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Abstract: A multichannel speech enhancement system usually consists of spatial filters such as
adaptive beamformers followed by postfilters, which suppress remaining noise. Accurate estimation
of the power spectral density (PSD) of the residual noise is crucial for successful noise reduction in
the postfilters. In this paper, we propose a postfilter utilizing proposed a posteriori speech presence
probability (SPP) and noise PSD estimators, which are based on both the coherence and the statistical
models. We model the coherence-based a posteriori SPP as a simple function of the magnitude
of coherence between two microphone signals and combine it with a single-channel SPP based
on statistical models. The coherence-based estimator for the PSD of the noise remaining in the
beamformer output in the presence of speech is derived using the pseudo-coherence considering
the effect of the beamformers, which is used to construct the coherence-based noise PSD estimator.
Then, the final noise PSD estimator is obtained by combining the coherence-based and statistical
model-based noise PSD estimators with the proposed SPP. The spectral gain function is also modified,
incorporating the proposed SPP. Experimental results demonstrate that the proposed method led to
more accurate noise PSD estimation and perceptual evaluation of speech quality scores in various
diffuse noise environments, and did not degrade the speech quality under the presence of directional
interference, although the proposed method utilizes the coherence information.

Keywords: noise PSD estimation; coherence; dual channel speech enhancement; postfilter; speech
presence probability estimation

1. Introduction

Over the past decades, there has been a growing demand for speech enhancement
using microphone arrays in speech processing applications such as automatic speech
recognition, mobile communications, and hearing aids [1–4]. Multichannel speech en-
hancement aims to reduce the additive noise and improve the quality of the speech signals
obtained by multiple microphones placed in a variety of acoustic environments [5–32].
In many multichannel speech enhancement systems, beamforming algorithms, such as
the minimum-variance distortionless-response (MVDR) beamformer [11] and the general
transfer function generalized sidelobe canceler (TF-GSC) [12,13], have been employed to
extract a desired signal, exploiting spatial information on the location of the sound sources.
Although these beamformers successfully reduce the interfering noise without creating
too much speech distortion, the amount of noise suppression is not very high in general,
and nonstationary interferences and diffuse noises may disrupt some of the beamformers.
Therefore, an additional postfilter is usually used to further enhance the output of the
beamformer [14–28]. It has been shown that the multichannel Wiener filter (MWF) can be
factorized into the MVDR beamformer and a single-channel Wiener postfilter [14,15].

The postfilters used in the literature include the Wiener filter [16–19], short-time
spectral amplitude (STSA) estimator [20], and optimally modified log-spectral amplitude
(OM-LSA) [21] estimator, for all of which the accurate estimation of the noise power spectral
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density (PSD) in the beamformer output is crucial. The noise PSD estimation approaches for
the postfilter can be classified into two categories. The methods falling into the first category
are essentially single-channel approaches which estimate the noise PSD from the output of
the beamformer [22,23] using single-channel noise estimation approaches [33–37]. The ad-
vantage of these approaches is that the performance of the postfilter is not severely affected
by the steering error of the beamformer. However, the single-channel noise PSD estimation
approaches cannot rapidly track the changes in the noise statistics and thus, the noise PSD
is underestimated for nonstationary noises, resulting in insufficient noise suppression.
The methods in the second category are multichannel approaches which utilize spatial
information from the microphone signals or beamformers. In [18], the noise PSD is es-
timated by a recursive averaging of the power spectrum of the null-beamformed signal.
In [21], the noise PSD estimate is obtained by a recursive averaging of the periodogram
of the beamformer output, with a smoothing factor dependent on the speech presence
probability (SPP). The SPP in [21] is affected by transient beam-to-reference ratio (TBRR),
which is the ratio of the transient powers in the beamformer output and the noise reference
signals of the TF-GSC obtained by applying the minima controlled recursive averaging
(MCRA) to those signals. These methods utilizing the beamformer output signals can
effectively deal with moderately nonstationary noises, but the performance deteriorates
when the steering error occurs in the beamformer or the noise is highly nonstationary.
The leakage of the speech signal into the noise reference leads to the speech attenuation
in the postfilter, which is more crucial for the quality of the enhanced speech. On the
other hand, the noise PSD estimation based on the microphone signals in [16,17] essentially
estimates the PSD of the noise in the microphone signals, which differs from the PSD of
the noise in the beamformer output. In [15], the noise PSD at the beamformer output
is estimated from the PSD of the microphone signals, room transfer function, and noise
coherence matrix, and a two-step approach to estimate the Wiener postfilter is proposed
based on the maximum likelihood approach and the Bayesian refinement. While it provides
a novel mathematical framework to estimate the noise PSD and obtain the postfilter, it is
assumed that the noise coherence matrix is known in advance. There have been several
approaches to apply those filters using dual channel noise PSD estimators without applying
beamformers [29–32]. Among them, Nelke et al. [29] employ a statistical model-based
single-channel noise PSD estimator [36] for low-frequency bins and a coherence-based dual
channel noise PSD estimator for high-frequency bins, as the coherences are not discrimina-
tive for low frequencies. This method can be applied to the estimation of the noise PSD for
the postfilter, but the coherence-based dual channel noise PSD estimator in [29] can only
estimate the noise PSD in the microphone signals, which will be higher than the noise PSD
in the beamformer output.

In this paper, we propose a postfilter for dual channel speech enhancement combin-
ing a statistical model-based single-channel noise estimator and a coherence-based dual
channel estimator with a SPP. Specifically, we model the coherence-based a posteriori SPP,
and combine it with the statistical model-based SPP [36]. We then derive the coherence-
based dual channel noise PSD estimator considering the speech presence uncertainty and
the difference between the noise PSDs in the microphone signals and the beamformer
output. Finally, the spectral gain function of the postfilter is computed by utilizing the noise
PSD estimate and a posteriori SPP based on both the statistical models and the coherences.

2. System Overview and Review of SPP-Based Noise Estimation
2.1. Problem Formulation and System Overview

Assuming that two microphones capture the desired speech along with the uncor-
related additive noise, the two microphone signals in the STFT domain in a vector form,
Z(l, k) = [Z1(l, k), Z2(l, k)]T , with a time index l and a frequency index k, can be written as

Z(l, k) = g(l, k)S1(l, k) + V(l, k)

= S(l, k) + V(l, k), 1 ≤ l ≤ L, 1 ≤ k ≤ K
(1)



Sensors 2024, 24, 3979 3 of 17

where S(l, k) = [S1(l, k), S2(l, k)]T is the clean speech at the microphones including early
reflections, V(l, k) = [V1(l, k), V2(l, k)]T is the additive noise at the microphones including
late reverberations, and g(l, k) = [1, g2(l, k)]T is the relative transfer function (RTF) vector.
S(l, k) and V(l, k) are assumed to be uncorrelated as in many research works [6,15,19,20,22].
The microphone signals are processed by a filter-and-sum adaptive beamformer
WH(l, k) = [W∗

1 (l, k), W∗
2 (l, k)] to produce the beamformer output Y(l, k) = WH(l, k)Z(l, k).

Y(l, k) can be considered to be the sum of the filtered speech X(l, k) and the residual noise
N(l, k), which are assumed to be mutually uncorrelated as

Y(l, k) = WH(l, k)Z(l, k)

= WH(l, k)S(l, k) + WH(l, k)V(l, k)

≜ X(l, k) + N(l, k).

(2)

The goal of the postfilter is usually to estimate X(l, k) from Y(l, k) with the help of
Z(l, k), although X(l, k) may contain speech distortion to an extent. The output of the
postfilter is given as

X̂(l, k) = G(l, k)Y(l, k) (3)

in which G(l, k) is the spectral gain of the postfilter. The block diagram of a dual channel
speech enhancement system with an adaptive beamformer and a postfilter is illustrated
in Figure 1.

𝑊1Z1

𝑋

Postfilter

Z2

Σ
𝑌

G

𝑊2

Noise 
Estimation

Adaptive Beamformer

Figure 1. General block diagram of a dual channel speech enhancement system with a beamformer
and a postfilter.

2.2. Single-Channel Noise PSD Estimator Based on Speech Presence Probability

In [36], a statistical model-based single-channel noise PSD estimation using a fixed
a priori signal-to-noise ratio (SNR) for speech presence is proposed. Under the assumption
that the speech and noise STFT coefficients are distributed according to the complex
Gaussian distributions with zero means, the likelihood functions for the hypotheses of
speech presence H1 and speech absence H0 are modeled as

f (Y(l, k) | H0) =
1

λ̂ns(l, k)π
exp

(
−|Y(l, k)|2

λ̂ns(l, k)

)
(4)

f (Y(l, k) | H1) =
1

λ̂ns(l, k)(1 + ξH1)π
· exp

(
− |Y(l, k)|2

λ̂ns(l, k)(1 + ξH1)

)
(5)

where ξH1 indicates the fixed a priori SNR, which represents the SNR “if speech were
present” [36], and λ̂ns(l, k) is the estimate of the noise PSD based on statistical modeling.

According to Bayes’ rule, a posteriori SPP P(H1|Y), which is a function of |Y| and thus
denoted as p|Y|(l, k) in the next section, is obtained as

P(H1||Y|) = p|Y|(l, k) =
{

1 +
(
1 + ξH1

)
exp
(
− |Y(l, k)|2

λ̂ns(l − 1, k)
ξH1

ξH1 + 1

)}−1
(6)
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where the parameter ξH1 is set to be 15 dB in the experiments, which is obtained by
minimizing the total risk of error as in [36], and a priori probability of speech presence
P(H1) is assumed to be 1/2. To allow the adaptation of the noise PSD estimate when the
noise PSD is underestimated, p|Y|(l, k) is constrained to be less than 0.99 when smoothed
a posteriori SPP is higher than 0.99. With a posteriori SPP, the noise PSD periodogram in the
current frame is estimated as a weighted summation of the noise PSD estimate from the
previous frame λ̂ns(l − 1, k) and the power of the beamformer output signal |Y(l, k)|2:

λ̃ns(l, k) = p|Y|(l, k) · λ̂ns(l − 1, k) + (1 − p|Y|(l, k)) · |Y(l, k)|2. (7)

Finally, the noise PSD estimate is obtained by recursive smoothing with a smoothing
parameter αsm as

λ̂ns(l, k) = αsmλ̂ns(l − 1, k) + (1 − αsm)λ̃ns(l, k). (8)

3. Postfilter for Dual Channel Speech Enhancement Utilizing Noise Estimation Based on
Coherence and Statistical Model

We propose a postfilter for dual channel speech enhancement, combining a statistical
model-based single-channel noise estimate and a coherence-based dual channel noise
estimate. Assuming that the phase of the coherence between two microphone signals,
which is the same as the phase difference between them in the short-time Fourier transform
(STFT) domain, is already exploited well by the beamformer, we focus on the magnitude
of the coherence as spatial information in the proposed postfilter. Firstly, we model the
coherence-based a posteriori SPP as a simple function of the magnitude of the coherence,
and combine it with the SPP based on the statistical modeling of the beamformer in (6).
Then, we derive a dual channel noise PSD estimator for speech presence periods based
on coherence, and obtain a noise PSD estimate considering speech presence uncertainty
utilizing the a posteriori SPP. The final noise PSD estimate is constructed by combining the
coherence-based estimate and the statistical model-based single-channel estimate utilizing
the coherence-based a posteriori SPP. The OM-LSA gain function is used as the postfilter,
utilizing the combined noise estimates and the combined a posteriori SPP. The block diagram
of the proposed method is presented in Figure 2.
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Figure 2. Block diagram of the dual channel speech enhancement system employing the pro-
posed postfilter.

3.1. Modeling of a Posteriori SPP Based on Coherence

One of the spatial properties that may be used to distinguish signals with different
spatial characteristics is the coherence. For two microphone signals Z1 and Z2, the coherence
between them is defined as

Γz(l, k) =
Φz1z2(l, k)√

Φz1z1(l, k)Φz2z2(l, k)
(9)

where Φz1z2 is the cross PSD of Z1 and Z2 and Φz1z1 and Φz2z2 are the auto PSDs, which can
be estimated by temporal smoothing. While the phase of the coherence is related to the
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inter-channel time difference of arrival for a single directional signal, the magnitude of the
coherence is related to how many signals from point sources and image sources accounting
for reflections are mixed in the corresponding time–frequency bin. For example, any signals
from a point source without reverberation show the magnitude of coherence |Γz(l, k)| to
be 1. Another useful example is the spherically isotropic or diffuse noise, for which the
coherence function can be derived as [38]

Γdi f f use
z (l, k) = sinc(

2πk fsdmic
2Kc

) (10)

where 2K is the size of the discrete Fourier transform (DFT), fs is the sampling frequency, dmic
is the distance between microphones, and c is the speed of sound. As the interchannel phase
differences, which are the phases of the coherences, are already exploited in the beamformers,
we focus on the magnitudes of coherences in the postfilter to utilize complementary informa-
tion on the spatial characteristics. It is also noted that the directional interferences are taken
care of in the adaptive beamformers, and therefore, diffuse noises may be the main obstacles
that remain in the beamformer output, which can be effectively discriminated from desired
speech using the magnitude of coherence, except low frequencies.

In this paper, it is assumed that the target speaker is located closer to a microphone
array than other point sources generating directional interferences. As the distance between
a sound source and microphones increases, the magnitude of the coherence decreases due
to reverberation. In this regard, the magnitude of the coherence would be high if speech is
present in that time–frequency bin, and low when only directional interferences or diffuse
noises exist. In this paper, we model the coherence-based a posteriori SPP as a simple func-
tion of the magnitude of the coherence. As the magnitudes of the coherence in individual
time–frequency bins may be vulnerable to the local SNR and reverberation and are not
discriminative enough in the low-frequency bins, it is beneficial to aggregate the coherences
in all frequency bins to determine frame-wise voice activity and apply separate functions
to model a posteriori SPP depending on the voice activity. Let Γ( f )

z (l) = 1
K ∑K

k=1|Γz(l, k)| be
the frame-wise coherence measure to decide voice activity. The a posteriori SPP based on
the coherence, P(H1|Γz) or pΓz(l, k), is modeled as

P(H1|Γz) = pΓz(l, k) =

{
α · |Γz(l, k)|+ αmin if Γ( f )

z (l) > η

β · |Γz(l, k)| otherwise
(11)

where η is the threshold to apply different functions, and α, αmin and β are experimentally
determined constants between 0 and 1 with α + αmin ≤ 1. For simplicity, the pΓz(l, k) is
designed as a linear combination of |Γz(l, k)| and 1 or 0 for speech presence or absence,
respectively. This coherence-based a posteriori SPP is used in the coherence-based noise PSD
estimation introduced in Section 3.2 and the combination of the statistical model-based and
coherence-based noise PSD estimates explained in Section 3.3.

3.2. Proposed Dual Channel Noise PSD Estimator Based on Coherence

In order to estimate the noise PSD from dual microphone signals, the noise PSDs for
high frequencies were derived as a function of the coherences of the speech and noise and
the auto- and cross-PSDs of the microphone signals, while the noise PSD in low frequencies
were estimated using an SPP computed from the first microphone signal in [29].In this paper,
we formulate the PSD of the residual noise in the beamformer output N(l, k) as a function
of the pseudo-coherences of speech and noise considering the difference in the noise PSD
in the microphone signals and the beamformer output and the speech presence uncertainty.

Assuming that the desired speech and the background noise are uncorrelated, the cross
PSD of the microphone signals and the PSD of the beamformer output signal can be described as

Φz1z2(l, k) = Φs1s2(l, k) + Φv1v2(l, k) (12)

Φy(l, k) = Φx(l, k) + Φn(l, k) (13)
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where Φs1s2(l, k) and Φv1v2(l, k) indicate the cross PSD of speech and noise at the first and
second microphones, while Φx(l, k) and Φn(l, k) indicate the PSD of speech and noise at
the beamformer output, respectively. For speech present regions, we can rewrite the cross
PSD of the microphone signals in (12) using the PSDs of the beamformed speech and noise
Φx(l, k) and Φn(l, k) in a similar way to [29]

Φz1z2(l, k) = Λx(l, k) Φx(l, k) + Λn(l, k) Φn(l, k) (14)

where Λx(l, k) and Λn(l, k) are the pseudo-coherence of speech and noise considering the
effect of beamformers defined as

Λx(l, k) =
Φs1s2(l, k)
Φx(l, k)

(15)

Λn(l, k) =
Φv1v2(l, k)

Φn(l, k)
, (16)

which are not the same as the coherence of the speech and noise at the microphones given by

Γs(l, k) =
Φs1s2(l, k)√

Φs1s1(l, k)Φs2s2(l, k)
(17)

Γv(l, k) =
Φv1v2(l, k)√

Φv1v1(l, k)Φv2v2(l, k)
. (18)

Comparing with the original definition of the coherence, we can see that the denomi-
nators, the geometric means of the PSDs for speech and noise in two microphone signals
in (17) and (18), are replaced by the PSDs of the speech and noise in the beamformer output
in (15) and (16).

From Equations (13) and (14), the coherence-based estimate of Φn(l, k) for speech pres-
ence, Φcoh

n|H1
(l, k), can be written as a function of Φy(l, k), Φz1z2(l, k), Λx(l, k) and Λn(l, k):

Φcoh
n|H1

(l, k) =
Φy|H1

(l, k)−
Φz1z2 |H1

(l,k)
Λx(l,k)

1 − Λn(l,k)
Λx(l,k)

. (19)

As for the speech absent regions, the instantaneous value for the power spectrum
of the beamformer output provides the most accurate estimate for the noise PSD in the
beamformer output. Therefore, the final dual channel noise PSD based on coherences,
λ̃nc(l, k), is given as a linear combination of Φcoh

n|H1
(l, k) and |Y(l, k)|2 in which the weights

are determined by the a posteriori SPP considering both the beamformed signal and the
coherence for microphone signals, p|Y|,Γz(l, k) = P(H1||Y|, Γz), as follows:

λ̃nc(l, k) = p|Y|,Γz(l, k) · Φ̂coh
n|H1

(l, k) + (1 − p|Y|,Γz(l, k)) · |Y(l, k)|2. (20)

Assuming that both |Y(l, k)| and Γz(l, k) would indicate speech presence if speech
is present in that time–frequency bin, P(H1||Y|, Γz) is represented as the product of the
a posteriori SPP based on the magnitude spectrum of the beamformed signal P(H1||Y|)
in (6), and the a posteriori SPP based on the coherence P(H1|Γz) in (11), i.e.,

p|Y|,Γz(l, k) = p|Y|(l, k) · pΓz(l, k) (21)

To evaluate (19), the pseudo-coherences of the speech and noise Λx(l, k) and Λn(l, k)
need to be estimated in addition to Φy|H1

(l, k) and Φz1z2|H1
(l, k), which can be obtained by the

temporal smoothing of |Y(l, k)|2 and Z1(l, k)Z∗
2(l, k) for speech presence periods. The pseudo-

coherences can be estimated in a similar way to the coherence estimation in [29] using the
SPP in (21). We omit the frame and frequency indices for brevity. The estimate for noise
pseudo-coherence, Λ̂n, is updated with a smoothing parameter αΛ during noise-only periods
determined by the a posteriori SPP p|Y|,Γz as
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Λ̂n = αΛ · Λ̂n,last + (1 − αΛ) Λ̂Y|H0
, if p|Y|,Γz < pth1 (22)

where pth1 is a threshold to update Λ̂n, Λ̂n,last denotes the estimate of noise pseudo-
coherence in the frame it was updated lastly, and Λ̂Y|H0

denotes the estimate for the
pseudo-coherence of the noisy signal for speech absent regions considering the effect of
beamformers defined as

Λ̂Y|H0
=

Φ̂z1z2|H0

Φ̂y|H0

, (23)

in which Φy|H0
(l, k) and Φz1z2|H0

(l, k) are estimated by the temporal smoothing of |Y|2 and
Z1Z∗

2 during noise-only periods in a similar way to (22).
The estimation of Λx is not as straightforward as that for Λn because the background

noises reside also in the speech-active regions. The pseudo-coherence of the noisy signal
for speech present regions, ΛY|H1

, can be expressed as

ΛY|H1
=

Φz1z2|H1

Φy|H1

=
Φs1s2 + Φv1v2

Φx + Φn

=
Φs1s2

Φx
(

Φx

Φx + Φn
) +

Φv1v2

Φn
(

Φn

Φx + Φn
)

= Λx (
γ

1 + γ
) + Λn

1
1 + γ

(24)

where γ = Φx
Φn

is the SNR at the beamformer output, which is estimated using the statistical
model-based noise PSD estimate in (8) as

γ̂ =
Φ̂y|H1

λ̂ns

− 1 (25)

in which Φ̂y|H1
is obtained by the temporal smoothing of beamformer outputs in speech-

active periods, i.e., the time–frequency bins with p|Y|,Γz > pth2 . The left-hand side of (24),

ΛY|H1
, can also be estimated as

Φ̂z1z2 |H1
Φ̂y|H1

, in which Φ̂z1z2|H1
is obtained in a similar way to

Φ̂y|H1
. Then, the speech pseudo-coherence Λx(l, k) can be estimated according to (24) using

Λ̂Y|H1
, γ̂ in (25), and Λ̂n in (22) with additional temporal smoothing in the speech presence

periods as

Λ̂x =αΛ · Λ̂x,last + (1 − αΛ)

[
Λ̂Y|H1

γ̂ + 1
γ̂

− Λ̂n
1
γ̂

]
, if p|Y|,Γz > pth2 . (26)

3.3. Combining Noise PSD Estimates and Gain Calculation

The proposed dual channel noise PSD estimator based on coherence in (20) shows
different characteristics from the single-channel SPP-based noise PSD estimator in (7).
Figure 3 shows one example of the noise power spectrum in the beamformer output and
the estimates of it for Cafeteria noise at 5 dB SNR. The single-channel SPP-based estimate
λ̃ns in Figure 3b seems to be stable and reliable, while it cannot track abrupt changes in
the noise power spectrum. In contrast, the dual channel coherence-based estimate λ̃nc in
Figure 3c could deal with rapidly changing noises, but occasionally, a certain portion of
the speech power spectrum is included in the noise power spectrum estimate. The speech
leakage in the noise power spectrum estimate leads to speech distortion when applying the
postfilter, and thus is much more critical for the quality of the enhanced speech than the
underestimation of the noise statistics. Therefore, we combine two noise power spectrum
estimates λ̃ns and λ̃nc as

λ̃n(l, k) = pΓz(l, k) · λ̃ns(l, k) + (1 − pΓz(l, k)) · λ̃nc(l, k), (27)
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so that it follows λ̃ns in the presence of speech signal and becomes λ̃nc when it is certain that
speech is absent. It is noted that we use pΓz instead of p|Y|,Γz as the weight to react faster to the
speech onsets. λ̃n is shown in Figure 3d, which looks similar to the true noise power spectrum
at the beamformer output |N(l, k)|2 in Figure 3a compared with λ̃ns and λ̃nc .
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Figure 3. Noise power spectrum and the estimates of it before temporal smoothing for Cafeteria noise
at 5 dB SNR in the smaller simulated room. (a) True noise power spectrum at the beamformer output,
(b) the single-channel SPP-based estimate in (7), (c) the coherence-based estimate in (20), and (d) the
combined estimate in (27).

The final estimate of the noise PSD λ̂n is obtained by the temporal smoothing of λ̃n
with a smoothing parameter αn as

λ̂n(l, k) = αnλ̂n(l − 1, k) + (1 − αn)λ̃n(l, k). (28)

Using the noise PSD estimate λ̂n in (28) and the a posteriori SPP p|Y|,Γz in (21), the gain
function of the postfilter G can be computed as the OM-LSA speech estimator [39]

G(l, k) =
{

max(G̃(l, k), Gmin)
}p|Y|,Γz (l,k) · G

1−p|Y|,Γz (l,k)
min (29)
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where Gmin indicates a minimum value for the gain in speech absent periods and G̃(l, k)
is the spectral gain function of the minimum mean-square error short-time log spectral
amplitude (MMSE-LSA) estimator given by [40]

G̃(l, k) =
ξ(l, k)

1 + ξ(l, k)
exp

[
1
2

∫ ∞

v(l,k)

e−t

t
dt
]

(30)

where v(l, k) ≜ γ(l, k)ξ(l, k), ξ(l, k) ≜ E|X(l, k)|2/λ̂n(l, k) indicates the a priori SNR
at the beamformer output estimated using a decision-directed (DD) approach [5], and
γ(l, k) ≜ |Y(l, k)|2/λ̂n(l, k) is the a posteriori SNR.

4. Experimental and Results
4.1. Experimental Configurations

To demonstrate the performance of the proposed coherence and statistical model-
based dual channel noise PSD estimator and the postfilter, we simulated two rooms of
dimensions 6.7 m × 6.1 m × 2.9 m and 9 m × 7.5 m × 3.5 m using the image method [41,42].
The reverberation times were RT60 = 300 ms and RT60 = 500 ms, respectively. The mi-
crophones were located at (3 m, 3 m, 1.5 m) and (3.14 m, 3 m, 1.5 m) for both of the
rooms, which corresponded to the form factor of the modern smartphones in the landscape
orientation. We assumed the “hand-held handsfree” scenario [43] in which the desired
speaker was located at the broadside of the microphone array, 0.4 m away from the center
of the microphones.

In addition, we also utilized a real-recorded room impulse response (RIR) from the
multi-channel impulse response database (MIRD) [44] with the room dimensions of 6 m
× 6 m × 2.4 m and the RT60 of 360 ms. The desired speaker was assumed to be located
1 m away from the center of two microphones at the broadside direction. The 1 m distance
was not a typical one for the “hand-held handsfree” use cases and was not favorable to the
proposed method utilizing the coherence information, but we could not find a more suitable
real-recorded RIR database. The distance between the two microphones we utilized was
14 cm as in the simulated RIR cases, in accordance with the size of the recent smartphones.

Twelve utterances from the TIMIT database [45] were used as desired speech signals,
and the Cafeteria, Crossroad, Kindergarten 1, Pub, Train Station, Callcenter, and Mensa
noises from ES 202 396-1 [46] were used to generate diffuse noises using the arbitrary noise
field generator [47]. The SNRs for diffuse noises were −5, 0, 5, 10, and 15 dB. The signals
were sampled at 16 kHz, and 512-point STFT was applied to the 32 ms of windowed
signal with 20 ms frame shift, in which the Tukey window with the cosine fraction of 75%
was adopted.

We compared the performance of the proposed postfilter to those of the postfilter using
the TBRR-based multichannel noise PSD estimator [21], which is denoted as TBRR, and the
one adopting the SPP-based single-channel noise estimator introduced in Section 2.2 [36],
which is denoted as Single-SPP. Although there have been several recent research studies on
better spatial filtering [9,10], not much effort has been devoted to improve the postfilters for
the spatial filtering recently, except for the deep learning-based approaches. Deep learning-
based postfilters using single-channel [24,25] or multichannel information [23,27,28] have
been proposed, but these approaches often require high computational complexity and
large training datasets.

The general transfer function-generalized sidelobe canceler (TF-GSC) [21] was used as
the adaptive beamformer with the same parameter values as in [21]. The OM-LSA speech
estimator in (29) and (30) was employed as a postfilter for all three methods, in which
different SPP and noise PSD estimators were adopted. The parameter values for the
proposed method used for the experiments are summarized in Table 1. The smoothing
parameters to compute Φy|H0

and Φz1z2|H0
in (23) were 0.4, while those to obtain Φy|H1

and
Φz1z2|H1

that were used to compute Λ̂Y|H1
and γ̂ were 0.7. The parameters for the compared

methods were selected to maximize the average PESQ score for the enhanced speech, which
were the same as the values in the original papers, except αλ was 0.8 instead of 0.85 in [21].
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As the performance measure for the noise PSD estimation accuracy, we used the
segmental logarithmic error (LogErr) defined by

LogErr =
1

KL

K

∑
k=1

L

∑
l=1

∣∣∣∣10 log10

[
λn(l, k)
λ̂n(l, k)

]∣∣∣∣ (31)

where λn(l, k) indicates the true noise PSD at the beamformer output obtained by pro-
cessing the noise with the TF-GSC computed for the noisy input and applying temporal
smoothing in (28). The logarithmic error can be represented as a summation of the overesti-
mation error LogErrov and the underestimation error LogErrun of the noise PSD, which are
defined as [36]

LogErrov =
1

KL

K

∑
k=1

L

∑
l=1

∣∣∣∣min
(

0, 10 log10

[
λn(l, k)
λ̂n(l, k)

])∣∣∣∣ (32)

LogErrun =
1

KL

K

∑
k=1

L

∑
l=1

max
(

0, 10 log10

[
λn(l, k)
λ̂n(l, k)

])
. (33)

The LogErrov may indicate the degree of speech attenuation caused by the postfilter,
while LogErrun would be related to the amount of residual noises. As for the speech
enhancement performance, the ITU-T Recommendation P.862.2 wideband perceptual eval-
uation of speech quality (PESQ) [48] scores and the segmental SNR (SSNR) improvement
were evaluated. The SSNR is defined as

SSNR =
10
|L| ∑

l∈L
log10

∑N
n=1 s2(lN + n)

∑N
n=1(ŝ(lN + n)− s(lN + n))2

(34)

where N = 160, L is the set of speech active segments and s(l), and ŝ(l) indicate the clean
speech signal and the estimate of it in the time domain, respectively.

As the proposed method relies on the coherence information and the coherences for
the directional interferences would be higher than those for the diffuse noises, the perfor-
mance for the proposed method may deteriorate in the presence of directional interference.
To demonstrate that the proposed system does not show inferior performance to the pre-
vious approaches in the presence of both diffuse noise and directional interference, we
conducted an additional experiment on the smaller simulated room. Directional interfer-
ence was constructed by the image method [41,42] using three utterances from the Wall
Street Journal (WSJ0) dataset [49] in which the noise source was located at −30◦ from
the broadside direction, 0.8 m away from the center of the microphones. The signal-to-
interference ratios (SIRs) for the directional interferences were 0, 5, and 10 dB.

Table 1. Parameters for the proposed statistical model and coherence-based postfilter.

αsm α αmin β η αΛ αn pth1 pth2 Gmin

0.8 0.75 0.2 0.5 0.377 0.95 0.8 0.1 0.6 −9 dB

4.2. Experimental Results

Figures 4–6 show the logarithmic errors, PESQ scores, and SSNR improvements for the
proposed and compared methods averaged over seven types of diffuse noise for various
SNRs. Figures 4 and 5 are for the simulated rooms with the RT60 of 300 ms and 500 ms,
respectively, and the distance to the desired speaker of 40 cm. Figure 6 is for the real-
recorded RIR with the RT60 of 360 ms and the distance to the desired speaker of 1 m.
The performance results averaged over all SNR conditions are shown as the rightmost
bar graphs or dashed lines. As for the noise PSD estimation accuracy in terms of LogErr,
the proposed method exhibited the lowest LogErr for all cases. The TBRR showed lower
LogErr than the Single-SPP, but the LogErrov for the TBRR was higher. Compared with the
Single-SPP [36], the noise underestimation errors for the proposed method were reduced,
while the noise overestimation errors were slightly increased. It implies that the proposed
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coherence-based noise PSD estimator in (20) could track abrupt change in the noise power
spectrum as illustrated in Figure 3c, which resulted in the final noise PSD estimate in (28)
close to the true PSD. On the other hand, it can be found that the noise overestimation
of the TBRR [21] was higher than that of the proposed method, which would be more
crucial to the perceptual quality of enhanced speech. Figure 7 shows the logarithmic
errors for two highly nonstationary noises, the Kindergarten noise 1 and the Cafeteria
noise, and two more stationary noises, the Train Station noise and Crossroad noise, for
each SNR averaged over three room conditions. The proposed method marked the lowest
LogErr for all noise types and SNRs. The TBRR [21] tended to overestimate the noise PSD
more in the presence of highly nonstationary noises, although it was originally proposed
to tackle relatively nonstationary diffuse noises. The TBRR in the speech active region
was occasionally underestimated in the presence of highly nonstationary noises since
the transient power in the noise reference of the TF-GSC became high, leading to a low a
posteriori SPP and overestimation of the noise PSD. The LogErrun of the Single-SPP increased
as the noise became more nonstationary, i.e., from the Crossroad noise in Figure 7d through
the Cafeteria noise in Figure 7b to the Kindergarten 1 noise in Figure 7a, as the single-
channel noise estimation would regard highly nonstationary noise as speech. It is noted
that the Train Station noise in Figure 7c is relatively stationary on average but includes
occasional nonstationary events, and thus it did not show a clear tendency among the other
three noises. The LogErrov for the proposed method also increased for more nonstationary
noises, maybe because the local SNRs in specific time–frequency bins could be very low in
highly nonstationary noises for the same input SNR, which led to low a posteriori SPP and
noise PSD overestimation.

Figure 8 presents the spectrogram of the desired clean speech and the a posteriori SPPs
estimated by the proposed and competing methods for the concatenation of two utterances
in the Cafeteria noise at 5 dB SNR for the smaller simulated room. The Single-SPP [36]
shows overestimation of the a posteriori SPP in many TF bins in Figure 8b, as it cannot easily
discriminate the noise onset from the speech onset. The noise onset causes overestimation
of the SPP in the speech absent region, which leads to the underestimation of the noise
PSD, and the underestimated noise PSD in turn results in the overestimation of the SPP for
the upcoming frames. The TBRR [21] makes blue horizontal lines in Figure 8c, in which
the inaccurate estimation of the acoustic transfer function in the TF-GSC brings about the
leakage of the speech to the noise references, which lowers the TBRR together with the
transient noises and then results in low a posteriori SPP. In contrast, both the coherence-
based and statistical model-based noise PSD estimators in the proposed method are not
tightly coupled with the performance of the beamformer, and thus occasional failure of the
TF-GSC does not affect the postfilter critically. We can also see that the proposed method
shows better speech onset detection and a clearer harmonic structure.

The speech enhancement performances for the proposed and compared postfilters in
the presence of diffuse noises are shown in the PESQ scores and the SSNR improvements
in Figures 4–6. Since the LogErrov is lower for the Single-SPP compared with that for the
TBRR although the LogErr for the TBRR is lower, the average PESQ scores are higher for
the Single-SPP than those for the TBRR. The proposed postfilter with new noise PSD and
a posteriori SPP estimators result in the highest PESQ scores for all SNRs and all room
conditions. The PESQ score for the proposed method averaged over all room and noise
conditions is 2.71, 0.09 higher than that for the second best one, Single-SPP, with the p-value
of 0.014. As the SNR increases, the PESQ score improvement of the proposed method over
the Single-SPP decreases, whereas the difference between the PESQ scores for the Single-SPP
and the TBRR increases. It may be because the Single-SPP tends to underestimate the noise
PSD, resulting in less speech attenuation and more residual noise, which is less crucial
in the high SNR environments where the noise power is low from the start. In terms of
the SSNR improvement, the proposed postfilter demonstrates the best performance for
all SNRs and all room conditions except the 15 dB SNR in the smaller simulated room.
As the power of the noise in comparison with the speech power is small for the 15 dB
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SNR, the power of the residual noise is small with a similar LogErrun, and thus the SSNR
improvement could become high for the Single-SPP with low LogErrov and high LogErrun
as in the PESQ scores. In the same regard, the SSNR improvement for the Single-SPP
subtracted by that for the TBRR increases with the SNR. Although the PESQ scores for the
Single-SPP are higher than those for the TBRR in all conditions, the SSNR improvements
for these approaches are comparable, possibly because the speech attenuation caused
by the noise PSD overestimation is more critical for the PESQ scores compared with the
SSNR improvement. The SSNR improvements for the TBRR are higher than those for the
Single-SPP under the conditions where the LogErrov for the TBRR are not high.
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Figure 4. The logarithmic errors, PESQ scores, and SSNR improvements for the proposed and
competing postfilters averaged over all types of diffuse noise in various SNRs for the smaller
simulated room with the RT60 of 300 ms. The lower and upper bars in the LogErr plot represent
the overestimation and underestimation errors, respectively. The average scores are shown as the
rightmost bars (a,b) or dashed lines (c).
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Figure 5. The logarithmic errors, PESQ scores, and SSNR improvements for the proposed and compet-
ing postfilters averaged over all types of diffuse noise in various SNRs for the larger simulated room
with the RT60 of 500 ms. The lower and upper bars in the LogErr plot represent the overestimation
and underestimation errors, respectively. The average scores are shown as the rightmost bars (a,b) or
dashed lines (c).
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Figure 6. The logarithmic errors, PESQ scores, and SSNR improvements for the proposed and
competing postfilters averaged over all types of diffuse noise in various SNRs for the real-recorded
RIR database with the RT60 of 360 ms. The lower and upper bars in the LogErr plot represent
the overestimation and underestimation errors, respectively. The average scores are shown as the
rightmost bars (a,b) or dashed lines (c).
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(a) Kindergarten noise 1.
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(b) Cafeteria noise.
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(c) Train Station noise.
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(d) Crossroad noise.

Figure 7. The logarithmic errors of the proposed and competing noise PSD estimators for four types
of diffuse noises averaged over three room conditions depending on the input SNR. The lower and
upper bars indicate the overestimation and underestimation errors, respectively.
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Figure 8. The spectrogram of the desired clean speech (a) and the a posteriori SPPs estimated by the
Single-SPP [36] (b), the TBRR [21] (c), and the proposed method (d) for two utterances in the Cafeteria
noise at 5 dB SNR in the smaller simulated room with the RT60 of 300 ms.

As the a posteriori SPP based on the coherence in (11) and the coherence-based noise
PSD estimator in (20) relies on the difference of the coherences for the desired speech
and noise, the performance of the proposed method in the presence of directional inter-
ference, which would have a higher magnitude coherence, than the diffuse noises may
be questionable. To ensure that the performance of the speech enhancement does not
degrade by the adoption of the proposed coherence-based SPP and noise PSD estimators in
the presence of directional interferences, we conducted another set of experiments with
both diffuse noises and directional interferences in various SNRs and SIRs in the smaller
simulated room with the RT60 of 300 ms. Figure 9 presents the average PESQ scores for
the proposed method and competing noise PSD estimators with various SNRs and SIRs.
Although the performance improvement over other approaches is reduced to 0.06 on aver-
age, the p-value over the Single-SPP is 0.000055. We can verify that the proposed method
performs slightly better than other approaches even when directional interferences disrupt
the coherence-based estimators.
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Figure 9. Average PESQ scores for the proposed and competing noise PSD estimators with both the
diffuse noises and directional interferences in various SNRs and SIRs in the smaller simulated room.

5. Conclusions

In this work, we have proposed a postfilter for dual channel speech enhancement
utilizing a posteriori SPP and noise PSD estimators based on both coherence and statistical
models. We have modeled the a posteriori SPP as a function of the magnitude of the
coherence between dual microphone signals and integrated it with the statistical model-
based SPP, which is then utilized for the noise PSD estimation and the OM-LSA gain
function. The coherence-based noise PSD estimator is derived considering the difference
between the noises in the microphone signals and the beamformer output and the speech
presence uncertainty explicitly, and is combined with the SPP-based single-channel noise
PSD estimator using the proposed coherence-based SPP. Experimental results show that
the proposed method leads to more accurate estimation of the noise PSD and better speech
enhancement in terms of the logarithmic error, PESQ scores, and SSNR improvement under
the presence of various types of diffuse noise in three room conditions for the “hand-held
handsfree” scenario. It is also demonstrated that the proposed method slightly outperforms
competing methods in the presence of both diffuse noises and directional interferences
even though the proposed approach utilizes the coherence information.
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