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Abstract

Climate conditions and emissions are among the primary influences on seasonal variations in air
quality. Consequently, skillful climate forecasts can greatly enhance the predictability of air quality
seasonal forecasts. In this study, we propose a dynamical-statistical method for seasonal forecasting
of particulate matter (PM,) concentrations in South Korea in winter using climate forecasts from
the Asian Pacific Climate Center (APCC) multi-model ensemble (MME). We identified potential
climate predictors that potentially affect the wintertime air quality variability in South Korea in the

global domain. From these potential climate predictors, those that can be forecasted skillfully by
APCC MME were utilized to establish a multiple-linear regression model to predict the winter
PM, concentration in South Korea. As a result of evaluating the forecast skill through
retrospective forecasts for the past 25 winters (1995/96-2019/20), this model showed statistically
significant forecast skill at a lead time of a month to a season. The skill of PM;, forecast from the
MME was overall better than that from a single model. We also found that it is possible to improve
forecast skills through optimal MME combinations.

1. Introduction

Air pollution caused by rapid industrialization,
increased fossil fuel use, and pollutant transport is
one of the most serious social problems in East Asian
countries. Since fine particles, in particular, have a
direct impact on human health, social costs for redu-
cing them continue to increase. Since 2019, South
Korea has been implementing a particulate matter
(PM;) seasonal management policy, which enforces
emission reduction in industry, power generation,
transportation, and daily life during periods of expec-
ted or occurring high-concentration events (Ministry
of Environment 2020). Therefore, a seasonal forecast
of PMq several weeks to a month or more in advance
is required to ensure sufficient time for early response
to high-concentration events.

© 2024 The Author(s). Published by IOP Publishing Ltd

Air quality is affected by pollutant emissions and
their interaction with weather and climate conditions.
Predicting these emissions is complex, but numer-
ical models can be used to predict how atmospheric
pollutants will stagnate, deposit, diffuse, and disperse
due to weather conditions. Chemistry transport mod-
els (CTMs), a numerical modeling technique, have
been widely used for short-term air quality forecasts
ranging from a few days to a week (Kukkonen et al
2012, Baklanov et al 2014, Sokhi et al 2022). For
example, the Goddard Earth observing system com-
position forecast (GEOS-CF) based on the GEOS-
Chem chemical model provides global 5 day fore-
casts of air quality (Keller et al 2021). Similarly, the
Copernicus Atmospheric Monitoring Service (CAM;
Peuch et al (2022) provides a 4 day forecast for PM
for Europe.
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Long-term forecasts such as several weeks or a
month in advance are approached mostly through
statistical methods based on statistical relationships
between weather/climate conditions and air quality.
Previous studies suggested that seasonal PM beha-
vior in northeast Asia is sensitive to the air quality-
climate relationship. The East Asian winter mon-
soon (Jeong and Park 2017), blocking and synop-
tic weather patterns (Lee et al 2020, Ku et al 2021),
large-scale atmospheric circulation associated with
El Nino (Jeong et al 2021), aerosol transport from
the Tibetan Plateau (Li ef al 2020a), and the remote
influence of the Madden-Julian Oscillation (Jung et al
2022), are known to affect winter PM; variability in
East Asia and the Korean Peninsula. Inspired by these
studies, Jeong et al (2021) developed a linear regres-
sion model to forecast the winter PM in South Korea
based on the statistical relationship between East
Asian PM and climate factors. Forecast skill showed a
correlation of 0.8 with the target PM concentration.
Jeong et al (2022) recently developed a dynamical-
statistical model linking PM;, concentration and cli-
mate variables from a climate forecast model, show-
ing a correlation of 0.4 with observed PM,. A stat-
istical model for seasonal forecasting of U.S. sum-
mer ozone concentrations utilized spring climate pat-
terns (Shen and Mickley 2017) achieved a correlation
of 0.67.

In recent decades, skillful climate forecasts on a
monthly or seasonal time scale have become pos-
sible to some extent through advances in climate
modeling techniques, increased observational data
including satellites, and data assimilation technolo-
gies (Mariotti ef al 2018, Smith ef al 2019). In partic-
ular, the Asia-Pacific Economic Cooperation Climate
Center (APCC) multi-model ensemble (MME) (Min
etal2017), the observing system research and predict-
ability experiment (THORPEX) Interactive Grand
Global Ensemble (Swinbank et al 2016), and the
North American MME (Kirtman et al 2014) have
recently improved climate forecast skill through the
MME technique. Based on this notable improvement
in seasonal climate forecast, this study attempts to
apply the MME climate forecast to forecasting the
winter PMg in South Korea. We developed a multiple
linear regression (MLR) model that uses climate vari-
ables from the APCC MME climate forecast as climate
predictors. Section 2 describes the structure of the
dynamical-statistical method. Section 3 presents the
empirical relationship between observed winter PM;,
concentration and climate variables, the forecast skill
of the model, and the optimization of the model.
Section 4 summarizes the main results and discusses
the potential utilization of the model and further
studies.

] Choi et al

2. Methods

2.1. Dynamical-statistical model

In this study, we developed a dynamical-statistical
hybrid model (hybrid model hereafter) to forecast
the winter (December to February) PM;, concentra-
tion in South Korea. The winter average PM, is pre-
dicted with data produced in October, which is a 2
month lead-time prediction from a climate forecast-
ing perspective. The hybrid model is based basically
on an MLR model between PM;, in South Korea and
climate variables. More specifically, among the cli-
mate variables, only variables that can be predicted in
APCC MME’s seasonal climate forecast and are phys-
ically influential on PM,, are used as climate predict-
ors (i.e. independent variables) of the MLR. Unlike
conventional statistical models based on a lagged
relationship between predictor and predictand, the
hybrid model is constructed based on their simultan-
eous relationship.

There are three main steps to building this hybrid
model. We first (1) examined the simultaneous cor-
relation between observed climate variables and PM;,
concentration over South Korea to identify poten-
tial climate predictors with statistically significant rel-
evance. Then, (2) among the potential climate pre-
dictors, we extracted climate predictors for which the
climate forecast (APCC MME) has sufficient skill.
The skill matrix of the climate forecast is based
on the correlation coefficient between the historical
hindcast (retrospective forecasts) and observed cli-
mate variables. Applying these two criteria, the cli-
mate predictors that are ‘predictable and related to),
presumably influencing, South Korea’s PM;, were
selected. Finally, (3) a hybrid model via the MLR
between these independent climate predictors and
PM, can be established. Inputting the climate pre-
dictors forecasted from APCC MME into this hybrid
model produces PM;, seasonal forecasts. Figure 1
shows a schematic diagram of the model and forecast
method.

As a result of the first two (1)—(2) processes, we
identified potential climate variables from various
regions in the Northern Hemisphere. Out of these, six
variables were chosen based on their presence within a
minimum range of 4 degrees longitude and 2 degrees
latitude. In the final step (3), these variables were fur-
ther narrowed down to two for independent vari-
ables of the MLR models considering their availab-
ility over 25 year period (1995/1996-2019/20). This
selection followed the rule of thumb (Peduzzi et al
1996) requiring at least 10 data samples per independ-
ent variable for regression models. In addition, we
checked the cross-correlation of the two variables to
select variables without multicollinearity problems.
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Figure 1. Schematic diagram of the dynamical-statistical model for PM forecast.

The chosen variables’ spatial patterns and MLR
model details are further described in sections 3.1
and 3.2.

For forecasting winter PM,o, the MLR uses the
MME climate forecasts initialized in October. We
employed the leave-one-out cross-validation tech-
nique over the 25 year study period to ensure robust
model training and validation. For a given forecast
year, the data of the remaining 24 years were used to
train an MRL model, and the forecast was performed
with the corresponding model. For convenience, the
correlation between PM;, and climate variables and
the skill matrix shown (figure 3) was calculated with
data for the entire 25 years.

2.2. Observational data

The Korean Ministry of Environment has distrib-
uted PM;, concentration measured at 6-hour inter-
vals since 2001. In this study, we used seasonal
and monthly mean of PM;y from 153 stations for
the period 2001/02-2019/20. In addition, PM;, con-
centrations at 12 stations in Seoul provided by
the Seoul Metropolitan Government, are utilized
for the period 1995/96-2019/20. The PM,, con-
centrations are strongly influenced by anthropo-
genic emissions as well as yellow dust transported
from Mongolia or Inner Mongolia, northern China
(Lee and Kim 2018). During large-scale yellow dust
intrusion events, PM;, values of hundreds to even
more than 1000 zm m~> are observed for several
days (Chung 1992). Therefore, to prevent the undue
impact of extreme PM,, from excessively influencing
the model configuration, we exclude yellow dust days
declared by the Korea Meteorological Administration
(a total of 37 days during the analysis period) when
taking monthly averages. However, there is little

difference in the results even if the yellow dust days
are included.

The observation stations are in a variety of loca-
tions in South Korea, from large cities to rural areas,
resulting in differences in the mean values by sta-
tion. Due to the spatial heterogeneity of the stations,
using an overall average value can be problematic
for representativeness (Heo et al 2017). Therefore,
the principal component time series (PC time series)
of PC1, the first mode of the empirical orthogonal
function (EOF) of 153 stations across South Korea,
was used as an index indicating the PM;, variation.
Figure 2(a) shows the leading EOF of South Korean
PM,o (EOF1) for the period 2001/02-2019/20, which
explains 48.87% of the total variability in winter PM
across all the stations. EOF1 reveals a uniform anom-
aly pattern across South Korea, with high variability
in major cities like Seoul and Busan. To extend the
research period as much as possible, for the period
1995-2000, the PM, averaged at 12 stations in Seoul
were used as a proxy for the South Korean PM;. This
value closely matches South Korea’s PC1 value with
a correlation of 0.97 during the overlapping period
2001-2020 (figure 2(b)). The Seoul averages were
standardized to align with the South Korean averages
during the overlapping period.

During the study period, the PM, in South Korea
showed a clear decreasing trend (figure 2(b)), likely
due to emission reduction policies in South Korea
and neighboring countries like China and Japan since
the late 1990s (Heo et al 2017, Dong et al 2020, Li
et al 2020, Ito et al 2021). Since the objective of the
hybrid model is to predict the PM;, variation influ-
enced by climate variability, we construct the PM;,
forecast model with the linear trend removed for the
model training period. The results of adding the trend
to the model forecast are also shown for reference.
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Figure 2. (a) The leading (1st) EOF of DJF average PM; concentration for 153 stations in South Korea for the period
2001/02-2019/20, and (b) corresponding principal component (PC) time-series (yellow line). The red line shows the average
PM o concentration in winter at 12 stations in Seoul from 1995/96-2019/20. (c) Same as (b) but with removing linear trend.

Table 1. A summary of forecast and hindcast datasets from APCC MME.

Model Period (HIND, FCST) Ens. Size
APCC SCOPS 1995/96-2013/14, 2018/19-2019/20 10
BOM ACCESS-S2 1995/96-2019/20 27
CMCC SPS3.5 1995/96-2016/17 40
ECCC CANSIPSv2.1 1995/96-2019/20 20
KMA GLOSEA6GC3.2 1995/96-2016/17 12
NCEP CFSv2 1995/96-2010/11, 2015/16-2019/20 20
UKMO GLOSEA6 1995/96-2016/17 28
PNU-RDA CGCMv2.0 1995/96-2019/20 35

Observations (reanalysis) of atmospheric vari-
ables and sea surface temperature (SST) were used
for the climate predictors in the model. The fol-
lowing variables were selected to capture represent-
ative features of the East Asian winter monsoon
circulation, the high latitude-East Asia teleconnec-
tions, the tropical-East Asia teleconnections, and El
Nino, which are known to be large-scale climatic
conditions that influence winter PM;y behavior in
East Asia. The following variables were used: geo-
potential height at 500 hPa (Z500), mean sea level
pressure (MSLP), zonal and meridional wind at
200 hPa (U200 and V200, respectively), temperature
at 850 hPa and 2 m (T850 and T2m, respectively)
from ERAS5 (Hersbach et al 2020), the 5th generation
global climate reanalysis of the European Center for
Medium-Range Weather Forecasts (ECMWE), and
SST from Extended Reconstructed SST, Version 5
(ERSST, Huang et al (2017)). These variables are also
available in the APCC MME, which will be discussed
later, as they are eventually used in the forecast.

2.3. MME climate prediction

The climate variables used as climate predictors are
obtained from the APCC MME seasonal forecast
(Min et al 2017). APCC collects seasonal climate

forecast products from 15 institutions in 11 coun-
tries every month and produces the MME climate
forecast. Its hindcasts (retrospective forecasts from
the most updated version of the model) or forecast
archives (forecasts from the model version at the fore-
cast made) for the past are provided as well. We used
hindcasts/forecast archive (hindcast hereafter) data
from eight models with as many hindcasts as pos-
sible in the target period of this study (from winter
1995/96-2019/20, table 1). Although the periods of
hindcasts for participating models are different, all
available hindcasts were used to maximize the sample
size. Considering the operational use of the hybrid
model, the winter climate predictions of APCC MME
initialized in October were used in this study. We cal-
culated the MME by averaging the ensembles of all
models participating in this study.

3. Result

3.1. Potential climate predictors

Figure 3 illustrates the selection criteria for climate
predictors based on their (1) strong relevance to PM
in South Korea and (2) reliable prediction skill in the
APCC MME. Color shading indicates the correlation
between climate variables and PM;, concentrations
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a) COR (PM;o, Z500), Z500 skill
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Figure 3. Color shading indicates the anomaly correlation coefficient (ACC) between the winter PM;o and climate variables. Gray
shading highlights regions where APCC MME shows statistically significant (at the 90, 95, and 99% significance levels) forecast
skills for that climate variable. The dotted pattern (yellow, black, green) indicates regions where both the ACC of PMo-climate

90 95 99

(criterion 1). The gray shading represents the forecast
skill matrix (criterion 2) of the APCC MME, showing
the correlation between the hindcasts and the obser-
vation. Potential climate predictors exist where stat-
istically significant signals for both conditions (color
and gray shading) overlap. For each variable, 2-3
potential climate variables are detected.

Several atmospheric teleconnection patterns are
found for criterion 1 (shading). Focusing on sig-
nals connected to the East Asian region, 500 hPa

geopotential height (2500, figure 3(a)) shows a negat-
ive correlation over the Barents Sea region and a posit-
ive correlation over East Asia. There are positive tem-
perature anomalies over northeast Mongolia-China
(figures 3(b) and (e)). These are typical large-scale
climate patterns found when East Asian winter mon-
soon circulation is weakened. This result is in agree-
ment with the negative correlation between PM,( and
the East Asian monsoon suggested by (Jeong and
Park 2017). The weakening of the winter monsoon
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Table 2. Domains and variables of the potential climate predictors.

Potential predictor ENA-Z500 CP-T850 ENA-U200 NEA-SLP NA-T2m BES-SST

Longitude (°E) 282-288 183-187 277-287 128-134 267-272 174-182

Latitude (°N) 48-50 26-28 37-39 57-62 46-51 54-56

means the weakening of the cold northwesterly winds
blowing from Siberia to East Asia, including South
Korea. The weakening of northerly wind in East
Asia are favorable conditions of atmospheric stagna-
tion and the ventilation of air pollutants. The pat-
tern is also similar to the teleconnection patterns
related to warming in the Arctic and SST warming
in the Atlantic (Jung et al 2017). This is not only
due to the weakening of the seasonal wind, but also
to the strengthening of the high-pressure circulation
around South Korea, which prevents the spread of
pollutants due to the stagnation of the atmosphere.
Another major pattern found is the teleconnection
between the tropical Pacific and the Atlantic. The
warming in the western Pacific (figure 3(b)) and the
positive SST anomaly pattern in the tropical Atlantic
(figure 3(f)) appear to be related to the weakening of
the East Asian winter monsoon induced by tropical-
midlatitude teleconnection (Wang et al 2000, Ma et al
2018a, 2018b). These show that Criteria 1 is a good
representation of the physical teleconnections affect-
ing the East Asian climate and PM;, in South Korea.

For the MME prediction skill (figure 3, gray shad-
ing), statistically significant high skill is found mainly
in the tropics, especially in the Pacific and Atlantic
regions. This is a typical limitation of climate models
but compared to a previous study that used single-
model projections (Jeong et al 2022), MMEs signific-
antly expand the region of significant skill from the
tropics to the mid-latitudes.

Based on these results, we identified six potential
predictors (ENA-Z500, CP-T850, ENA-U200, NEA-
SLP, NA-T2m, and BES-SST). ENA-Z500 refers to
7500 in the eastern Americas, CP-T850 to T850 in
the central Pacific, ENA-U200 to U200 in the eastern
Americas, NEA-SLP to SLP in Northeast Asia, NA-
T2m to T2m in North America, and BES-SST to SST
in the Bering Sea. That satisfied both criteria: relev-
ance to South Korea’s PM, variability and forecast
skill of APCC MME for the climate variables (table 2).
Note that local temperature may be the most effective
predictor due to its direct impact on PM;, variability
(Lee etal 2011, Kim 2019). However, it does not meet
the MME predictability criteria (i.e. poor skill), so it
was excluded as a potential predictor.

3.2. Dynamical-statistical model and its forecast
skill

3.2.1. MME model

The six potential climate predictors can be combined
to construct a total of 15 MLR models. As shown

in figure 3 and supplementary figure S1, however,
some of the six potential climate predictors appear to
stem from the same teleconnection pattern and are
therefore inter-correlated. To avoid the multicollin-
earity problem, we examined the cross-correlations
between these climate predictors (figure S1) to select
variables that were as statistically independent of each
other as possible. Among these, three candidate MLR
models were constructed using relatively independ-
ent variables (figure S2). We performed experimental
forecasting for the past 25 years using the predictors
obtained from APCC MME. For comparison, we also
ran a hindcast experiment of perfect climate forecast
model where we input each year’s observed values to
the climate predictors of MLR. The perfect climate
forecast model’s forecast represents the PM;, vari-
ation that can be explained by the climate variables,
representing the maximum skill of the model.

The final MLR model selected (shows best skill
and lowest correlation between two predictors) was
the forecast model using ENA-U200 (Zonal wind at
200 hPa over eastern North America) and BES-SST
(Bering Sea SST). The correlation between the two
climate predictors (ENA-U200 and BES-SST) is 0.22.
The MLR of this model is given in equation (1) below.
Since the leave-one-out cross-validation was applied,
the coefficients (i.e. MLR model) vary slightly from
year to year, but for the sake of simplicity, we present
the values obtained over the entire period here,

y = 0.49 % ENA — U200 + 0.54 * BES — SST + 0.00.
(1)

Overall, the model demonstrates statistically sig-
nificant skill over 25 year period, with correlation
coefficients of r = 0.504 for the perfect model and
r = 0.439 for observations. Including the linear trend
raises these values to r = 0.851 and r = 0.736, respect-
ively. The lower correlation for observed PM,q val-
ues is attributed to non-climatic factors like anthro-
pogenic emissions.

To confirm that the performance of these models
resulted from the physical relationship between cli-
mate conditions and PM;,, we examined the chosen
two predictors’ physical relevance to PM;. Figure 4
shows the regression analyses of the two predict-
ors on climate variables. First, it is found that ENA-
U200 is associated with a wave teleconnection pat-
tern propagating from the North Atlantic to the east-
ern Eurasian continent through the Barents-Kara Sea
(figures 4(a) and (b)). The tripole pattern, triggered
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Figure 4. ENA-U200 regressed on (a) 2 m temperature (T2m) and (b) geopotential height at 300 hPa (Z300), and BES-SST
regressed on (c) T2m, (d) Z300, and (e) sea surface temperature (SST). Values that are statistically significant at 90% are indicated

by Rossby waves from North Atlantic SST anom-
alies, results in warmer temperatures and high pres-
sure over East Asia, a weaker East Asian winter mon-
soon circulation (Ding and Yihui 1993, Chang and Lu
2012). The weakening of the prevailing northwesterly
winds and high-pressure causes atmospheric stagna-
tion, that is conducive to higher PM;, concentrations
(Jeong and Park 2017). Second, the BES-SST-related
anomalies indicate a remote influence from ENSO.
Positive BES-SST is associated with high-pressure
anomalies and higher temperatures in the Mongolia-
East Asia region, further weakening the monsoon,
as depicted in figures 4(c) and (d). The regression
between BES-SST and SST (figure 4(e)) shows a pat-
tern of teleconnection from the western Pacific to East
Asia associated with tropical central Pacific warming
during El Nino. In addition to the weakened East Asia
winter monsoon, the tropical teleconnection deliv-
ers moist air masses from the western Pacific, affect-
ing precipitation in East Asia (Ma et al 2018a). This
directly affects air quality. These results indicate that
the two predictors reflect high-latitude and tropical
factors that influence East Asian climate, respectively.
Their combined impact seems to influence PM;, vari-
ability in South Korea.

3.2.2. The effect of MME on forecast skill
The most important benefit of MME climate fore-
casting is to maximize climate predictability by offset-
ting errors in the modeling system through ensemble
averaging across models. We aimed to assess whether
the incorporation of MME climate forecasts into a
hybrid model indeed enhances the predictability of
PM,y, as compared to utilizing forecasts from indi-
vidual models.

Figures 5 and 6 compare the PM,, forecast using
the MME and the individual model’s forecast (each

ensemble) as climate predictors. Different MMEs and
different individual models produce different pre-
dictions to some extent. However, overall, the MME
models generally demonstrate the highest perform-
ance. It is interesting to note that one single model
(ECCC) outperforms most MMEs. While it is difficult
to conclude that this model is the best given the lim-
ited experimental periods, it does indicate the poten-
tial for additional skill when using the best model
or combination of models. Various MME methods,
like the super ensemble method (Krishnamurti et al
2009) that constructs optimal ensembles through
MLR between model results and observations, and
the weighted ensemble method (Kug et al 2008)
that uses singular value decomposition, can further
improve skill beyond the simple averaging approach
used in this study.

To this extent, we attempted to predict the
PM;y using the MME only consisting of models
that exhibited the best skill for two climate pre-
dictors (ENA-U200 and BES-SST). Configuring the
MME in this way could raise the issue of modify-
ing the skill matrix of the MME. However, here,
the MLR derived from the original MME was util-
ized without alteration, focusing only on enhancing
performance through the optimal MME. First, Six
climate models—APCC_SCOPS, BOM_ACCESS-
S2, ECCC_CANSIPSv2.1, CMCC_SPS3.5, UKMO_
GLOSEA6, KMA_GLOSEA6GC3.2 (referred to as
TOP6)—were selected for their high predictabil-
ity (table 3; r meeting Pearson’s critical values of
0.05 or lower). The PM;, forecast was then pro-
duced by applying MME from these six models
as input predictor values (figure 5, solid lines).
Considering the differences in the predictabilit-
ies of ENA-U200 and BES-SST among the TOPS,
we tested the PM;, forecasts using three different
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Figure 5. Forecasted and observed time series of winter PM o concentrations in South Korea. Gray bars indicate PM;o. The blue
line represents the perfect climate forecast model (PCFM)’s result. The red line represents the forecast from the
dynamical-statistical model with MME. The dotted lines are the forecasts from individual participating single models, and the
selected MMEs: MME-T2 (MME of ECCC_CANSIPSv2.1 and BOM_ACCESS-S2), MME-T4 (MME of CMCC_SPS3.5,
UKMO_GLOSEA6 and MME -T2), and MME-T6 (TOP6 MME of APCC_SCOPs, KMA_GLOSEA6GC3.2 and MME-T4). All
forecasts were conducted using leave-one-out cross-validation. (a) Result of the detrended model and (b) that with a linear trend

added.
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¢) RMSE (PCFM, forecast models)
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Figure 6. (a) Forecast skills of MMEs (MME, MME-T6, MME-T4, MME-T2) and ensemble averages from eight individual
models. For equal comparisons across models, each model’s ensemble average was calculated by randomly selecting an equal
number (4) to produce 4 ensemble averages. (b) Result with liner trend added. (c) RMSE of MME models and TOP6. Boxes are
RMSE of 32 ensembles. The orange line is the median RMSE of the ensembles.

combinations of the MME. These three combina-
tions are as follows: MME-T6, comprising all TOP6
models; MME-T4, comprising BOM_ACCESS-
S2, ECCC_CANSIPSv2.1, CMCC_SPS3.5, and

UKMO_GLOSEA6 which exceeded 0.462 (r meet-
ing Pearson’s critical values of 0.02 or lower);
MME-T2 comprising ECCC_CANSIPSv2.1, and
BOM_ACCESS-S2, which exceeded 0.505 (r meeting
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Table 3. The correlation coefficient between observation and predictors (ENA-U200 and BES-SST) predicted by the individual model
and MME. An asterisk indicates that both predictors have a Pearson critical value of 0.05 or less, corresponding to a correlation
coefficient of 0.396 or higher. Two asterisks signify that both predictors meet a Pearson critical value of 0.02 or less, with a correlation
coefficient of 0.462 or higher. Three asterisks mean that both predictors satisfy a Pearson critical value of 0.01 or less, indicating a

correlation coefficient of 0.505 or higher.

ENA-U200 BES-SST

ECCC*** 0.703 NCEP 0.647
UKMO** 0.676 BOM™** 0.627
KMA* 0.653 ECCC*** 0.572
BOM*** 0.566 CMCC** 0.514
CMCC** 0.485 UKMO** 0.494
APCC* 0417 PNU-RDA 0.432
PNU-RDA 0.346 APCC* 0411
NCEP 0.323 KMA* 0.403
MME 0.694 MME 0.609
MME-T6 0.703 MME-T6 0.611
MME-T4 0.714 MME-T4 0.625
MME-T2 0.684 MME-T2 0.625

Pearson’s critical values of 0.01 or lower). The fore-
cast skills were ranked as MME-T4 (0.610), MME-T6
(0.570), and MME-T2 (0.577), and MME (0.552).
RMSE analysis (figure 6(c)) confirmed that MME
forecasts generally outperformed single model pre-
dictions, regardless of trend adjustments.

In addition, we evaluated the skill of the
developed model using other conventional skill met-
rics such as mean absolute error (MAE, in figure S4)
and mean absolute scaled error (MASE, in figure
S5). The developed model shows useful skill both in
terms of MAE and MASE, with the MME indicat-
ing better performance than the individual models.
We also evaluated the skill of the developed model
as a classification model to determine if it predicts
high PM;, concentration years with ROC curve and
its area under the curve (AUC) values (see details
in figure S6 caption). MME shows fairly good per-
formance with an AUC of 0.85, and MME-T2 and
MME-T4, show a considerably high performance of
0.9. These results also demonstrate the usefulness of
the developed model forecast.

4. Summary and discussion

Using the APCC MME climate forecasts and
weather/climate-PM, relationship, we developed
a hybrid dynamical-statistical model that skillfully
predicts winter PM;, in South Korea. By perform-
ing hindcast experiments for the past 25 years, we
verified that this model has statistically significant
forecast skill. Our findings suggest that the usage of
MME benefits the forecast skill, and optimizing the
MME can further boost the skill. This result demon-
strates the possibility of skillful seasonal forecast of
air quality.

Although the developed hybrid model uses
dynamical models’ forecast, it has distinct limitations
of statistical models. It is difficult to reflect long-term
fluctuations on interdecadal or longer time-scale due
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to the nature of statistical models. Additionally, the
evolving relationship between climate and air qual-
ity complicates predictions amidst rapid environ-
mental changes. However, clearly, finding predictable
parts from MME prediction results and making local
PM, prediction possible is a significant advantage of
the dynamical model. This strategy could extend to
other regions and pollutants, opening new avenues
for developing effective seasonal air quality forecasts.

While still in its infancy, it will eventually be
possible to make simultaneous climate-air qual-
ity forecasts using models that combine atmo-
spheric chemistry, climate, and human activities.
This will allow for the consideration of emissions,
atmospheric chemistry-climate interactions, and
the effects of long-term climate variability that
are currently excluded from this study. Further
research is needed to integrate the continuously
improving climate modeling and assimilation tech-
niques, and rapidly developing artificial intelligence
techniques.

Data and code availability statement

All data used in this study are freely accessible. The
PM10 concentration data in Korea and Seoul can be
accessed through the following link: www.airkorea.
or.kr/web/last_amb_hour_data?pMENU_NO=123
and  https://data.seoul.go.kr/dataList/OA-2218/S/
1/datasetView.do#, respectively. The ERA5 atmo-
spheric reanalysis data can be found here: https://cds.
climate.copernicus.eu/cdsapp#!/dataset/reanalysis-
era5-single-levels-monthly-means?tab=overview.
The SST data from Extended Reconstructed SST,
Version 5, can be assessed here: https://psl.noaa.gov/
data/gridded/data.noaa.ersst.v5.html. The APCC
MME seasonal forecasts/hindcasts can be down-
loaded from here: https://cliks.apcc21.org/dataset/
mme/6-MON. The code is available by request via
e-mail at jjeehoon@jnu.ac.kr.
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