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Abstract
In recent years, South Korea has experienced a notable escalation in the intensity and fre-
quency of summer heat. To quantitatively gauge the impact of global warming on Korean 
summers, this study employs the Time of Emergence (TOE) method, assessing when the 
effects of global warming surpass natural climate variability. Determining a precise re-
gional TOE is challenging due to disparities between modeled climates and observations. 
For peak summer seasons (July and August), TOE estimates range from the 2010s to the 
early 2030s in Shared Socioeconomic Pathways (SSP) 5-8.5, suggesting an imminent or 
already reached TOE. However, for the same scenario, different methodologies and da-
tasets project the TOE to the late 21st century, suggesting the existence of uncertainty in 
the TOE. One reason for this uncertainty is the discrepancies identified between climate 
models and observations, which suggest that climate models could delay the TOE beyond 
the present time. Furthermore, from 1959 to 2014, global warming accounts for less than 
10% of the observed temperature. Despite this, the strengthening of global warming sig-
nals is confirmed, leading to the expectation of more extreme events than those seen in 
the 2018 heat wave. This raises questions about current estimates of TOE and emphasizes 
the need for robust climate modeling to inform effective climate action.

Keywords  Climate change · Natural climate variability · Long-term trend · Time of 
emergence

1  Introduction

In terms of hotter summers, a pivotal question frequently raised by both the media and 
the scientific community pertains to the extent to which global warming contributes to a 
region’s heightened temperatures. In the context of Korea’s warmest summer on record in 
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2018, anthropogenic forcing may have augmented the likelihood of such an extreme heat 
wave by at least fourfold, considering both intensity and maximum duration (Min et al. 
2020). While the causative factors for these extremes remain a topic of debate, the impacts 
of global warming are markedly pronounced in South Korea. The annual mean temperature 
of South Korea has risen by over 1ºC at a rate of 0.23ºC per decade from 1954 to 1999, sur-
passing the global mean air temperature increase (Hansen et al. 2006; Jung et al. 2002). Pro-
jected estimates indicate a potential rise of 4.8 ± 1.11ºC in Korea’s annual mean temperature 
by 2100, based on the Representative Concentration Pathway 8.5 (RCP8.5) scenario (KMA 
2014). To contextualize the summer heat wave of 2018 in Korea, it approximates conditions 
akin to a 3ºC global warming increase (Im et al. 2019).

Natural climate variability undeniably exerts a significant influence on Korean summer 
temperatures. Notably, two distinct atmospheric circulation patterns have been identified 
concerning heat waves: (1) zonal and (2) meridional wave types (Yeo et al. 2019). The for-
mer is characterized by a large-scale atmospheric teleconnection pattern across the Eurasian 
continent, while the latter is linked to convection in the subtropical northwestern Pacific 
Ocean. The noteworthy hot summers of 2015 and 2016 were attributed to meridional wave 
types (Yeh et al. 2018; Yoon et al. 2018), whereas the heatwave in 1994 was associated with 
a large-scale atmospheric circulation connected to the Eurasian continent (Ha et al. 2020; 
Yeo et al. 2019).

To quantify the relative contributions of global warming and natural climate variability 
to the occurrence of extremely hot summers, various approaches have been tested (Angé-
lil et al. 2014; Schär et al. 2004; Stott et al. 2004). Among these approaches, the Time of 
Emergence (TOE), a concept introduced by Hawkins and Sutton in 2012, is defined as the 
point at which the signal of a specific climate variable, such as temperature, exceeds the 
range of natural climate variability. It has been adopted in subsequent studies (Mahlstein 
et al. 2011; Maraun 2013; Mora et al. 2013). to gauge the effect of global warming. The 
TOE analysis is effective because it identifies when the signals of climate warming become 
statistically distinguishable from natural variability. This critical insight enables us to fore-
cast with greater confidence the timeline for significant climate impacts, allowing for more 
effective and timely policy interventions. Specifically, TOE helps in pinpointing vulner-
abilities, facilitating targeted adaptation strategies before the impacts become irreversible. 
TOE is frequently calculated based on the Coupled Model Intercomparison Project Phase 5 
(CMIP5) and Phase 6 (CMIP6). On a global scale, the TOE was estimated to occur around 
the 2000s in CMIP5 models based on RCP 8.5 (Hyun et al. 2020). Previous research indi-
cates tropical TOE emergence before 2020, while in extra-tropical regions, it is anticipated 
after 2030 (Hawkins and Sutton 2012). In Korea, the TOE for daily maximum and minimum 
temperatures during the summer season is estimated around the 2040s (Lee et al. 2016).

One factor contributing to the divergence in TOE estimations can be discrepancies 
between observations and climate models of natural climate variability and global warming 
trends. Despite advancements in state-of-the-art climate models, reported biases in tem-
perature, including uncertainties in simulating natural climate variability, persist (Masson-
Delmotte et al. 2021). Notable uncertainties are found in the simulation of natural climate 
variability (e.g., Hawkins and Sutton 2009; Deser et al. 2012; Thompson et al. 2015). Proba-
bilistic diagnostics employing multi-model or multi-ensemble approaches have been uti-
lized to objectively depict climate model biases. To address these challenges, it has been 
proposed to simultaneously use CMIP5, with its multiple models, and the Community Earth 
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System Model version 1’s Large Ensemble (CESM1-LE), incorporating multiple ensem-
bles, to estimate natural variability(Deser et al. 2016).

This study investigated the TOE of Korean summer temperature, the point at which it 
will transition from the current climate to a new normal driven by global warming. We uti-
lized an observation-based statistical model to predict the regional TOE, integrating these 
observations with model projections to quantitatively assess when and what these changes 
will be. We also examined how natural climate variability and long-term trends depicted in 
climate models affect the accuracy and potential biases of these TOE estimates. This inte-
grated approach, an improvement from previous methods and therefore considered inno-
vative, is crucial for developing effective mitigation strategies. In Sect.  2, we provide a 
detailed description of the data and methods employed. Section 3 comprehensively explores 
and discusses the regionally distributed TOE, highlighting disparities in natural climate 
variability and long-term temperature trends. The study concludes with Sect. 4, which offers 
final remarks and discussions on the findings.

2  Data and methods

2.1  Data

The pivotal data in this study encompasses monthly temperature records, drawing on vari-
ous datasets spanning the period from 1959 to 2014. Initially, temperature data were sourced 
from seven Korea Meteorological Administration (KMA) stations. Additionally, data from 
the Climatic Research Unit (CRU), interpolated based on station observations, were incor-
porated (Harris et al. 2020). Reanalysis temperature data sets from the Japanese 55-year 
Reanalysis (JRA-55), the 20th-century reanalysis V3 (20CRV3), the fifth-generation Euro-
pean Centre for Medium-Range Weather Forecasts reanalysis (ERA5), and the National 
Centers for Environmental Prediction/National Center for Atmospheric Research Reanaly-
sis 1 (NCEP R1) were also utilized (Compo et al. 2011; Hersbach et al. 2020; Kalnay et al. 
2018; Poli et al. 2016; Slivinski et al. 2019). The horizontal resolutions of CRU, JRA-55, 
20CRV3, ERA5, and NCEP R1 are 0.5º × 0.5º, 1.25º × 1.25º, 1º × 1º, 0.25º × 0.25º, and T62 
grid, respectively.

The monthly surface air temperatures were acquired from multiple models within the 
CMIP6 archives: 39 models in SSP2-4.5 and 42 models in SSP5-8.5 for CMIP6 (Eyring et 
al. 2016). For extension purposes, only models with the same ensemble number (r1i1p1f1) 
were utilized, with varying model numbers for each scenario. A single ensemble member 
was exclusively employed due to its advantages in representing extremes, as opposed to a 
multi-model mean (Knutti et al. 2010). Both historical simulations spanning 1959–2014 and 
future projection simulations from 2015 to 2099 were incorporated from CMIP6. In addi-
tion, we used monthly surface air temperatures from CMIP6’s hist-GHG and hist-aer sce-
narios for 14 and 12 models, respectively. These were only used for the period 1959–2014 
to determine the impact of aerosols, which are a localized component. The climate models 
included the historical, SSP2-4.5, SSP5-8.5, hist-GHG, and hist-aer used are detailed in 
Tables S1 and S2.

Additionally, four models—Community Earth System Model 2 Large Ensemble 
(CESM2-LE) (Rodgers et al. 2021), the sixth version of the Model for Interdisciplinary 
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Research on Climate (MIROC6) (Tatebe et al. 2019), the Canadian Earth System Model 
version 5 (CanESM5) (Swart et al. 2019), and EC-Earth3 (Döscher et al. 2021)—were 
selected to employ multiple ensembles within a single model. CESM2-LE, MIROC6, 
CanESM5, and EC-Earth3 were chosen to verify the accurate simulation of natural variabil-
ity and trends by the current climate model. The number of ensembles used for CESM2-LE, 
MIROC6, CanESM5, and EC-Earth3 were 50, 50, 25, and 22, respectively. In particular, 
MIROC6 and CanESM5 were also utilized for TOE prediction, utilizing the SSP2-4.5 and 
SSP5-8.5 scenarios.

Monthly atmospheric CO2 concentrations and gridded SO2 emissions were employed to 
approximate the long-term temperature trend. The CO2 concentrations were sourced from 
the Mauna Loa observatory provided by the National Oceanic and Atmospheric Administra-
tion (NOAA) (Keeling et al. 2005). The gridded SO2 emissions are available in the input 
datasets for Model Intercomparison Projects (input4MIPS) (Hoesly et al. 2018). Specifi-
cally, historical emissions and forced emissions from the SSP2-4.5 and SSP5-8.5 scenarios 
were utilized.

2.2  Methods

The Korean temperature and the global temperature were defined in this study. For Korean 
temperatures, the arithmetic average of air temperature from seven KMA stations (KMA7) 
served as the ground data, and the grid data were area-averaged over 34°–38°N and 125°–
130°E after masking out the ocean (Min et al. 2020). Regarding global temperature, the grid 
data were globally area-averaged after excluding oceanic areas.

The estimation of surface air temperature TOE presents challenges due to various factors, 
including (i) defining long-term trends influenced by anthropogenic factors and (ii) estimat-
ing natural climate variability. Metrics for anthropogenic influences include widely-used 
methods such as the linear trend method, utilizing atmospheric CO2 concentrations (Wu et 
al. 2019), and multimodel ensembles (Dai et al. 2015). Various approaches are employed 
to estimate natural climate variability, encompassing Thompson’s method, methods based 
on large-scale atmospheric circulation (Dai et al. 2015), and a method based on standard 
deviation. It is essential to note that there is no clear superiority or inferiority among these 
methods.

In this study, natural climate variability was defined in two ways. The primary method 
uses double standard deviations from detrended temperature data, widely recognized as a 
straightforward indicator of climate variability (Hawkins and Sutton 2012; Lee et al. 2016). 
In particular, the trend is set to a quadratic trend. Although this method is efficient, it may 
introduce uncertainties, prompting us to adopt a second approach proposed by a previous 
study (Thompson et al. 2015). This analytical method refines the standard deviation tech-
nique by including autocorrelation, providing a more nuanced understanding of variability 
and expressed in Eq.  (1). The critical t statistic ‘tc ’ used the two-tailed 95% confidence 
level, and the number of time steps is ‘nt ’. ‘σ ’ is the standard deviation of detrended tem-
perature, and ‘g (nt)’ is the standard deviation of time, ‘γ (nt, r1)’ is the scaling factor using 
the lag-one autocorrelation.

	 e = tcntσγ (nt, r1) g (nt) � (1)
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Next, we need to consider how we can predict the future and explore three methods. The 
first method employed linear future projections used in previous studies that included “sin-
gle threshold,” one of the methods applied to TOE (Maraun 2013). However, it is well 
known that the model’s future projected temperatures can be affected by various factors and 
may contain errors or uncertainty, especially on a regional scale (Hawkins and Sutton 2012).

To resolve the uncertainty, statistical models derived from observations were used to pre-
dict future temperatures. Two methods were employed: the second and third methods, both 
decomposing the observed temperature into natural climate variability and anthropogenic 
factors. The second method uses an anthropogenic factor consisting only of global warm-
ing, as shown in Eq.  (2). Future temperature trends were simulated using this statistical 
model, taking into account the CO₂ concentration defined by the RCP scenario. Estimation 
of the rate of temperature increase based on only CO2 concentrations was adopted in former 
research (Callendar 1938). For example, the empirical approximation of Callendar’s model 
reached the lower bound of CMIP5 future projection, and the method of using only CO2 
concentrations can be expected to reduce the uncertainty in the model projection (Anderson 
et al. 2016). Also, when removing the temperature trend, it was removed with a quadratic 
trend.

	 T2 = aTdetrend + bln(CO2conc./280)� (2)

A local forcing effect of anthropogenic aerosols was added in the third method (Eq. (3)). 
SO₂ emissions, considered precursors of sulfate aerosols with a cooling effect, were used as 
a local forcing effect. The term [bln(CO2conc./280)− cSO2emis.] containing both global 
warming and local forcing effect, was used for the third future projection in Eq. (3).

	 T3 = aTdetrend + bln(CO2conc./280)− cSO2emis. � (3)

The statistical model in Eqs. (2) and (3) allows us to quantify the contributions of natural 
variability, global warming, and the local aerosol effect. Coefficients within this equation 
were used to analyze these contributions. Using Eq. (3) as an example, we standardized each 
variable to express the equation as shown in Eq. (4), where a’, b’, and c’ are dimensionless 
coefficients representing the contributions of natural variability, global warming, and local 
forcing effects, respectively, as shown in Eq. (5).

	

T

σT
= a

σTdetrend
σT

Tdetrend

σTdetrend
+ b

σln(CO2conc./280)

σT

ln(CO2conc./280)

σln(CO2conc./280)
− c

σSO2emis.

σT

SO2emis.

σSO2emis.
� (4)

	
a′ = a

σTdetrend
σT

, b′ = b
σln(CO2conc./280).

σT
, c′ = c

σSO2emis.

σT
� (5)

To comprehensively assess the impact of anthropogenic factors, we employed the TOE by 
integrating natural climate variability and long-term trends. Natural climate variability was 
defined based on the Thompson method and double standard deviations. Long-term trends 
were defined as a linear future projection, a global warming term using only CO2 concentra-
tion, and a term that takes into account both global warming and local factors, where both 
CO2 concentration and SO2 emissions were considered. In the case of natural climate vari-
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ability, previous studies (e.g., Hawkins and Sutton 2012; Maraun 2013; Mora et al. 2013) 
used one or double standard deviations for interannual variability, but here we also used 
the Thompson method as done by Hyun et al. (2020). As we made future projections using 
linear trends, CO2 only, and both CO2 and SO2, we used the “single threshold” method.

3  Results and discussion

3.1  Estimation of regional TOE during peak summer in Korea

As global temperatures continue to rise, the contribution of global warming to this increase 
is expected to become even more significant. The 2018 summer heat wave in South Korea 
serves as an important example. The summer of 2018, which was reported as an incident 
only existing in the 3 ºC global warming temperature scenario (Im et al. 2019), lasted four 
times as long as was simulated without global warming (Min et al. 2020). Other research 
suggests that it was predominantly driven by atmospheric circulation patterns (Ha et al. 
2020). We utilized two methods to measure natural climate variability: Thompson’s method 
and double standard deviations. The long-term trend utilizes a linear trend from each model, 
calculated by segmenting the historical trend from 1959 to 2014 and the future trend from 
2015 to 2099, thereby connecting the two into a single continuous trend with an inflection 
point between 2014 and 2015.

Figure 1 illustrates two sets of TOEs based on the linear trend for future projections. 
On the left, the black, blue, and red box plots represent TOEs calculated using the Thomp-
son method for estimating natural climate variability, corresponding to CMIP6, CanESM5, 
and MIROC6, respectively. On the right, the box plots represent TOEs derived from the 
double standard deviation method. Additionally, the mean and one standard deviation range 
of TOEs are indicated as stars and lines next to each boxplot,,and below each TOE boxplot 
and marker, we list the number of instances in which TOEs were predicted through 2099 
for each group. It is noteworthy that the TOE, when estimated based on Thompson’s natural 
variability method, appears about 10 to 20 years earlier than that calculated with the double 
standard deviation method. Furthermore, the TOE consistently manifests later in the SSP2-
4.5 scenario compared to the SSP5-8.5 scenario, emphasizing once again the critical role of 
reducing greenhouse gas emissions in raising air temperature (see Fig. 1).

According to Thompson’s method and the SSP5-8.5 scenario, the TOE has already 
occurred, and in the SSP2-4.5 scenario, it has either already transpired or is imminent. 
When utilizing the double standard deviation method, the TOE is projected to occur around 
2030 and 2050 for the SSP5-8.5 and SSP2-4.5 scenarios, respectively, with the exception 
of the projections from the CanESM5 model. Due to its notably strong trend, as highlighted 
in a prior study (Swart et al. 2019), CanESM5 anticipates a TOE around 2020 and 2027 for 
the SSP5-8.5 and SSP2-4.5 scenarios, respectively. A previous study (Lee et al. 2016) esti-
mated the TOE to be in the early 2040s, based on the double standard deviation method for 
estimating natural variability and using signal-to-noise methods, specifically in the context 
of Northeast Asia during the summer season.

So far, we have fixed a linear trend and explored uncertainty related to natural vari-
ability, but now we have analyzed uncertainty concerning the long-term trend. The 
new methodology involves using long-term trends obtained from statistical models 
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based on KMA7. We used the anthropogenic factor terms [bln(CO2conc./280)] and 
[bln(CO2conc./280)− cSO2emis. ] in Eqs. (2) and (3), respectively, which are the second 
and third methods of the long-term trend. The natural climate variability of the reanalysis 
data was also represented through the natural climate variability term [aTdetrend ] in Eqs. (2) 
and (3). The results show a delay in the TOE compared to the linear trend results, especially 
in the CMIP6 TOE of the SSP5-8.5 scenario using Thompson’s natural climate variability, 
with delays of about 12 years for both global warming and local effects and about 22 years 

Fig. 1  TOE (Time of Emergence) 
based on Korean peak summer 
temperature based on SSP245 
in (a) and SSP585 in (b). The 
black, blue, and red boxplots 
represent CMIP6, CanESM5, 
and MIROC6, respectively. The 
three box plots on the left use 
Thompson’s method for natural 
climate variability and the three 
box plots on the right use double 
standard deviation. For each 
plot, stars and lines indicate the 
mean and standard deviation 
range next to it, with the number 
of TOEs predicted versus the 
sample size shown below
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for global warming alone (Figure S1). Additionally, observationally-based TOEs appear 
later than those in climate models.

These results are further confirmed in Figures S2 and S3 using historical, hist-GHG, and 
hist-aer scenarios. Figures S2 and S3 depict the annual and seasonal temperatures globally 
and for Korea, respectively. Both globally and locally, the hist-GHG scenario shows similar 
distributions to historical scenarios and warming trends, while the hist-aer scenarios have 
a distinct contribution to the cooling effect. For peak summer in Korea, the historical and 
hist-GHG scenarios show overall alignment, indicating a predominant GHG influence. Sta-
tistically, they are not different groups, but if we compare the means of the scenarios, we 
see a stronger trend in hist-GHG. Therefore, we used both statistical models to make TOE 
predictions.

In summary, even for the same future scenario, TOEs can fluctuate significantly depend-
ing on how natural climate variability and long-term trends are defined and computed. This 
indicates that there is still considerable uncertainty in regional TOEs. Moreover, it is dif-
ficult to assign superiority to any particular method, making it clear that predicting TOEs 
using only one specific method risks overestimating or underestimating the impact of cli-
mate change. These results are corroborated by previous research suggesting that greater 
estimated natural climate variability can potentially delay the TOE (Hawkins and Sutton 
2012). Therefore, in the following section, biases in the climate models are evaluated with 
regard to the metrics employed to calculate TOE against reanalysis.

3.2  Biases in simulated natural climate variability and long-term trend

Focusing on the natural climate variability and long-term trend revealed by the widely 
deployed TOE, we compared surface air temperatures from multiple model single-ensem-
bles in CMIP6 with single model multi-ensembles in CESM2-LE, MIROC6, CanESM5, and 
EC-Earth3, using several observational datasets. Analyzing peak summer (July-August), 
which is crucial for assessing heatwave risks in Korea (Kysely and Kim 2009), we found 
a strong correlation between data from station temperature and reanalysis in Fig. 2(a). To 
validate our analysis, we utilized a multi-model and multi-ensemble approach, and pre-
sented our results through Kernel Density Estimation (KDE) plots in Fig. 2(c) and (d). The 
graph displays varying results from Thompson’s method compared to the double standard 
deviation approach. Thompson’s method indicates that the mean values of natural climate 
variability in the models and observations are not statistically different, although the models 
under-simulate the observations by about 6%. In contrast, the double standard deviation 
approach reveals a statistically significant difference, consistently underestimating natural 
climate variability.

When examining the long-term trend of peak summer temperatures, the KMA7 tempera-
ture indicated an increase of 0.04 ºC per decade from 1959 to 2014, which is lower than the 
annual averaged value of 0.21 ºC per decade. Although various reanalysis data exhibited 
similar interannual fluctuations, they depicted different long-term trends. For instance, the 
strongest trend was observed in KMA7, while the weakest was in JRA-55, even showing 
a decreasing trend of -0.09 ºC per decade. The ensemble mean linear temperature trends 
for CMIP6, CESM2-LE, MIROC6, CanESM5, and EC-Earth3 were 0.20, 0.23, 0.12, 0.29, 
and 0.15 ºC per decade, respectively. When comparing the long-term temperature trends 
predicted by climate models with those from KMA7, it appears that the models generally 
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predict a more pronounced long-term increase. This indicates a potential overestimation of 
global warming effects in the region by the climate models.

Furthermore, to assess the contributions of natural climate variability and global warm-
ing, we standardized each variable and coefficient, as delineated in Eq. (5). In a statistical 
model considering both global warming and local effects, the contributions to the variation 

Fig. 2  Time series and KDE plots of Korean peak summer surface air temperature from 1959 to 2014: (a) 
Time series of five reanalysis datasets, (b) Time series of model data. The KDE plots illustrating natural 
climate variability and long-term trends of Korean peak summer surface air temperature are presented 
in (c) and (d), respectively. In the KDE plots, the intensity of shading corresponds to the density of the 
ensemble. (c) is Thompson’s method and (d) is double standard deviations
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in Korea’s peak summer temperatures were estimated to be 9.8% for global warming and 
17.8% for local effects. When only global warming was considered, the contribution was 
7.9%. This highlights the he TOE for Korean peak summer temperatures has been estimated 
using significant influence that natural climate variability still has on regional temperature 
during a particular season. Although natural variability is significant, the established long-
term trends point to the likelihood of increasingly extreme temperatures in future Korean 
summers, surpassing historical records.

Expanding to annual and seasonal trends in Korea, Fig. 3(a) and (b) presents a time series 
analysis, supporting a conclusion that a single ensemble struggles to capture the nuances 
of natural climate variability (Figure S4). Continuing with the KDE plots, we observe that 
CMIP6 tends to overestimate the natural climate variability for annual mean temperature. 
However, the analysis of seasonal temperatures reveals divergent results (Figure S5). Using 
the Thompson method, the model results fall within the range of the reanalysis and observa-
tions, suggesting a satisfactory simulation across all seasons. In contrast, the double stan-
dard deviation method shows overestimation in December-January-February (DJF) and 
June-July-August (JJA), accompanied by an underestimation in March-April-May (MAM), 
and an even more pronounced underestimation in September-October-November (SON).

Turning to the long-term trend, the CMIP6 models effectively simulate the temperature 
increase in South Korea, with 22 out of 42 models falling within the range of reanalysis 
data and observations, including station observation. A closer examination of seasonal and 
model-specific multi-ensembles reveals consistent discrepancies between observation and 
models, particularly during the summer season in Korea. Specifically, the long-term trend 
is overestimated during the summer, up to more than twice what the observational data 
indicate, with no ensemble exhibiting a weaker trend than what has been observed. Further-
more, a divergence between Thompson’s method and the double standard deviation method 
emerges when evaluating the natural climate variability during the summer season in Korea. 
Thompson’s method frequently leads to an overestimation compared to observational datas-
ets, while the double standard deviation method tends to result in an underestimation.

Finally, moving to the global scale beyond Korea, the annual average results are dis-
played in Fig. 4, with the seasonal results shown in Figures S6 and S7. From examining 
the time series results alone, it appears that the models simulate temperatures adequately, 
and this consistency extends across all seasons. In the KDE plot of Fig. 4 (c) and (d), it is 
noteworthy that all climate models exhibit a tendency to overestimate natural climate vari-
ability in annual mean temperatures, except for Korea. By applying Thompson’s method, 
only three models align with the range of natural climate variability, increasing to five mod-
els when employing the double standard deviation method. These results are in agreement 
with the reanalysis data. Transitioning to an analysis of the long-term trend, we find that 
climate models generally tend to slightly overestimate the annual mean trend, aligning with 
findings from previous research (Dai et al. 2015). The seasonal results mirror the annual 
trends. Overall, it is evident that climate models commonly overestimate both global natural 
climate variability and long-term trends.
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Fig. 3  Same as Fig. 2, but for annual mean temperature over South Korea
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4  Conclusion

The TOE for Korean peak summer temperatures has been estimated using various methods, 
some of which have already manifested. For instance, the TOE has been apparent since 
2002 in the SSP5-8.5 scenario. On average, the TOE is projected to occur in the 2020s 
according to the SSP5-8.5 scenarios of the CMIP6 models. Additionally, observation-based 
statistical models place TOEs approximately 12 or 22 years later than climate models pre-
dict, depending on the methodology. No single method has a distinct advantage over the 
others. However, relying solely on one method is likely to overestimate or underestimate 

Fig. 4  Same as Fig. 3, but for global annual mean temperature
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the impact of climate change. Further detailed analyses of the discrepancies between obser-
vation-based statistical models and climate models for TOEs were conducted, separating 
the examination of natural climate variability and long-term trends. This involved utiliz-
ing both multi-model single ensembles and single-model multi-ensembles. In our analysis, 
significant discrepancies between the models’ simulations and observed data were identi-
fied. For instance, the climate models’ simulation of the long-term trend in peak summer 
temperatures in Korea was about five times larger than the observed trend. Similarly, while 
the annual mean temperature’s long-term trend is well captured by models, they tend to 
overestimate the natural climate variability. These issues extend globally, with climate mod-
els generally overestimating both natural climate variability and long-term trends in global 
annual mean temperatures.

The observed discrepancies mirror findings in other regions. For example, U.S. summer 
temperatures and MAM temperatures in India are often overestimated and underestimated, 
respectively, by climate models (Karrevula et al. 2023; Merrifield and Xie 2016). Further-
more, these models have failed to adequately capture the slowdown in global warming 
between 2000 and 2013, suggesting a systemic overestimation of global warming (Dai et al. 
2015). These regional and global disparities highlight the challenges in accurately predict-
ing TOEs, which are compounded by uncertainties in model physics, scenario variations, 
internal variability, and the differing importance of models and scenarios across various 
forecasting periods and regions (Hawkins and Sutton 2009).

Our study also underscores that significant natural climate variability could pose an 
increased risk during peak summer months, further complicating the challenges of rising 
temperatures due to anthropogenic greenhouse gas emissions. To address the spread in TOE 
estimates and improve prediction accuracy, innovative approaches such as the use of artifi-
cial neural networks have been proposed (Barnes et al. 2020). These findings emphasize that 
accurately determining regional TOEs is a critical and ongoing task that requires continued 
refinement of model predictions and methodologies.
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