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Abstract: Emotions in speech are expressed in various ways, and the speech emotion recognition (SER)
model may perform poorly on unseen corpora that contain different emotional factors from those
expressed in training databases. To construct an SER model robust to unseen corpora, regularization
approaches or metric losses have been studied. In this paper, we propose an SER method that
incorporates relative difficulty and labeling reliability of each training sample. Inspired by the
Proxy-Anchor loss, we propose a novel loss function which gives higher gradients to the samples
for which the emotion labels are more difficult to estimate among those in the given minibatch.
Since the annotators may label the emotion based on the emotional expression which resides in the
conversational context or other modality but is not apparent in the given speech utterance, some
of the emotional labels may not be reliable and these unreliable labels may affect the proposed
loss function more severely. In this regard, we propose to apply label smoothing for the samples
misclassified by a pre-trained SER model. Experimental results showed that the performance of the
SER on unseen corpora was improved by adopting the proposed loss function with label smoothing
on the misclassified data.
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1. Introduction

The goal of speech emotion recognition (SER) is to identify emotional states conveyed
through spoken utterances. SER can be applied to various areas, including emotional speech
synthesis [1], human-computer interaction [2], and mental treatment [3]. Most SER models
are constructed by data-driven approaches, demonstrating decent performances, but they
may overfit to the training data, resulting in limited performances [4-11]. To increase the
size of the training data when the construction of a large-scale emotional speech corpus
is difficult, several approaches [7-13] have used multiple emotional speech corpora in
training. Another class of approaches tries to enhance the generalization capability by
introducing a variety of regularization approaches and metric losses [7,11,14-23].

In [17], “soft labels” were proposed to reflect the opinions of all annotators, replacing
one-hot vectors, which disregard minor opinions. Label smoothing and unigram smoothing
were exploited in [18], where the target label vector was a linear combination between a
one-hot vector and a certain class distribution vector, which was a uniform distribution
and the class distribution in the training set, respectively. The focal loss [24] was adopted
in [19] to give more weights to utterances that were difficult to classify. In [14,20-23], an
unlabeled speech corpus was utilized to construct discriminative latent features with an
autoencoder (AE). Pseudo-emotion label (PEL) was introduced in [11], which utilizes an
unlabeled speech corpus with the “neutral” labels or all-one label vectors to exploit various
expressions in a large database to construct a more robust SER model. Metric learning
approaches such as the contrastive loss [25] and triplet loss were utilized in [7,15,16], which
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learned data-to-data relations by minimizing the distances among embeddings for the
samples in the same class and maximizing those for the samples from different classes.
In [11], corpus-wise weights (CWW) were introduced to emphasize the samples from the
corpora, which were more difficult to classify with the model obtained in the previous
epoch of training.

In this paper, to build an SER model that performs well on unseen corpora, we propose
an SER method that considers the relative difficulty and labeling reliability (RDLR) of each
training sample. Firstly, we propose a novel loss function incorporating the difficulty of
each sample inspired by the Proxy-Anchor loss [26], which assigns higher gradients to the
harder examples within the given minibatch. As the CWW [11] improved the generalization
by paying more attention to the corpora, which make it difficult to classify the emotional
state, it may be beneficial to weigh each utterance differently even within the same corpus
according to the difficulty of the emotion classification for the given sentence. In addition,
we evaluate the reliability of the emotion label for each sample and refine the labels which
are considered to be unreliable. Since most of the emotional speech datasets are annotated
based on the multimodal data in conversational situations, the emotion labels may be
based on conversational context [27] or modalities other than speech (Related examples are
available at https://dori2063.github.io/RDLR/ (accessed on 23 June 2024)). Thus, some of
the emotion labels cannot be reliably estimated from the current utterance of speech, which
may degrade the performance of the SER. To mitigate this issue, we propose to apply label
smoothing for the samples misclassified by a pre-trained SER model assuming that the
labels for them are unreliable. Experimental results showed that the performance of the
SER on unseen corpora was improved by adopting the proposed loss function considering
the relative difficulty of the emotion classification among samples and the reliability of the
emotion labels.

2. Methods
2.1. Relative Difficulty-Aware Loss

We propose a relative difficulty-aware (RD) loss inspired by the Proxy-Anchor loss [26],
which is one of the proxy-based metric losses [26,28]. A proxy is a representation for each
class in the training data, which is learned as a part of the network parameters. Proxy-based
metric losses help to learn discriminative embeddings by comparing proxies and data,
in contrast to the previous data-based metric losses such as triplet loss which compare
data. The first proxy-based loss was the Proxy-Neighborhood Component Analysis (NCA)
loss [28], which is defined as

s(z,p™)
Lnea(Z,P) = ¥ —log<€p> (1)

267 Yp-ep- @)

where Z is a set of embedding vectors in a minibatch, P indicates the set of all proxies, p+
is a positive proxy corresponding to the class of z, P~ is the set of negative proxies which
includes all proxies in P except p*, and s(-, -) denotes the cosine similarity between two
vectors. The gradient of the Proxy-NCA loss with respect to s(z, p) is given by

-1, ifp=p",

= s(zp) 2
ﬁ, otherwise. ( )
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dLNcA(Z, P)
9s(z, p)

It shows that minimizing the loss encourages z and p™ to be close to each other by a
constant, and z and p~ to be far away by their relative similarities. In [26], the Proxy-
Anchor loss is proposed to consider both proxy-to-data and data-to-data relations in the
evaluation of the gradient. The Proxy-Anchor loss is given by
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where PT denotes the set of proxies corresponding to the classes into which one or more
training samples in the given minibatch fall. Given the proxy p, Z; is the set of embedding
vectors in Z which belongs to the class p represents, and Z, = Z — Zr‘f . 0 is a margin
and w is a scaling factor. It can be seen in (3) that Lpy becomes lower when s(z, p) for
the embedding vectors z € Z; increases and s(z, p) for z € Z, decreases for each p. It
is verified by evaluating the gradient of the Proxy-Anchor loss with respect to s(z, p),

which becomes
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where hi (z) = e=%((zp)=9) and h, (z) = e*5(zP)+9) which can be thought as a measure of
how complex the correct classification of the embedding vector z is. We can see that the
Proxy-Anchor loss considers proxy-to-data relations via s(z, p), while it also incorporates
data-to-data relations as the right-hand side of (4) is —h;,r or h; normalized by those for
other embeddings. In [11], the introduction of the CWW to emphasize the samples from
the corpora is more difficult than to classify the improved generalization to the unseen
corpora when the model is trained with multiple training corpora. For an emotion classifier
F with a softmax function, the one-hot class label vector y;, and the input feature x;, the
classification loss function with the CWW for a minibatch (X, Y) = {x;,y;}M, is given by

1 M
Leww(X, Y F) = =52 Y wiBiy; - log F(x;) (5)
i—1

in which M is the number of samples in a minibatch, - represents an inner product, 3; is the
class weight to relieve the bias caused by class-imbalanced training data, and w; is the CWW
depending on the emotion classification difficulty of the training database which the i-th
sample comes from. w;’s are initialized to 1 and updated for each training epoch as follows:

(1—Ug )™
= : 6
¢ % ZdDzl(l - udi)/\w ©

where D is the number of training corpora, d; is the corpus index for the i-th sample, Uy,
is the unweighted accuracy (UA) [11] for the corpus d;, and Ay is a control parameter.
Although the CWW only considers relative difficulty of each training corpus to enhance
the generalization of the SER, we may expect that considering the relative difficulty of
classification among samples within a minibatch would also be helpful as in the Proxy-
Anchor loss. We may consider to adopt the Proxy-Anchor loss to SER by applying the
Proxy-Anchor loss to the embeddings at the middle of the SER model along with the
conventional cross-entropy (CE) loss for the final output, as shown in Figure 1a.
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Figure 1. Block diagrams of speech emotion recognition models incorporating (a) the Proxy-Anchor
loss Lpp and (b) the proposed relative difficulty-aware loss Lrp. Lcg denotes the cross-entropy
loss and P represents the set of proxies. The models consist of fully connected (FC) layers. x and y
represent the input feature and the target label.

However, the SER deals with known emotional classes and thus the Proxy-Anchor
loss to cope with unseen classes may not be the most effective way as it does not evaluate
the difficulty of classification for the final output.

To consider the relative difficulty of each sample within the minibatch for emotion
classification, we propose a loss function for the last layer of the emotion classifier F with a
softmax function in which the one-hot class label vector y; for the input x; is used instead
of the proxy, as shown in Figure 1b. In virtue of the softmax function, the cosine similarity
between F(x;) and other one-hot vectors corresponding to the second term in (3) would
not be crucial. The proposed RD loss is given by the following simple equation:

M
Lrp(X,Y,F) = log (1\1/1 Y. e”‘(s(l:(xi)ryi)‘s)> , ?)
i=1

The gradient of the RD loss with respect to s(F(x;), y;) becomes

aﬁRD(X, Y, F) —ae—ﬂ(S(F(x,')/yi)—ﬂ

(EC), )y e ) ®

which has a higher value for the samples where it is more difficult to predict the emotion
labels within a minibatch.

2.2. Training Target Considering Labeling Reliability

Speech samples to train an SER model are mostly from emotional datasets for which the
annotations were made based on multimodal data in conversational situations. Therefore,
some of the emotional labels were decided based on non-speech modalities or conver-
sational contexts, although the labeled emotions were not evident in the speech signals.
Figure 2 illustrates an example in the IEMOCAP dataset [29], for which the emotion was
not clearly expressed in the given sentence of speech. In this example, the emotion becomes
clear only when the conversational context is given. More examples can be found in our
demo page!. The samples with this type of improper labels may be more problematic for
the proposed RD loss, because the RD loss would identify those samples as difficult ones
to classify and emphasize them, although they should be treated as mislabeled data. To
mitigate this issue, we propose to construct a training target vector considering labeling
reliability. In [18], the linear combination between the one-hot label vector and the all-one
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vector was used as a training target, which is called the label smoothing (LS). The target
vector with the LS is given by

}71':(1—’Y)><3/i+% )

where C is the number of classes and 7y is a smoothing parameter. We may interpret that the
LS assumes that all the annotations are not reliable to an extent. In the proposed method,
we apply the LS to the unreliable one-hot label vectors or label-smoothed vectors, which
are determined by a pre-trained SER model. The utterances in the training data which are
not correctly classified by a pre-trained model are regarded as those with unreliable labels
and additional LS is applied as follows:

(1) x yi+ L, i argmax(7;) # argmax(yy),

Yi=

(10)
Yis otherwise,

where 7; is the training target vector considering labeling reliability of each sample and ¥;
is the prediction output of the pre-trained SER model. We used the same structure with the
proposed system without considering labeling reliability (LR) as the pre-trained model.

| -
i i
| |
| | .
| | Audio He speaks
I
: =8 | | oo0 =
i -4 »anr*: | :
| | -
| m '
! I

He does not
seem to feel bad.
So it may not be
i sarcastic.
| [F] I'm so excited for you. That's great. I'm so- This isn't
| even anything.

| [M] Yeah, yeah. She was actually -- she was going to tell |

| you but | told her that | wanted to tell you and she had | He was telling
Ito work today anyway, so | decided to- | good news to his
| [F] Well I'm glad you told me. | friend.
L ;

Figure 2. An example in the IEMOCAP dataset for which the emotion is not clear in the current
speech utterance but can be inferred by the conversational context.

2.3. Speech Emotion Recognition Incorporating Relative Difficulty and Labeling Reliability

The final loss function of the proposed method incorporating relative difficulty and
labeling reliability (RDLR) includes the RD loss in (7) along with the CE loss with CWW,
Lcww, the autoencoder-based reconstruction loss, £ag, and the CE loss on a non-emotional
speech corpus with pseudo-emotion labels (PELs), Lpgy, following the loss in [11], i.e.,

Eproposed(Xr Y, F, H) = ECWW(X/ Y, F) + ARDERD(X/ Y, F)

(11)

+AAELAE(X, F', H) + ApeL LPEL(Xunlabeled, F)-
In (11), Y = {y‘i}f\i ; is the emotion label set obtained by (10), and A’s are parameters to
control relative weights for loss functions. £g is given by

M

1
LAe(X,F H) = =2 ) [l — H(F (xi)) |3 (12)
i=1

where F’ is the encoder which has the same structure with the first few layers of F, and H
is the decoder. Lpgy is represented as

18
‘CPEL(Xunlabeled/ F) = _M Zyl : logF(xlunlabeled) (13)
i=1
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unlabeled

where x; and 7j; are the input feature and PEL for the i-th sample of the unlabeled
speech corpus, and M’ is the number of minibatch for unlabeled speech samples. X, n1apeled
is the input feature set for the minibatch. All-one vectors are used as the PELs.

3. Experiments
3.1. Experimental Design

In our experiments, we employed 4 different emotional speech corpora in English:
CREMA-D (CRE) [30], IEMOCAP (IEM) [29], MSP-IMPROV (IMP) [31], and MSP-Podcast
(POD) [32]. We considered 4 categorical emotions that were typically used in SER [6-8,10,11]
including neutral, happy, sad, and angry within each corpus. The specifications on the
corpora are summarized in Table 1. CRE is an audiovisual corpus for which 91 professional
actors expressed emotions with predefined 12 sentences [30]. IEM is an audiovisual dyadic
conversational corpus which consists of 5 sessions. In each session, one actor and actress
conversed on a pre-determined topic [29]. To balance the class distribution in [EM, we merged
the excitement class into the happy class. IMP is a multimodal emotional corpus spoken by
12 actors engaged in paired interactions across 6 sessions similar to IEM. IMP also included
natural speech recorded in the conversations while the actors were not acting [31]. POD
is sourced from podcast recordings and encompasses diverse lexical information [32]. We
used the released version 1.8, which consists of 28,602, 4772, and 12,787 samples for the train,
validation, and test sets, respectively. In POD, the number of labeled speakers is 1285 but also
contains samples without speaker labels.

To evaluate the performance of SER models for unseen corpora, we carried out leave-
one-corpus-out experiments in which three corpora were utilized for training and valida-
tion, and the remaining corpus was used for the test. CRE, IEM, and IMP were divided
into 58 and 33 speakers, 4 and 1 sessions, and 5 and 1 sessions for training and validation,
respectively. For POD, we used the predefined training and validation sets. We also pre-
sented the performances of within-single-corpus SER. As for the within-single-corpus SER,
we randomly selected 10, 9, and 72 speakers for the test, validation, and training for CRE,
respectively. For IEM, 8 speakers in 4 sessions were used for training; 1 speaker in the last
session was used for the validation, and the last speaker was used for the test. For IMP,
6 sessions were divided in a similar way to IEM. For POD, we used the provided partition
of data.

We trained the same SER model using soft label [17], label smoothing and unigram
smoothing [18], focal loss [19], autoencoder-based unsupervised learning (AE) [20], contrastive
loss, Proxy-Anchor loss [26], CWW and PEL [11], and the proposed RD loss and labeling
reliability (LR), respectively. For the AE and PEL, we used the Librispeech 100 h [33], which
contains 28,539 utterances of audiobooks in English. The contrastive and Proxy-Anchor
losses were calculated for the last embedding features of the emotion classifier F. In addition,
we conducted self-knowledge distillation (Self-KD) [34,35] in order to demonstrate that the
performance improvement of the LR did not come from the utilization of a pre-trained SER
model. For the Self-KD, we used the prediction output of the pre-trained SER model as the
target label and trained a new SER model with the CE loss.

Table 1. Numbers of utterances in each emotional class and numbers of speakers in the corpora used
in the experiments.

Corpus #Speakers Neutral Happy Sad Angry
CRE [30] 91 1087 1271 1270 1271
IEM [29] 10 1708 1636 1084 1103
IMP [31] 12 3477 2644 885 792
POD [32] 1285+ 26,009 14,285 2649 3218

3.2. Input Features and Model Configuration

As the input feature x, we used the 1582 dimensional IS10 [36] utterance-level feature set
with and without wav2vec (W2V) representation [37] and the text-based feature obtained using
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BERT [38]. We used the openSMILE toolkit [39] to extract the IS10 feature set which was calcu-
lated by 21 statistical functionals for 38 low-level descriptors. We extracted the W2V features
from the context network of wav2vec and mean pooled to obtain a 512-dimensional utterance-
level feature set. As for the text-based features, we used a speech recognition model, Whis-
per (we used medium.en at https://github.com/openai/whisper, (accessed on 23 June
2024)) [40] to extract text information and then transformed them into 768-dimensional
BERT (we used BERT-based-uncased at https://github.com/google-research/bert, (ac-
cessed on 23 June 2024)) features. The features were concatenated with the IS10 feature set
to form the input x when they were used together as shown in Figure 3. The input feature
x is z-normalized with the means and variances of the training data.

—

1582-dim.
Raw waveform m Concat.
- Mﬂm‘mwﬂ‘ F emotio @
/ ) recognition
T— 512-dim. Emotion label

—

768-dim.

Figure 3. The procedure of input feature processing for speech emotion recognition with IS10,
wav2vec, and BERT feature set.

The emotion classifier F comprises five fully connected layers with 1024, 1024, 512,
512, and 4 units, where the activation function for the last layer was softmax. The activation
functions for all other layers were ReLU and the dropout rate was 0.5. For AE, we used the
first two fully connected layers of F as the encoder F/, while the decoder H consisted of
fully connected layers with 1024, 1024, and input dimensional units. For LS, we used 0.1
as the label smoothing parameter. For RD loss, we fixed « and § as 1 and 0, respectively,
although the performance was not sensitive to these parameters in the experiments. Apgp
and M’ was set to 0.0001 and 32. The minibatch size M, v, Aw, Arp, and Asg were
selected from [1024,2048,4096], [0.2,0.3,0.4,0.5,0.6,0.7,0.8], 1,2, 3,4], [0.1,0.01,0.001], and
[0.5,0.1,0.01,0.001], respectively, and the best results for the unseen corpora are shown in
the table. The hyper-parameters for the compared methods were also tuned to achieve the
best performances. The code for the proposed method is available (https:/ /github.com/
dori2063/RDLR (accessed on 23 June 2024)).

We used Pytorch 1.13 [41] to train the models and Adam optimizer [42] with a learning
rate of 0.0002. We measured our SER performance with the UA, which is the average of
the accuracies for individual emotional classes. The UA for the validation set was used
for the stopping criterion. An early stopping strategy with a patience of 5 was employed
using the average UA for training corpora. Also, we used a learning rate scheduler which
reduced the learning rate by multiplying 0.1 after 2 patience. We experimented with
5 random seed initializations and reported the averaged results.

4. Results

Table 2 summarizes the UAs for the within-corpus and out-of-corpus SER. The test
corpus is shown on the top row, and the remaining three corpora were used for training.
The average UA for the four experiments for each corpus is shown in the rightmost column.
For each corpus and feature configuration of the out-of-corpus SER, the best performance
of each target corpus is marked in boldface. The performance for the within-single-corpus
SER is also shown in the table, which provides the upper bound of the performance of
the out-of-corpus SER and also implies the difficulty of the SER for each corpus. The
highest and lowest UA for the within-single-corpus SER were observed in CRE and POD,
which collected emotional speech in recording with restricted verbal contents and real
conversation, respectively.
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In out-of-corpus SER experiments, most of the compared methods demonstrated better
performance than the basic SER system with the CE loss. Among the combinations of the
previously proposed methods, CWW+-1 showed the best average UA of 46.3%. When we
additionally apply the Proxy-Anchor loss for the last embedding features of F on top of
CWW 1, the performance slightly increased to 46.6%. The Self-KD did not show a good
performance, possibly because the pre-trained SER model did not provide target labels
which are good enough to guide the SER model better than the one-hot labels. The RD loss
by itself represented an average UA of 45.5%, while it showed 47.3% when combined with
CWW+-1. The LR resulted in 45.4% of average UA, which is higher than that for the LS
or unigram smoothing, implying that the selective application of the label smoothing was
effective, and demonstrated 47.3% of the average UA when used with CWW+1. When the
LS was replaced by the LR in the CWW+1, which showed the best performance among
combinations of the published methods, the UA was improved from 46.3% to 47.3%. The
LR improved the performance of the RD+CWW+t when it replaced the LS by 1.0%p. These
results show that the label smoothing on the misclassified data could provide the robustness
to the ambiguous emotional cues in speech data demonstrated in Figure 2. We could not
find further improvement when both the LS and LR were used. When both the RD loss
and the target vector considering LR (RDLR) were incorporated with CWW+-1, which is
the proposed loss function shown in (11), the average UA was 48.4%, which was the best
among all compared methods using the IS10 input feature vectors.

Table 2. Unweighted accuracies (%) of speech emotion recognition with IS10 input features for the test
corpus on top. Except for the “within-single-corpus (CE)”, the model was trained with the remaining
three corpora. RDLR stands for the combination of relative difficulty and labeling reliability that is
proposed in this study. t represents the combination of AE, LS, and PEL.

Method CRE IEM IMP POD Avg
Within-single-corpus (CE) 66.0 60.1 49.5 46.0 55.4
Out-of-corpus (CE) 51.6 50.1 38.9 31.9 43.1
Soft label [17] 52.7 50.2 40.2 31.6 43.7
Label smoothing (LS) [18] 53.5 51.5 394 324 442
Unigram smoothing [18] 55.0 52.6 39.0 32.7 448
Focal loss [19] 514 49.6 40.5 329 43.6
AE [20] 55.2 489 42.8 31.3 44.6
CWW [11] 53.8 52.3 427 33.1 45.5
Contrastive loss [25] 52.2 51.4 42.8 32.7 448
Proxy-Anchor [26] 52.5 51.5 43.2 334 449
CWW + PEL [11] 53.5 51.2 40.7 38.7 46.0
AE + LS + PEL (1) 53.1 52.5 425 36.1 46.0
CWW + 1 53.8 53.4 42.0 36.1 46.3
Proxy-Anchor + t 53.1 52.8 43.8 35.2 46.2
CWW + Proxy-Anchor+ t 54.0 53.1 43.4 35.8 46.6
Self-KD 30.1 33.8 35.2 26.3 314
Relative difficulty (RD) 53.3 53.0 43.6 322 455
CWW + RD 53.5 53.6 45.2 32.8 46.3
Labeling Reliability (LR) 53.1 52.9 429 32.7 454
LS+LR 53.1 53.0 429 32.6 454
RD + CWW + t 54.0 54.1 439 37.2 47.3
LR + CWW + AE + PEL 54.3 53.6 43.9 37.4 47.3
LR+ CWW +t 54.2 53.6 439 37.4 47.3
RD + LR (RDLR)+ t 54.2 54.0 45.2 37.7 47.7
RDLR + CWW + AE + PEL 56.3 54.1 442 38.7 48.3
RDLR + CWW + t (proposed) 56.4 54.1 44.3 38.8 48.4

For each corpus and feature configuration of the out-of-corpus SER, the best performance of each target corpus is
marked in boldface.

Table 3 shows the results when the W2V features were used along with the IS10
feature set and the BERT features were additionally used with the IS10 and W2V features,
respectively. The highest average UA was observed when 1510, W2V, and BERT embeddings
were used altogether as the input feature. We could observe that the performances were
improved by incorporating additional input feature sets including W2V and BERT, and
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the proposed method showed the best performance for each input feature set. The best
performance with the proposed method using IS10, W2V, and BERT features was 54.7%.

Table 3. Unweighted accuracies (%) for the test corpus on top. Except for the “Within-single-corpus
(CE)”, the model was trained with the remaining three corpora. t represents the combination of AE,
LS, and PEL. # + X represents X is used as input features in addition to the IS10.

Method CRE IEM IMP POD Avg
Within-single-corpus (CE) 66.0 60.1 49.5 46.0 55.4
#+ W2V 70.9 62.6 53.1 49.0 58.9

#+ W2V and BERT 71.3 68.7 60.3 56.2 64.1

RDLR + CWW + t (proposed) 56.4 54.1 443 38.8 48.4
CE #+ W2V 52.6 55.9 48.6 36.5 48.4
AE + LS + PEL (1) 53.5 56.2 48.9 39.1 49.6
CWW ++ 53.7 56.8 49.9 39.3 49.9
Proxy-Anchor+ t 53.6 56.9 50.5 39.1 50.0
CWW + Proxy-Anchor + t 53.7 56.9 50.6 39.5 50.2
RD + CWW +t 53.4 57.1 50.6 41.3 50.6
LR + CWW + ¢t 53.8 57.1 50.0 40.5 50.4
RDLR + 1 55.5 57.1 49.8 40.7 50.8
RDLR + CWW + t (proposed) 55.5 57.4 50.8 41.7 51.4
CE #+ W2V and BERT 52.0 60.4 53.1 429 52.1
AE + LS + PEL (1) 52.6 61.3 53.6 441 52.9
CWW + 1t 54.9 60.7 52.8 442 53.2
Proxy-Anchor + t 53.5 60.8 54.0 44.0 53.1
CWW + Proxy-Anchor + t 54.1 60.9 54.2 443 53.4
RD + CWW +t 53.2 61.3 54.6 45.9 53.8
LR + CWW + ¢t 53.4 61.7 54.8 46.0 54.0
RDLR + 1 55.3 61.8 54.3 45.9 54.3
RDLR + CWW + 1 (proposed) 56.3 61.8 54.8 46.0 54.7

For each corpus and feature configuration of the out-of-corpus SER, the best performance of each target corpus is
marked in boldface.

It is noted that the proposed method does not affect the computational complexity
of the SER in the inference phase, as it only modifies the loss function and the training
target. The back-propagation with the RD loss takes additional time in training, although
the additional computation in the training phase is smaller than that for the Proxy-Anchor
loss which computes the cosine similarities between higher-dimensional vectors. The LR
does not introduce additional computation once the smoothed labels are prepared.

5. Conclusions

In this paper, we propose a loss function for speech emotion recognition by incor-
porating the relative difficulty of SER for each training utterance with the training target
and considering labeling reliability. The RD loss is designed so that the gradient becomes
higher for the samples harder to classify within a given minibatch. In addition, we used
soft labels as training target vectors by applying label smoothing for the data misclassified
by a pre-trained SER model. Our experimental results demonstrated that RDLR improved
the SER performance on unseen corpora compared to previous methods. The proposed
method may enhance the performance of the cross-language SER if the training corpora also
include diverse languages, but the current model trained with multiple English corpora
would not enhance the generalization to another language because the ways to express and
perceive emotions are different in different cultures [43].
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