and in the
presence of momentum relaxation. This model is particularly appealing due to its closed-form
analytical background featuring broken translational symmetry.® It has yielded noteworthy
and celebrated outcomes in applied holography, especially in the investigation of anomalous
transport properties and collective dynamics of strongly coupled phases [12, 32, 46, 55-78].
Quantum information applications can also be explored in [79-85]. Furthermore, the model re-
cently finds application in the AdS/Deep learning correspondence in [86]. For an in-depth and
up-to-date review of the linear-axion model and an extensive list of references, we refer to [52].

Below, we provide additional motivations for investigating pole-skipping in linear axion
models, along with an explanation of our choice of model.

Backreaction effects of the gauge and axion fields. In the linear axion model, [51], the
parameters § and p control the backreaction of the axion and gauge field on the geometry,
respectively. § serves as the momentum relaxation parameter, while u acts as the chemical
potential in the dual boundary theory. When p # 0 or g # 0, only a limited number of
pole-skipping points, such as the leading pole-skipping point in the spin-0 channel, have been
thoroughly investigated in previous literature, e.g., [12, 26, 32, 35]. Our work represents the
first comprehensive examination considering both finite i and 3, offering a more complete
analysis of the pole-skipping phenomenon in linear axion models.

Regarding the prospective physical implications. Furthermore, the effects of 8 and
are significant in physical applications related to pole-skipping. Particularly, 8 plays a crucial

!Pole-skipping has also been theoretically established as a universal prediction within the framework of an
effective field theory for maximally chaotic systems [11, 17].

2For recent developments regarding pole-skipping phenomena in non-holographic systems or non-black hole
backgrounds, see [33, 40, 44].

3The linear-axion model’s symmetry-breaking pattern can be manipulated by adjusting the asymptotic
boundary condition of the scalar field [52]. For a similar analysis involving vector fields to explore the dynamic
electromagnetism in the dual boundary field theory, refer to [53, 54].



role in the context of the gravitational sound mode within the spin-0 channel, as highlighted
in previous works [12, 32, 35, 46]. In this context, the celebrated universal lower bound of
the diffusion constant in holography [87, 88] can be understood through the pole-skipping
phenomena, particularly in the regime of strong momentum relaxation.* Therefore, it becomes
imperative to examine the role of momentum relaxation (along with finite charge) across
all possible channels, spanning from spin-0 to spin-2 sectors.’

Near-horizon analysis in terms of gauge-invariant variables. The finite backreaction
of the gauge and axion field on the geometry introduces technical difficulties in the analysis of
bulk fluctuations, which are absent when 5 = u = 0. For instance, a finite charge couples the
gauge field fluctuations with the metric field fluctuations, demanding a more sophisticated
approach. For such a case, the use of gauge-invariant variables becomes useful (and sometimes
indispensable), particularly when investigating collective excitations (i.e., poles of Green’s
functions). In this work, we introduce a comprehensive methodology for the determination
of pole-skipping points using gauge-invariant variables.

It is worth noting that a prior study [26] investigated pole-skipping in a similar model.
However, they only considered the chemical potential effect without momentum relaxation.
Additionally, their examination focused on identifying the leading pole-skipping point in the
spin-0 channel and did not involve using gauge-invariant variables. Consequently, our work
can also be regarded as an exhaustive extension of [26], encompassing all possible channels
and accounting for the presence of momentum relaxation.

This paper is organized as follows. In section 2, we provide the equations of motion
governing bulk fluctuations across all channels in the presence of backreaction from the
gauge and axion field. These equations are derived in terms of gauge-invariant variables.
In section 3, we apply a near-horizon analysis to the aforementioned equations of motion
to determine the pole-skipping points. Section 4 is devoted to conclusions. In appendix A,
for completeness, we discuss additional singular cases which in general do not lead to the
appearance of pole-skipping points. In appendix B, we give the explicit form of some auxiliary
functions that were used to write the equations of motion in section 2.

2 Background geometry and equations of motion

2.1 Background equations of motion

We consider the linear axion model proposed in [51] in (4 + 1) dimensions,% namely
12 1 1
— | Pav= _ = 2__F? 2.1
s= [dav=g (R o O - ), (2.1)

where y; denotes massless scalar fields (axions), and F' = dA is the electromagnetic tensor.

4This universal bound has been extensively explored and discussed in literature, see, e.g., [58-61, 65, 89-103].

°It is also worth noting that pure Schwarzschild black geometries without backreaction of matter fields may
not always be suitable for understanding many-body systems in holography. A notable example can be found in
the study of holographic superfluids [104, 105], where it becomes evident that the probe limit analysis sometimes
lacks consistency with the scenario involving backreaction, especially far from the critical temperature.

5To perform a systematic analysis of the pole-skipping phenomenon, including fluctuations in the spin-0,
spin-1, and spin-2 channels, we consider a model in (4+1) bulk dimensions. Note that the spin-2 channel of
metric fluctuations is absent in lower dimensional models.



The action (2.1) admits asympt(otically AdS solutions in which L defines the AdS length
scale. From now on, we set L = 1 without loss of generality. Working in coordinates in
which the AdS boundary is located at r — oo, the authors of [51] show that the model (2.1)
admits solutions in which the metric takes the form

dr?
r2f(r)

ds? = —r2f(r)dt® + + r?da?, (2.2)

while the axion fields y; and gauge field A are given by
X1 = Borax®, A= A(r)de, (2.3)

where a labels the coordinates % = (z,vy, z), and I is an internal index that labels the axion
fields, namely x; = (X Xy, X2)-

Background solution. Plugging (2.2) and (2.3) in the equations of motion resulting
from (2.1), one finds

2 2 2 2,2 2
f(r)z( —T;L> (14—:}2‘—5,2—1—/;7?), At(r):ﬂ< —:Z) (2.4)

where 1y, is the horizon radius, while § and p are interpreted as momentum relaxation

parameter and chemical potential of the system in the dual boundary description. The
Hawking temperature is given by

T =_r_ 7 _ ) 2.5
47 s 8mry, 67y, (2:5)
For later convenience, we introduce the re-scaled horizon radius 7} as follows
_ rno 1 1 B2 Q2
:: —_— = — —_— e - 2'
L e TR (2:6)

as well as the re-scaled momentum relaxation parameter 3 = 3/(27T) and chemical potential
i = u/@rT).

Eddington-Finkelstein coordinates. To compute the retarded Green’s function Ggo
holographically, one needs to consider fluctuations of the correspondent bulk field v satisfying
ingoing boundary conditions at the horizon and study the near boundary behavior of 1. To find
the ingoing fluctuations, it is convenient to use the ingoing Eddington-Finkelstein coordinates

1
=t + 71y, dry = ———dr, 2.7
v +r r 2R r (2.7)

in terms of which the metric (2.2) becomes
ds? = —r?f(r)dv? + 2dvdr 4 r2dz? . (2.8)

In these coordinates, imposing ingoing boundary condition at the horizon guarantees that
the solutions are regular.



2.2 Equations of motion for the fluctuations

We consider fluctuations of the metric, gauge, and axion field and write them in terms of
plane waves propagating along the z-direction

OGuw = 5gﬂy(r)e_i(w“_kz) , 04, = 5Au(7")e_i(w”_kz) . OxI = 5X1(r)e_i(w”_kz) . (2.9

After selecting fluctuations propagating in the z-direction, the remaining world-volume
symmetry group is O(2). We can then use this group to categorize the fluctuations based
on their symmetry properties. In the radial gauge, we find:

Spin-0 channel: (0Guus 0Guzs 00,2, 8, 0 Ay, 0A,, 0X,),
Spin-1 channel: (0Gpes 0905 0Aas 0X4) s (2.10)
Spin-2 channel: 09ap — 5&5% ,

where g := >, 0gaa, and a = x, y. For each spin channel, we find gauge-invariant variables

and the corresponding coupled equations of motion following the method described in [26].

2.2.1 Spin-0 channel

For the spin-0 channel, the gauge-invariant variables are found as

w 2 CL)Q
ZZ(T) = rig <2k59vz + 691)1) L2 5gzz - (]{32 - f( ) - 77’f ( )) )

0A, wiIA, pug
E.(r) = r? k r? TP (2-11)

O, (r) =2kox, + :Tg (6gzz — g) .

[N l=]

2

In terms of these variables, the equations of motion can be written in terms of three coupled
differential equations:

5 rif —2iw 20 4k2rd By
A e 2 2 h 2,2 Z/
=t (7“ + r2f Hy B e "Hy B H3Hs
1 (P 3w 2in§ k'f?  p’Bs+ 3°By 7
7“4 T2H2 3H2 H2H3 i
Bg B 38
— | BsE, — B;®!, — ) =0
+H3<5 2 f >+k2H3<7 2 f ’
3 r’f —2iw Hj 4k%r} k2 k2 fCy
E// = Sy 71 2 h 202 E 212
Z+<r+ 2 f m s T (2:12)
(1 k% +irw _iwHp u2Cy B u2B2Cs >
f rd r2H, H Hg H H3Hg )~ °
Cs up ( Cr7 )
CiZ+ —=Z Ce®!, + =P 0
T Hs ( 12Ty ) R2Hy \ 00 T g ’
5  r2f — 2w k2 + 5% + 3irw
il e > s
z + (T + T2f ) z 7"4f 07



where the primes denote derivatives with respect to r. Auxiliary functions H,, B,, and C,
(n=1,2,3,--+) are functions of r. Among them, H,, are particularly important because
they determine the singularity structure of pole-skipping points, so we show their expressions
in appendix B. However, we do not display the explicit expressions of B,, and C,, because
they are too complicated and not very illuminating.

2.2.2 Spin-1 channel

For the spin-1 channel, the gauge-invariant variables are found as

1 w
Za(T’) = ﬁ (591)04 + 5gza> ’

k
Aq
E,(r)= 0 5 (2.13)
Th
20920
Dy (r) = kox, + 8 ,

2
r
where a = x, y. In terms of these variables, the equations of motion can be written in terms
of three coupled differential equations:

5 r2f' —2w H) 1 (kK2 + 32+ 3irw  iwH?
Z+ Sy L=z = - )z
+ (r + r2f H7> Cf ( rd r2Hy @

2,4 , —iw  w? f
B+ o2+ 2L B,
T ( - <T2f H7 f

+p2i (%’ - i”%) =0,
T

k Hr 2f
3 r2f — 2w 1 (K2 +irw  4pPriw?
FO/A A Ml I /R W) g (2.14)
O‘+<r+ r2f ) @ f( r4 + r8Hy “
2(k* + 5°

r3Hy rf

w 21 , w

15 s (%= 7% ) =0,

o (5 r2f’—2iw> ¥ k2+ﬁ2+3irw@a:0’

r + r2f rif
where the function H7 is written in appendix B.
2.2.3 Spin-2 channel

For the spin-2 channel, the gauge-invariant variables are written based only on metric
fluctuations as

1 g
Zap(r) = 3 <5ga5 - 5a52) ; (2.15)

where «, § denote transverse spatial coordinates such as x, y. In terms of these variables,
one finds the following decoupled equation of motion:

5  r2f — 2w
zgﬁ+<T+f ) o

rf (2.16)
1 (k2482 +3irw  12(f—1) 8&f ., 1 o277 '
_f< v + ) +T+f +Bﬁ—,ur78 Zaﬁ—o.



3 Pole-skipping in linear axion models

The pole-skipping points can be found by solving the equations of motion in the near-horizon
region following the so-called near-horizon method [12, 15]. In this section, we carefully show
how to apply the near-horizon method to compute pole-skipping points in the presence of a
non-trivial backreaction of axion and gauge fields on the geometry. As shown in section 2,
the main effect of such backreaction is to couple the equations of motion in each sector. We
also compute pole-skipping points considering singular cases.

3.1 Near-horizon method with gauge-invariant variables

Pole-skipping points are special values of w and k at which there is more than one solution
to the equations of motion satisfying ingoing boundary conditions at the horizon. To find
ingoing solutions that are regular around the black hole horizon, we employ the Frobenius
method and write the gauge-invariant variables Z, E, ® as follows:

Z = ZZ (r—mrpn)", E = ZE (r—rn)", ¢:Z‘I>(i)(7"—7"h)i. (3.1)
=0 '

Substituting these expansions into the coupled equations of motion (2.12) or (2.14), each
equation takes the following near-horizon form:

Sz—ZS T—Th :0,
SE—ZS T—Th :0, (3.2)
S@—ZS r—rh :O7

where Sy, denotes a second order differential equation containing a ¢” term, with ¢ = Z, E,

and ®. The coeflicients Sg) are computed as

Sy = = (M1 20+ My B+ My30©) + (i 1) 20},
S,(El) =— (M21Z(0)+M22E(0)+M23‘IJ(0)—i—(i@—l)E(l)) ,
8y = (M2 + (iw—1)0),

S(Zn) =-n ( : '+M(3n72)(3n72)¢(n71) +M(3n72)(3n71)E(n71) +M(3n72)3n¢(n71) + (i@—”)Z(n)) ;
Sy =-n ( s M1y @n-2)0" D+ Mign_1)@n-1) B+ Mg, 13,8V +(ia;—n)E(”)),
890 =~ (-4 Mg @ 4 (i) () (3:3)



The ansatz (3.1) solves the equations of motion if all the coefficients Sf; ) appearing in (3.3)
vanish. This condition can be written as follows:

Mq1 My Mig 1w — 1 7(0)
M1 Mgy Moag i —1 | EO®
M3 iw—1 )
MU = | Moy Myg Maz Mag Mas Myg 1w — 2 ZW| Z 0, (3.4)
Ms1 Msa Ms3 Msy  Mss  Msg iw—2 | | ED
Mgs Meg w—2 o)

where & = w/(27T), k = k/(2nT), and M;; is generally a function of & and k. In general,
k), all the coefficients {Z®), E() ®®} are determined by the free

at non-special points (w,
) (0)}, and the solutions are unique up to an overall factor. However,

parameters {Z(0), E©) &
there are special points (wy, l?;*) at which additional free parameters appear, and the solutions
are no longer unique. These special points are called pole-skipping points, and they are
distinguished into two types: regular pole-skipping points and singular pole-skipping points.
The regular(singular) pole-skipping point is defined as a pole-skipping point of which equations
of motion are regular(ill-defined) near the horizon. Therefore, some of the matrix components
M;; in (3.4) can be singular at the singular pole-skipping points while M;; is regular at
the regular pole-skipping points.
The way to identify the regular pole-skipping points is the following;:

i@* =N, det(./\/ln)](@*,,;*) = 07 (35)

where n is a natural number and M,, a square matrix which is taken from the matrix M
in (3.4) up to the 3n-th column. Note that the pole-skipping frequencies take the same value
as the imaginary Matsubara frequencies w, = —i27Tn [15, 31].

The singular pole-skipping point can be analyzed after parameterizing the way to

approach the singular point (w,, ky) by s as follows:

. ow

((Da k) = (@*7 ]2*) + 6(5“—}7 51;)) S = Ea (36)
where € is infinitesimal. Expanding the matrix M as
~ YRRV

M ~ ;M )(edk)!, (3.7)

we find the additional conditions, such as M®W = 0 for [ < 0. Examining all the relations
between coefficient {Z(*), E(®) &)} with an additional free parameter s, the point (wy, ky)
can be determined whether it is a pole-skipping point or not.

3.2 Results
3.2.1 Spin-0 channel

Regular cases. Using the ansatz (3.1), the equations of motion (2.12) take the form (3.2),
and the matrix equation MW = 0 corresponding to near-horizon solutions of (2.12) can



be obtained. The full tower of pole-skipping points can then be computed by using the
condition (3.5). For simplicity, we consider (3.5) for the n = 1, in which case the pole-skipping
frequency is given by iw, = 1, and the determinant in (3.5) is given by

det (M), 1)~ (4/2;3+24fh+32—4,12) {576122—48 (727:,%—2162+4ﬁ2) it
+4 (633617;11—4877,21 (5752—52;12) +243B4—592ﬁ4—120/§2,12) K2 (3.8)

-3 (24@%—3,32—4,12)2 (24fﬁ—762+44g2) } .

The equation det(M1)], 7,) = 0 has eight solutions because det(Mi)|, 7,) is a polynomial
of 8th order in k,. This implies that there are eight pole-skipping points at iw, = 1. Since
the exact solutions for any value of i and 3 are exceedingly long and intricate, we compute
the pole-skipping points for small values of 3 with z = 0, or for small values of i with 8 = 0:

Effect of 3:
— 67 o — 157+ O0(B8Y), (Striped Red)
P2 _ 27 o+ 18° + O(BY), (Yellow)
Hlamo ) 2 (14 2iv2) g + 4 (<1 +iv2) B2+ O(BY),  (Green)
2 (1 - 21\/§> F,Qlyo +1 (—1 — zﬂ) B%+0(B*), (Striped Blue)

(3.9)
Effect of f:

- 6?%’0 — 2+ 0(i%), (Striped Red)
27 o + 3% + O(it) (Yellow)
(
(

=0 | 2(142iv2) i3 g+ 4 (-1 4 7iv2) i + O(i*),  (Green)
2 (1 - 21\/§> 77}21,0 + % (—1 - 71\/5) @2+ O(p*), (Striped Blue)

where 7,9 = 1/2 denotes the black hole radius given in (2.6) with 3 = i = 0. The real
and imaginary parts of the pole-skipping momentum squared k? are also shown in figure 1.
Additionally, taking 8 = i = 0 in (3.9), we recover the results of [15, 16],” namely:

Z’(JT}* — 1 .
— 677}2170 from the axion field , (3.10)
k2 = 2?,2%0 from the gauge field (scalar mode),
2 (1 + 22\/§> 7:}2170 from the metric field (sound mode) .

Furthermore, we observed that if the condition Im[k2] = 0 is satisfied for 3 = i = 0,
then it remains satisfied for any values of 8 and ji. In other words, if the pole-skipping
momentum k, is either purely real or purely imaginary for 5 = i = 0, then it remains purely
real or purely imaginary for any values of 8 and Ji: e.g., see the Yellow (and Striped Red)

"The results for the sound mode in (3.10) correspond to a higher-dimensional generalization of the
corresponding results obtained in [15].



= =
B
Re[k?]
(a) (b)

Figure 1. (a) Re[k?] and (b) Im[k2], corresponding to solutions of the eq. (3.8), as a function of
$ and fi. The different color patterns (Stripped Red, Yellow, Green, Stripped Blue) correspond to
the solutions in eq. (3.9). The black dots correspond to the pole-skipping points in the absence
of momentum relaxation () and chemical potential (i), 3 = it = 0. Both the pure real (Yellow;
Re[k2] > 0, Im[k2] = 0) and pure imaginary (Stripped Red; Re[k2?] < 0, Im[k2] = 0) pole-skipping
momentums at § = fi = 0 remain to be real, Im[k2] = 0, at finite § and fi.

plane in the right panel of figure 1. All the other pole-skipping points computed in this
manuscript also have this property.

So far, we have computed only the leading pole-skipping points, obtained by solving (3.5)
for n = 1. A substantial set of subleading pole-skipping points can be computed by solv-
ing (3.5) for larger values of n. Nevertheless, we find that this approach proves inadequate
in apprehending a specific class of pole-skipping points, which we term as singular pole-
skipping points of gauge-invariant variables. This limitation arises because the components
M;; in (3.4) take the form®

1 1 1
My x — = s Mg o< —, My o< =,
w (367307 — k2 (2473 — 352 — 47%)) w k2
: . . (3.11)
MQlO( ) M220(57 MQ?)“?:

w (367302 — k2 (2473 — 357 — 4p?))

which diverges for some specific values of @ and k. When M;; diverges as 1/, we first expand
the matrix M in powers of €, namely, M ~ >, M®el then we find additional pole-skipping
points using the relation M®W = 0 for I < 0, instead of the relation M¥ = 0 in (3.4). Note
that it is imperative to investigate this singular case not only as because its omission results

8For all matrix components M;;, the denominator takes three possible forms:

@, k¥, or w(36rw’ — k* (247, — 38° — 45%)).

,10,



in the exclusion of a substantial subset of pole-skipping points, but also to obtain a better
understanding of the implications of the pole-skipping phenomenon.

Singular case. The components Mj; and Mo in (3.11) diverge under the condition:”
36r7e? — k7 (2477 =387 —4p®) =0, @ #0, kA0 (3.12)

Using (3.6), we expand the matrix M in (3.7) with a function k2(w?) satisfying the con-
dition (3.12):

e -
M _ MY MY M iy — 1 B
Mz~ |2 (idy + 1) (edk) 14|20 . + O(edk)
33 wwy, — 1
(3.13)

where the coefficients Mz(jl
tions, such as MEDY = 0. By using these relations, all the coeflicients {Zg), Egi), q),(zi)}
in (3.1) are determined in terms of seven parameters {Zgo), Ego), cpgo), z0. E£1)7 (I)gl)7 s},

However, (3.13) also gives four constraints involving the same parameters, which means

) depend on w, and s. This allows us to find additional condi-

three of these coefficients can be taken as free parameters. This implies that the gauge
invariant variables Z,, FE, and ®, are uniquely determined, up to an overall factor. However,
at i, = —1, one constraint is lost, and all the coefficients are determined by four free
parameters, that can be taken as'” Zgo), Ego) , @,(ZO), and Zz(l). This implies that the solution
is no longer unique, and the point in question is a pole-skipping point of the spin-0 sector.
Finally, using (3.12), the pole-skipping momentum at iw, = —1 can be written as

_ 3 _
k2 = —677 + 152 + i, (3.15)

where taking 3 = ji = 0, it recovers the result of [12]:
i, =—1, k? = =67 from the metric field (sound mode) . (3.16)

It has been proposed that the leading pole-skipping point in the spin-0 channel is related
to the Lyapunov exponent and butterfly velocity as follows [10, 11]

Wy = A, k2=-"L (3.17)

9The other singular cases of the spin-0 channel are analyzed in appendix A.1. These cases do not give any
additional pole-skipping points, for finite chemical potential and momentum relaxation.
10The coefficient Z{" can be written in terms of Z§0)7 ES’), and ®:

1
5 (67’*2/2 - 7?«,3) s — 437, +3V3

ArTTn 377,% s—+/3

B
24m2T273

zZM = 70 _ 2L po) LI (3.14)
Th

but it also depends on the slope s, which is a free parameter. That implies that Zﬁl) can be taken as a
free parameter.
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where the Lyapunov exponent and butterfly velocity associated with the action (2.1) are
given by [26]:

A =21T, %=

(3.18)
Using (2.5), we checked that this relation is still satisfied in the presence of p and S.

3.2.2 Spin-1 channel

Regular case. The analysis for the spin-1 channel is similar to the analysis for the spin-
0 channel. We first expand the equations (2.14) into the near-horizon region, obtaining
equations of the form (3.2). Then we find the matrix equation MV = 0 as in (3.4). The
pole-skipping points for n = 1 can then be obtained from the determinant in (3.5) which is

det(M1)| g, 1) ~ (452 + 2477 + 37 — 47%) {4811:11 — 8 (247} — 937 — 4i?)

(3.19)
— (2477 - 382 — 4 (247} — T3 + 4472%) } .
Therefore, the pole-skipping points for iw, = 1 take the form
ky = w2 — 2 - (3.20)
R T 3\/9 (473 — B2)" + 3 (5677 — 5B2) > — 320"
For small values of 5 and [, these pole-skipping points take the form
Effect of j:
o 162, (Red)
k; PR N 272 + 152+ O(BY), (Yellow)
67 — 187+ O(BY), (Green) @a21)
3.21
Effect of j:
— 677 + 2, (Red)
7.2 _ _ _
Kelaso =) — 2~ S+ 0, (Yellow)
677 +21% + O(i?). (Green)

The behavior of k% as a function of 3 and fi is shown in figure 2. At 3 = i = 0, our results
are consistent with the previous literature in [15, 16],'' namely:

Z.(IJ* = 1 :
. — 6?,2170 from the axion field (3.22)
kf = — 27?%’0 from the gauge field (vector mode),
677 ¢ from the metric field (shear mode) .

" The pole-skipping points for the metric field (shear mode) in (3.22) are consistent with the one from a
higher-dimensional generalization of [15].
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]_62

Figure 2. Solutions of the eq. (3.20) in terms of k2. The different colors (Red, Yellow, Green)
correspond to the solution in eq. (3.21). The black points represent the pole-skipping points in the
absence of momentum relaxation () and chemical potential (), 3 = i = 0. In this figure, all the
solutions k2 are real for finite 5 and ji, implying that both the pure real (Green; k2 > 0) and pure
imaginary (Red, Yellow; k2 < 0) pole-skipping momentums k? at f = i = 0 remain to be real,
Im[k2] = 0, at finite 3 and fi.

Using the same approach explained above, the remaining pole-skipping points corresponding
to higher values n can be computed. However, as in the previous case, it is important to note
that there exists pole-skipping points that cannot be found by this method due to singularity
issues. This is primarily due to the denominators in the components M;; of (3.4), such as

1 1 1
M11 X —, M13 X =, M21 X —, M23 X y (323)
w k w

| =

which diverges for @ = 0 and/or for k = 0. Now we proceed to consider these singular cases
following the same approach we used in the last section.

Singular case. The components M1, and Ma; in (3.23) diverge when:!?
w=0, k#O0. (3.24)

Let us denote the point satisfying (3.24) as (s, ky). Using (3.6) to compute M in a point
infinitesimally close to (@y, k«), we obtain:

_ 0 0 0
o -
[V A B B MY A0 A 1 -
M~ | T2 (k3+52) (esk) L4 |20 T + O(ebk)
33 -1
(3.25)

12We also examine other singular cases for the spin-1 channel. These are analyzed in appendix A.2. However,
these singular cases do not give rise to any additional pole-skipping points.
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where M;; depends on k* and s In general, all coefficients {Za EC(y , (I>(Z } can be deter-

mined by seven parameters, {Z, ©) EC(Y ), @& ), Z& ), Eé ), CD& , s}, which are subjected to four
constraints. Therefore, all the coefﬁcnents can be determined by three free parameters, and
the gauge invariant quantities Z,, F, and ®, are uniquely determined up to an overall
constant. However, at k, = +i/3, we loose one constraln and the coefﬁments are determined
by four free parameters, which can be taken as {Za ), E((XO), <I>( ) , and Z } implying that
the solutions are no longer unique, so that we find the pole—sklpplng as

(@, ky) = (0, £if3). (3.26)

One intriguing remark for (3.26) is in order. The leading pole-skipping point (3.26) seems
to be a new pole-skipping phenomenon emerging at finite 3, distinct from the (@, k) = (0,0)
pole-skipping point reported in [15, 16, 106].'® Tts nature and origin can be grasped from
one of the equations within (3.25):

7. 12 | 32 = 3
W _ (ke KABY o) g, B o)
A (ﬂrstjL yr 20+ B0+ o T 3 —0. (3.27)

Upon setting 8 = 0, it is evident that @&O) uncouples from other fields as it should.'* However,
the imposition of k, = +if, the pole-skipping condition, alters this scenario, as illustrated
by the persistence of coupling in the last term of (3.27): ® &) remains coupled with other
fields even at 8 = 0. Consequently, k, = +i( stands as a reliable condition solely for finite

cases.'® As such, our newly identified pole-skipping point (3.26) manifests only at finite .16

3.2.3 Spin-2 channel

In this case, the equations of motion are decoupled (2.16), and we can obtain them in the
matrix form following the procedure outline in [15]. We obtain

70
My iwm—1 0 0 S
. My My ic—2 0 - ngﬁ)
MZ,5 = My Msy Mss io—3 a:g% =0. (3.29)
) Z o3
The pole-skipping points (@y, k,) satisfy the condition:
i@, =n,  det(My)| =0, (3.30)

((.:)*,k*)

3Refer to appendix A.1 for a further discussion on the (0,0) case.

HRecall that when 8 = 0, the axion fluctuation (®) function as the probe field and thus remain independent
of other fields.

15At ky, = i, (3.27) simplifies to:

e) B Lo 2# ©) ©)
7 =¥ STZ E 1422T2q> , (3.28)

where one can notice that (3.26) corresponds to a pole-skipping point, as the free parameter s appears in (3.28).
6We may change the way to approach the pole-skipping points in (3.6), which may affect this conclusion.
We leave this issue as a future work.
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where n is a natural number, and M,, represents a square matrix obtained from the matrix
M in (3.29) up to the n-th column. For n = 1, the determinant in (3.30) reads

det(/\hl)] ) ~ 4k 4+ 2472 + B2 — 42 . (3.31)
Wy yKx
Therefore, the pole-skipping points for iw, = 1 are given by

B2 — _gi2 B

*——Th—z+/i7 (3.32)

which, at § = i = 0, reproduce the result of [16]:

i, =1, P —677,2%0 from the metric field (tensor mode) . (3.33)

The matrix elements of M do not diverge for any values of @ and k. Therefore, unlike the
spin-0 and spin-1 sectors, there are no singular pole-skipping points for the spin-2 sector.

4 Conclusion

In this work, we studied the pole-skipping phenomenon in holographic axion theories in five
dimensions, which is the typical class of holographic framework for studying strongly coupled
systems at finite chemical potential (1) and momentum relaxation ().

It is worth noting that prior studies primarily employed the near-horizon method to
identify pole-skipping points within relatively simple backgrounds (e.g., u = 0 and/or 5 = 0),
featuring equations of motion of moderate complexity. This study expands upon the near-
horizon method to address coupled equations of motion when u # 0 and/or 5 # 0.

At the linear response level, bulk fluctuations in the metric, gauge, and axion field can be
classified into three distinct sectors corresponding to spin-0, spin-1, and spin-2 channels. In
addition, the inclusion of backreaction in holographic axion theories, characterized by finite
1 and B, results in coupled equations of motion. Consequently, all fluctuations of metric,
gauge, and axion fields become mutually coupled within their respective channels.

To systematically address coupled equations of motion, we employ gauge-invariant
variables and investigate pole-skipping points within each sector. Specifically, we utilize the
near-horizon method, as introduced in [12, 15], where solutions to the fluctuation equations are
sought in the vicinity of the horizon, adhering to ingoing boundary conditions at the horizon.
The identification of non-unique solutions serves as a criterion for finding pole-skipping points.

We show that within the framework of gauge-invariant variables, pole-skipping points
can be further characterized into two classes: regular (i.e., conventional) pole-skipping points
and singular pole-skipping points. Regular (singular) pole-skipping point is defined as a pole-
skipping point whose equations of motion for gauge-invariant variables are regular (singular
or ill-defined).!” Especially, we observe that all pole-skipping points in the lower-half plane
(i, > 0) are identified as regular pole-skipping points.

"In principle, one could use a standard pole-skipping analysis, without employing gauge-invariant fields,
which does not require such classification. However, doing so becomes quite cumbersome in the presence
of complicated coupled equations of motion, which appear quite often in the presence of matter fields that
backreact on the geometry. We anticipate that our methodology of employing gauge-invariant fields and
classifying pole-skipping points as regular or singular will be significant in more general scenarios involving
matter fields backreacting on the geometry.
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It is also worth mentioning that within the spin-0 and spin-1 channels, the leading
pole-skipping points are singular pole-skipping points.'® They are not located in the lower-

half plane:
(—|— i, — 67 +33%+ ,ﬂ2) = (i, —1/v%) (spin-0 channel) ,
(@, kD) ding = ( 0, —p5%) (spin-1 channel) ,
( —i, — 67 — %52 + /12) (spin-2 channel),
(4.1)

where @, = w,/\r and k, = k./\z: see also (3.18). This implies that the pole-skipping
point associated with quantum chaos, as indicated by the Lyapunov exponent (Ar) and
butterfly velocity (vg), corresponds to a singular pole-skipping points.'® In the spin-2 channel,
the leading pole-skipping points are regular pole-skipping points. These are located in the
lower-half plane. Compared to the previous research we also found the new sub-leading
pole-skipping points.

Two remarks are in order. First, we for the first time extended the methodology of the
near-horizon analysis involving only one equation to coupled equations built from gauge-
invariant variables. Furthermore, we developed the near-horizon analysis for the singular
pole-skipping points. These generalizations of the methodology will be useful for a more
complete analysis and various physical situations. Second, as the effect of u and 3, we observe
that if the pole-skipping momentum k, is purely real or imaginary for § = i = 0, it maintains
this property for any values of 5 and fi. See for instance figures 1 and 2. All pole-skipping
points identified in this study exhibit this attribute. Exploration of these phenomena and
their physical implications merits further investigation in the future.
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A Other singular cases

This appendix considers all the other possible singular cases from eq. (3.11) and eq. (3.23).
For finite p and 3, the following singular cases do not lead to additional pole-skipping points.

A.1 Spin-0 channel

Case I. The components Myy, Mg, M3, May, Moo, and Mas in (3.11) diverge when:

©=0, k=0. (A1)

Using (3.6), we expand the matrix M in (3.7) around (A.1), obtaining:

- - 0 0
R
LM M _ - Ms7" M. -1 _
M ~ 2rp, 11 2rp 13 ,8(65]{)_1 + 21 22 Még) L +O(E(5l€) ’
(A.2)

where M;; is a function of s. This leads to additional conditions, such as MEDY = 0,
similarly to eq. (3.13). All the coefficients {Z,gi), Egi), ‘I’éi)} in (3.1) are determined by three
free parameters, implying that the solutions are unique and the point in question is not
a pole-skipping point.

When the momentum relaxation § vanishes, the leading order term M1 in (A.2)

becomes zero. Then, all the series coefficients {Zgi), Egi), Q),(Zi)} are determined by four free

parameters, that can be taken as Zgo), éo), @,(ZO), and Zgl), implying that the solutions are

not unique, and the point (&, k) = (0, 0) is a pole-skipping point. Note that the Z,gl) is a

free parameter because it depends on the slope s defined in (3.6):

S0 2(EH3F) o) 4 (A.3)
mrp T (B2 + 77 (952 —6)) " ° T C

At f = i = 0, this pole-skipping point recovers the results obtained in [15, 16, 106]:
(@, ki) = (0, 0) from the metric field (sound mode) . (A4)

Note, however, that this singular case is not associated with the scalar mode of the gauge
field fluctuations computed at 3 = i = 0 in [15, 16]:

(@y, ki) = (0, 0) from the gauge field (scalar mode), (A.5)

because our method can not capture pole-skipping point (A.5).
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Case II. The components M3 and Mas in (3.11) diverge when:

k=0, w#0. (A.6)

Using (3.6), we expand the matrix M in (3.7) around a point of the form (A.6), obtaining
MG MY M9 MY iw,—1

N B e B [ MY M MO e o1 |TOwH),

| (A.7)

where the matrix components M;; depend on w, and s. This gives rise to additional conditions
such as M(=2W = 0 and MDT = 0. All the coefficients in (3.1) are determined by three
free parameters because it is impossible to decrease the number of constraints by setting
a specific value to w,. Therefore, the corresponding solutions are unique and there are no
pole-skipping points of the form given in (A.6).

Case III. The components Mij, Mg, My, and My in (3.11) diverge when:

0=0, k#0. (A.8)
Using (3.6), we expand the matrix M in (3.7) around a point of the form (A.8), obtaining:
MY MY MY My -
M~ B B, (edk) ™" + MY A o +O(edk)
M ~1
: (A.9)
where B = —% — %, and the matrix components M;; depend on k, and s. All the coeflicients

in (3.1) are determined by three free parameters because it is impossible to decrease the
number of constraints by setting in a specific value at k,. Therefore, the solutions are unique,
and there are no pole-skipping point of the form given in (A.8).

A.2 Spin-1 channel

Case I. The components My, M3, Ma1, and Mg in (3.23) diverge when:

©=0, k=0. (A.10)
Using (3.6), we expand M in (3.7) around (A.10), obtaining:
My Y My Mg
M MY Még ) ... ()1 + Moy, o -1 » O(eH)
' (A.11)

where the matrix components M;; depend on s. All the coeflicients {Zc(f), E(()f), ol )} in (3.1)
are determined by three free parameters, implying that the solutions are unique, and (&, l_f) =
(0, 0) is not a pole-skipping point of this sector.
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Case II. The components M3 and Mas in (3.23) diverge when:

k=0, w#0. (A.12)
Using (3.6), we expand the M in (3.7) around a point of the form (A.12), obtaining:
Mj5 " My My i, -1
MGy L MY M iw, — 1 _
M =~ B(edk)™ + MO i 1 + O(edk) .
(A.13)

where the matrix components M;; depend on s. All the coefficients in (3.1) are determined
by three free parameters because it is impossible to decrease the number of constraints by
setting in a specific value for w,. Therefore, the solutions are unique and the points of the
form (A.12) are not pole-skipping points.

B Auxiliary functions H,

Here we give the explicit expressions of the functions H, used to write the equations of
motion in section 2.2. The denominators H,, appearing in (2.12) and (2.14) are defined as

Hy = w? — K f(r),
Ho = =’ - é“?“f’(r) +E(=f () + Fw?,
18!t

Hy = — { — 144K5r "2 £ (r)® — 12k f(r)Q(k4(48r6 — 61" — 8u’ry) + k*(12r°(65°
h

— Tw?) — 9844 — 108527«%2) — f(r) (k6(—247'6 + 3821 + 4p®r})? — 96k1r0w? (2476
— 3821 — 4pPrd) + 36K%r50w (18 (60w? — 245%) + 384 + 48%uPr}) + 1296527“12w4>
+ <k‘2w(24r6 — 3821 — 4pPr}) — 36r6w3>2} ,

Hy = r{4k4r2f(7‘) + k4 <8r2 — B2> — 122202 + 12B2r2w2}{16k47‘4f(r)2 — 4r2f(7’)
x <3,62 + 2k2> <k2(62 —8r%) + 127-%2) + (k2(8r2 i 12r2w2>2} ,

Hs = r%{r(uﬂ - ka(r)> (4k4r2f(r) + k(812 — %) — 12k%r%w? + 12B2r2w2> (16k47’4f(r)2
—4r?f(r)(36% + 2k2) (K2 (B2 — 872) + 12r°w?) + (K*(8r% — %) — 12r2w2)2)
x < — 12k%0 f(r) + K*(—24r° + 35%* + 4p’r}y) 4 36k%r0w® — 36527"%2) } :

Hg = r%{3k2r7f(r) + k2 (6r7 — u%r%) — 9r7w2} ,

Hy = — f){ 3+ ] (B.1)

where the emblackening factor f(r) is defined as (2.4).
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