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Spatial profiling of non-small cell lung
cancer provides insights into
tumorigenesis and immunotherapy
response

Check for updates

Joon Kim 1,2,5, Seung Hyun Yong2,5, Gyuho Jang 1, Yumin Kim1, Raekil Park 1, Hyun-Hee Koh 3,
Sehui Kim3,4 , Chang-Myung Oh 1 & Sang Hoon Lee2

Lung cancer is the second most common cancer worldwide and a leading cause of cancer-related
deaths. Despite advances in targeted therapy and immunotherapy, the prognosis remains
unfavorable, especially in metastatic cases. This study aims to identify molecular changes in non-
small cell lung cancer (NSCLC) patients based on their response to treatment. Using tumor and
matched immune cell rich peritumoral tissues, we perform a retrospective, comprehensive spatial
transcriptomic analysis of a proven malignant NSCLC sample treated with immune checkpoint
inhibitor (ICI). In addition to T cells, other immune cell types, such as B cells and macrophages, were
also activated in responders to ICI treatment. In particular, B cells and B cell-mediated immunity
pathways are consistently found to be activated. Analysis of the histologic subgroup (lung squamous
cell carcinoma, LUSC; lung adenocarcinoma, LUAD) of NSCLC also confirms activation of B cell
mediated immunity. Analysis of B cell subtypes shows that B cell subtypes were more activated in
immune cell-rich tissues near tumor tissue. Furthermore, increased expression of B cell immunity-
related genes is associated with better prognosis. These findings provide insight into predicting ICI
treatment responses and identifying appropriate candidates for immunotherapy in NSCLC patients.

Lung cancer is the leading cause of cancer incidence and mortality
worldwide, accounting for an estimated 2 million diagnoses and 1.8
million deaths1. NSCLC is the predominant subtype of lung cancer,
affecting approximately 85% of patients1,2. Although many ther-
apeutic strategies such as surgery, radiation, chemotherapy, and
molecular targeted therapy are available for the treatment of NSCLC,
the prognosis of lung cancer remains poor, with a 5-year survival rate
of only 23%3. In addition, many patients who were initially con-
sidered to have early-stage disease and who underwent surgery are
susceptible to distant metastases or local recurrence2. Considering the
nature of NSCLC, patients may require systemic treatment during the
treatment process. Recent advances in cancer treatment have focused
on developing drugs that target the interaction of the immune system
with tumors and have robust systemic anticarcinogenic effects.

Immunotherapy, or biological treatment, boosts the innate human
immune system’s anti-cancer defenses2.

Over the last 10 years, ICI have shown significant survival benefits in
patients with advanced NSCLC4,5. According to the American Lung Asso-
ciation (State of Lung Cancer, 2021), 5-year survival rates for NSCLC
increased from 14% to 23.7%5. However, despite advances in overall sur-
vival, ICI-treated patients with NSCLC still showed an overall poor out-
come, and newly adapted treatments also brought about unique toxicities or
related problems. Some patients suffered from immune-related toxicities,
such as enterocolitis, endocrinopathies, hepatitis, and myocarditis6. Fur-
thermore, somepatients failed to respond to ICI therapy,which couldnot be
confirmed. This failure may be associated with the development of primary
or acquired resistance7. However, there remains a lack of knowledge
regarding patients’ responses to immunotherapy7.
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Recently, single-cell sequencing technologies have revealed previously
unknown heterogeneity in cancer cells and the surrounding cellular
environment, including cells responsible for immune reactions. However,
single-cell sequencing techniques require tissue dissociation, which results
in a loss of spatial context. Spatial transcriptomics has rapidly emerged as a
solution, allowing the construction of tissue atlases and the characterization
of spatiotemporal heterogeneity in cancer8,9.

In this study, we sought to identify differences in transcriptome
expression profiling in response to treatment in patients receiving ICI
treatment for metastatic NSCLC. We performed spatial transcriptome
analysis of lung tissues from NSCLC patients who are candidates for
immune checkpoint inhibitors and classified the lung tissues into tumor
tissues and immune cell-rich tissues near the tumor. We aimed to identify
molecular and functional changes in both tumor and peritumoral immune
cell-rich tissues in response to ICI treatment in NSCLC patients. These
comprehensive analyses provide valuable insights into the molecular
landscape of NSCLC and contribute to our understanding of immu-
notherapy response mechanisms.

Results
Patient characteristics
Spatial transcriptome analysis was conducted on the lung tissues obtained
from 18 patients with stage IV NSCLC who were candidates for immune
checkpoint blockade. The clinical characteristics of the patients are sum-
marized in Table 1.

The response to immunotherapy was evaluated following RECIST
1.1 criteria. This cohort comprised 7 responders and 11 non-responders.
Patients were defined as responders if the duration of treatment response
to ICI was greater than or equal to 180 days and non-responders if the
duration of treatment response was less than 180 days. There were no
significant differences in age, BMI, smoking history, or PD-L1 expression
between the responder and non-responder groups. The majority of the
NSCLC subtypes in both groups were squamous cells, followed by ade-
nocarcinomas. Hypertension was the most common comorbidity in both
groups. In the response group, three patients were treated with pem-
brolizumab, and four patients were treated with nivolumab. In the non-
responder group, six patientswere treatedwith pembrolizumab,whilefive
patients were treated with nivolumab. In the responder group, the most
common site of metastasis was the contralateral lung, followed by the
pleura, while in the non-responders, the most common site of metastasis
was the pleura.

Identification of NSCLC tumor and immune samples
In collaborationwith a pathologist, wemeticulously identified tissue regions
corresponding to tumor and immune cells, allowing for a focused analysis of
spatial profiling within these regions (Fig. 1a, Supplement Fig. 1a).

ESTIMATE analysis was performed on the entireNSCLC samples and
histologic subtypes of NSCLC (LUSC, LUAD) to determine whether the
tissue regions were appropriately divided into tumor and immune samples.
The stromal score, immune score, andESTIMATE scorewere all elevated in
immune samples of both entire NSCLC samples and each histological
subtype compared to tumor samples, confirming the distinct classification
of tumor and immune tissues (Supplementary Fig. 1b–d, Supplemen-
tary Data 1).

Transcriptome expression profiling between NSCLC tumor and
immune samples
Prior to the analysis of transcriptome expression profiling for NSCLC
immune checkpoint blockade responsiveness, we performed an analysis to
identify the difference in transcriptome expression profiling between tumor
and immune tissues (Supplementary Fig. 2).

We identified DEGs with a Padj ≤ 0.05 between tumor and immune
tissues in entire NSCLC samples and identified 2895 upregulated and 3909
downregulated DEGs. DEGs were also identified between tumor and
immune samples of NSCLC histologic subtypes, with 2262 upregulated and

2998 downregulated DEGs in LUSC and 435 upregulated and 379 down-
regulated DEGs in LUAD (Supplementary Fig. 2a–c, Supplemen-
tary Data 2).

Next, GSEA was performed using MSigDB Hallmark, GO BP,
KEGG, and cell type signature gene sets to identify functional changes
between tumor and immune samples in NSCLC samples (Supplemen-
tary Fig. 2d–g, Supplementary Data 2). GSEA using Hallmark terms
confirmed that metabolism, proliferation pathways, and most signaling
pathways were significantly positively enriched in tumor samples,
whereas the immune pathway was negatively enriched (Supplementary
Fig. 2d). Similar results were found in GSEA using GO BP and KEGG
terms, and in particular, GSEA using cell type signature gene sets con-
firmed that T cells, B cells, and immune cells such as neutrophils,
macrophages, and NK cells were negatively enriched in tumor samples
(Supplementary Fig. 2g).

Transcriptome expression profiling of NSCLC immune check-
point blockade responsiveness
In collaborationwith a pathologist, wemeticulously identified tissue regions
corresponding to tumor and immune cells, allowing for a focused analysis of
spatial profiling within these regions (Fig. 1a).

To investigate the differences between responders and non-responders
to ICI treatment, we identified differentially expressed genes (DEGs)
between responders and non-responders in the entire NSCLC samples and
in tumor and immune samples. In entire NSCLC samples, 302 upregulated
and 362 downregulated DEGs between responders and non-responders
were identified with Pnom ≤ 0.05. Similarly, DEGs between responders and
non-responders were identified in NSCLC tumor and immune samples,
with 391 upregulated and 486 downregulated DEGs identified in tumor
samples and 130 upregulated and 262 downregulated DEGs identified in
immune samples (Fig. 1b–d, Supplementary Data 3).

Next, GSEA was performed using MSigDB Hallmark, GO BP, KEGG
terms, and cell type signatures to identify functional differences between
responders andnon-responders to ICI treatment (Fig. 1e–h, Supplementary
Data 3). GSEA using Hallmark and GO BP terms showed that pathways
related to glucose metabolism and proliferation and ribosomal pathways
involved in protein synthesis were positively enriched in the ICI responders
compared to the non-responders, and in terms of immune-related path-
ways, the antigen processing and presentation pathways were positively
enriched in the responders (Fig. 1e, f). In GSEA using KEGG terms, similar
to the analysis usingHallmark andGOBP terms, we found that translation,
ribosome biogenesis, and peptide biosynthesis pathways related to anabo-
lism and glucose metabolism-related pathways were positively enriched in
the immune checkpoint inhibitor responders than in the non-responders,
and in addition, activation of immune response and B cell-mediated
immunity-related pathways were positively enriched in the responders,
specifically in NSCLC immune samples (Fig. 1g). GSEA performed using a
cell type signature gene set to identify immune cell functions showed
positive enrichment of both CD4 and CD8memory effector T cells, as well
as B cells, in the NSCLC immune checkpoint inhibitor responders, and
innate cell immunity-related immune cells such as monocytes and mac-
rophages were positively enriched in the responders, specifically in NSCLC
immune samples (Fig. 1h).

Transcriptome expression profiling of LUSC immunecheckpoint
blockade responsiveness
Subtype analysis was performed on LUSC and LUAD samples to identify
differences between responders and non-responders to immune checkpoint
inhibitor treatment in each histologic subtype of NSCLC. In the LUSC
samples, we identified DEGs with a nominal P value ≤ 0.05 between
immune checkpoint inhibitor responders and non-responders, with 232
upregulated and 275 downregulated genes in the entire LUSC sample.
Similarly, we identified 330 upregulated and 470 downregulated genes in
LUSC tumor samples and 102 upregulated and 181 downregulated genes in
LUSC immune samples (Fig. 2a–c, Supplementary Data 4).
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Next, GSEA was performed to identify functional differences between
immune checkpoint inhibitor responders and non-responders in LUSC
(Fig. 2d–g, SupplementaryData 4). GSEAusingMSigDBHallmark andGO
BP terms revealed positive enrichment of pathways related to glucose
metabolism and proliferation, ribosome, antigen processing, and pre-
sentation in the responders as well as in the whole NSCLC samples (Fig. 2d,
e). GSEA using KEGG terms also confirmed the positive enrichment of
anabolism-related pathways such as translation, ribosome biogenesis,
peptide, amide biosynthesis, and other immune-related pathways, and the
positive enrichment of antigen processing and presentation-related path-
ways (Fig. 2f). GSEAusing the cell type signature gene set identified positive
enrichment of CD4 memory effector T cells, B cells, and macrophages
specific to immune samples (Fig. 2g).

Transcriptome expressionprofilingof LUAD immunecheckpoint
blockade responsiveness
Next, we identified DEGs with a Pnom ≤ 0.05 between immune checkpoint
inhibitor responders and non-responders in the LUAD samples. In the
entire LUAD samples, we identified 178 upregulated and 179 down-
regulated DEGs, and 293 upregulated and 256 downregulated DEGs in
LUAD tumors. And, in the LUAD immune sample, we identified 71
upregulated and 195 downregulated DEGs (Fig. 3a–c, Supplemen-
tary Data 5).

In LUAD, as in the entire NSCLC and LUSC samples, we performed
functional analysis to identify differences between ICI responders and
non-responders (Fig. 3d–g, Supplementary Data 5). GSEA usingMSigDB
Hallmark terms confirmed that LUAD ICI responders were positively
enriched for interferon-gamma response compared to non-responders. In
the metabolism-related pathways, only fatty acid metabolism was posi-
tively enriched, while proliferation pathways were mostly negatively
enriched. GSEA using GO BP terms revealed positive enrichment of the
translation-related ribosome pathway, similar to the whole NSCLC and
LUSC samples. The glycolysis/gluconeogenesis pathway was found to be
positively enriched only in responders of LUAD tumor samples. Analysis
using KEGG terms showed positive enrichment of the translation and
amide biosynthesis pathways in entire LUAD samples and LUAD
immune samples, as well as the B cell-mediated immunity-related path-
way and phagocytosis-related pathway in entire NSCLC samples and
LUSC samples. GSEA, using the cell type signature gene set, confirmed the
positive enrichment of macrophages.

Identifying modules associated with ICI treatment response
using NMF
To identify gene modules associated with ICI treatment response, we per-
formed NMF using responder-specific DEGs and tumor-specific DEGs
(Fig. 4a–l, SupplementaryData 6).Wenamed the responder’sDEGs among
NSCLC tumor samples as a tumor response signature and used it to identify
whether NSCLC tumor samples were divided into clusters (Fig. 4a). Cluster
2 was identified as a non-responder-specific cluster, and we found that the
enrichment score of cluster 2 genes was higher in non-responders than
responders in the entire NSCLC tumor samples, but did not reach sig-
nificance (P = 0.074) (Fig. 4b, c).WeperformedORA for functional analysis
of cluster 2 genes and found that differentiating basal cells were significantly
enriched (Fig. 4d).

We also named the DEGs of responders among NSCLC immune
samples as immune response signatures and used them to check whether
NSCLC immune samples were divided into clusters (Fig. 4e).We identified
cluster 1 as a responder-specific cluster and found that cluster 1 genes in the
entire NSCLC immune samples had significantly higher enrichment scores
in responders than non-responders (P = 0.035) (Fig. 4f, g). We performed
ORAon cluster 2 genes and found enrichment ofCD4T cells, B cells, aswell
as dendritic cells and monocytes (Fig. 4h).

Lastly, we named the DEGs of NSCLC tumor and immune samples as
tumorigenesis signatures and used them to check whether NSCLC tumor
samples were divided into clusters (Fig. 4i). We found that cluster 1 is a
cluster that is relatively specific tonon-responders, andwe found that cluster
1 genes had significantly higher enrichment scores in non-responders than
in responders across all NSCLC tumor samples (P = 0.035) (Fig. 4j, k). ORA
on cluster 1 genes revealed enrichment of hypoxia, p53pathway, and others,
confirming that these pathways are associated with the non-responder
subtype (Fig. 4l).

Identifying modules associated with ICI treatment response
using WGCNA
WGCNA was performed as an additional method in addition to NMF to
identify gene modules associated with immune checkpoint inhibitor treat-
ment responses. In the entire NSCLC sample, 13 modules were identified,
with a median of 594 genes per module. In NSCLC tumor samples, 129
modules were identified, with a median of 59 genes per module. In NSCLC

Table 1 | Patient demographics and clinical characteristics

Patients characteristics, total n Responder (7) Non-responder (11)

Age, y, median ± SD 61.0 ± 10.6 66.0 ± 9.3

Sex, n (%)

Male 7 (100.0) 8 (72.7)

Female 0 (0.0) 3 (27.3)

BMI, mean ± SD 25.6 ± 4.9 21.3 ± 3.9

Smoking history, PYR, mean ± SD 34.6 ± 16.6 22.0 ± 17.6

Total treatment duration, median
± SD

719 ± 105.9 91 ± 43.6

Patients, total n (%)

With adenocarcinoma 2(28.6) 4(36.4)

With squamous cell carcinoma 4(57.2) 7(53.6)

With another type of non-small cell
lung cancer

1(14.2) 0(0.0)

Patients’ comorbidities, n

Hypertension 4 5

Diabetes mellitus 2 3

Chronic kidney disease 1 1

Coronary artery disease 2 2

Cerebrovascular disease 1 2

Chronic lung infection (e.g.,
Fungal, NTM)

1 0

History of other malignancy 2 3

Characteristics by type of regimen, total n (%)

Pembrolizumab 3(42.9) 6(54.5)

Nivolumab 4(47.1) 5(45.5)

Stage on diagnosis

Stage I 0 0

Stage II 2 1

Stage III 4 3

Stage IV 2 7

PD-L1 expression by percentage, mean ± SD

SP263 39.3 ± 27.5 31.25 ± 29.5

IHC 22C3 39.2 ± 36.4 39.1 ± 30.1

Metastatic lesion, n

Contralateral lung 4 6

Brain 1 5

Bone 1 5

Pleura 3 8

Other 1 7

Abbreviation: BMI body mass index, NTM non-tuberculous mycobacterium, PYR pack-years, SD
standard deviation.
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immune samples, 175 modules were identified, with a median of 72 genes
per module (Supplementary Fig. 3a–c).

In the entire NSCLC samples, none of the modules associated with
immune checkpoint inhibitor treatment responses were significant with a
P value ≤ 0.05, whereas eight significant modules were identified in the
NSCLC tumor samples and two in the immune samples. To determine
whether these modules were enriched differently between responders and
non-responders, we performed ssGSEAand found that among themodules
identified in NSCLC tumor samples, salmon1 (P = 0.021), dark turquoise
(P = 0.014), and dark slate blue module (P = 0.011) were found to have

significantlydifferent enrichment scores in responders andnon-responders,
with the salmon1 module having a higher enrichment score in non-
responders and the dark turquoise and dark slate blue modules having a
higher enrichment score in responders (Fig. 5a, b, Supplementary Data 7).
To determine the function of each of these three modules, we performed
ORA on each of themodular genes and found that neutrophils, monocytes,
macrophages, and CD8 T cells in the dark turquoise module, O-glycan and
several amino acid metabolism-related pathways in the salmon1 module,
and IL6/JAK/STAT3 pathway in the dark slate blue module were enriched
(Fig. 5c–e, Supplementary Data 7).
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Fig. 1 | Expression profiling and molecular characteristics of NSCLC tran-
scriptome by response. a Study design and analysis flow diagram. b–dVolcano plot
of DEGs between responder and non-responder of b all NSCLC (n = 18), c tumor,
and d immune samples. Only genes with a nominal p-value ≦ 0.05 were considered
DEGs. e Dotplot showing GSEA results using MSigDB hallmark gene sets between
NSCLC responder and non-responder samples. f Dotplot showing top 20 GSEA
results using MSigDB KEGG gene sets between NSCLC responder and non-

responder samples. g Dotplot showing top 20 GSEA results using MSigDB GO BP
gene sets between NSCLC responder and non-responder samples. h Dotplot
showing GSEA results using MSigDB cell type signature gene sets between NSCLC
responder and non-responder samples. DEGs differentially expressed genes, GSEA
gene set enrichment analysis, MSigDB molecular signature database, GO BP gene
ontology biologic process, NES normalized enrichment score.
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Identifying associations between immune cell subtypes and ICI
treatment response
The above analyses have repeatedly shown that B cells and macrophages
were associatedwith ICI treatment responses, andwe conducted a literature
review to identify markers associated with B cell and macrophage subtypes
for further analysis (Supplementary Data 8).

We then identified enrichment scores for each immune cell subtype by
GSEA in the entire NSCLC, NSCLC tumor, and immune samples to
determine whether the function of each immune cell subtype was upregu-
lated or downregulated in ICI responders and non-responders. In the ICI
responders, we found positive enrichment scores for all B cell populations
and theM1macrophage subtype andnegative enrichment scores for theM2
macrophage subtype. These changes were more significant in immune
samples than in NSCLC tumor samples (Fig. 6a, Supplementary Data 8).

To confirm whether B cell and M1 macrophage subtypes were enri-
ched in other data, we performed ssGSEA on the validation dataset
(GSE12604410, GSE13522211) to check the enrichment scores of B cell and
macrophage subtypes. In the validation dataset, we found that the enrich-
ment score of all B cell subtypes in ICI responders was higher than in non-

responders, with activated B cells and switched memory B cells having
significantly higher enrichment scores in responders than non-responders
(Fig. 6b, Supplementary Data 8).

In the above analysis, we found that B cell and M1 macrophage
function varied in response to immune checkpoint inhibitor treatment, and
to determine if this actually affected patient survival, we performed
Kaplan–Meier survival analysis and found that median survival of the high
Bcell immunity group (749days)washigher than that of the intermediate or
low B cell immunity group (171 and 239 days) in the Severance cohort,
although it did not reach statistical significance (P = 0.057), and in the
validation dataset, median survival was significantly increased in the high B
cell immunity group (189 days) than the low B cell immunity group
(89 days).

Discussion
In this study, we performed spatial transcriptome analysis on lung samples
obtained from patients with metastatic NSCLC to investigate the relation-
ship between gene expression characteristics and ICI treatment response.
Our analysis focused on comparing the gene expression patterns, tumor
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Fig. 2 | Expression profiling and molecular characteristics of LUSC tran-
scriptome by response. a–c Volcano plot of DEGs between responder and non-
responder of a all LUSC (n = 11), b tumor, and c immune samples. Only genes with a
nominal P-value ≦ 0.05 were considered DEGs. d Dotplot showing GSEA results
using MSigDB hallmark gene sets between LUSC responder and non-responder
samples. e Dotplot showing top 20 GSEA results using MSigDB KEGG gene sets
between LUSC responder and non-responder samples. f Dotplot showing top 20

GSEA results using MSigDB GO BP gene sets between LUSC responder and non-
responder samples. g Dotplot showing GSEA results using MSigDB cell type sig-
nature gene sets between LUSC responder and non-responder samples. DEGs dif-
ferentially expressed genes, GSEA gene set enrichment analysis, MSigDB molecular
signature database, GO BP gene ontology biologic process, NES normalized
enrichment score.
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microenvironment, and pathway enrichment between responders and non-
responders, as well as investigating the specific features of immunotherapy
responsiveness in the histological subtypes of NSCLC, namely LUSC
and LUAD.

We identified gene expression patterns in response to treatment in
NSCLC samples and found that translation-related genes and some
immune-related genes were upregulated, while some other immune-related
geneswere downregulated in ICI responders. GSEAwas performed tomore
systematically correlate gene expression patternswith cellular functions and
found that translation-related pathways were positively enriched in
responders, while immune-related pathways were mainly suppressed in
responders’ tumor samples but activated in responders’ immune samples,
especially B cell-mediated immunity, immunoglobulin-mediated immu-
nity, and immune cell receptor signaling pathways. In addition, not only
Tcells but alsoBcells andmacrophageswere activated, suggesting that other
types of immune cells are involved in the response to ICI treatment, not just
T cells. In particular, although it was not possible to determine from the
pathway analysis what type of protein translation was upregulated, it is
possible that immunoglobulin synthesis was upregulated in ICI responders,

given that B cell and immunoglobulin-mediated immunity pathways were
activated in ICI responders. These results are consistent with previous
studies that have identified B cell-mediated immunity as involved in the
response to ICI treatment in other cancers12,13, and that plasma cells are also
involved in the response to ICI treatment in NSCLC14.

To determine whether the functional changes in response to ICI
treatment in each histologic subtype of NSCLC were similar to those in the
entire NSCLC, we performed GSEA on each of the LUSC and LUAD
samples. Even though the results were not identical to the GSEA results in
the entire NSCLC sample, similar patterns were identified for immune-
relatedpathways, confirming that these changes in immune function arenot
specific to any one histologic type.

In addition, we used NMF and WGCNA methods to identify gene
modules associated with ICI treatment response and confirmed that these
gene modules were associated with immune cells such as B cells, neu-
trophils, monocytes, and macrophages, as well as T cells, suggesting that
immune cells other than T cells are also involved in ICI treatment
response in the module analysis as well as in the functional analysis
through GSEA.
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Fig. 3 | Expression profiling and molecular characteristics of LUAD tran-
scriptome by response. a–c Volcano plot of DEGs between responder and non-
responder of a all LUAD (n = 6), b tumor, and c immune samples. Only genes with a
nominal P-value ≦ 0.05 were considered DEGs. d Dotplot showing GSEA results
using MSigDB hallmark gene sets between LUAD responder and non-responder
samples. e Dotplot showing top 20 GSEA results using MSigDB KEGG gene sets
between LUAD responder and non-responder samples. f Dotplot showing top 20

GSEA results using MSigDB GO BP gene sets between LUAD responder and non-
responder samples. g Dotplot showing GSEA results using MSigDB cell type sig-
nature gene sets between LUAD responder and non-responder samples. DEGs
differentially expressed genes, GSEA gene set enrichment analysis, MSigDB mole-
cular signature database, GO BP gene ontology biologic process, NES normalized
enrichment score.
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Recently, there have been several studies on the role of B cells in
antitumor immune responses15–17, and in this study,we focusedonB cells, as
B cell-mediated immune responses have been consistently found to be
activated in responders to ICI treatment.We performed functional analysis
using B cell subtype genes obtained from the literature review and validated
withother datasets. In the Severance cohort,we found that all B cell subtypes
were activated in responders to ICI treatment, and the changes were par-
ticularly pronounced in immune samples. In the validation dataset, we
found a trend toward activation of all B cell subtypes in responders to
immune checkpoint inhibitor treatment, although this was not significant
across all B cell subtypes. We also found that higher expression of B cell
immunity-related genes was associated with prolonged median survival in
the validation dataset as well as in the Severance cohort.

Our study had several limitations. One limitation of this study is its
relatively small sample size, which may limit the generalizability of the
results. A larger patient cohort would provide more robust results and
increase the statistical power of the analysis. In addition, our study only
confirmed that B cells are involved in the ICI treatment response but did not
identify the mechanisms by which B cells influence the ICI treatment
response. Furthermore, this study may not have captured the full spectrum
of responses to other immunotherapeutic agents or combined therapies.

In conclusion, this studyprovides comprehensive insights into the gene
expression characteristics in response to immune checkpoint inhibitor

treatment in NSCLC. The identified genes and markers associated with B
cell immune responses can be used as biomarkers to predict ICI treatment
responses and select appropriate treatment candidates. Further studies are
needed to investigate the mechanisms by which B cells influence the ICI
treatment response inNSCLC,whichmay provide a new perspective on ICI
therapy.

Materials and methods
Sample collection
Patients diagnosed with stage IV NSCLC and treated with PD-1/PD-L1
blockade (Nivolumab or Pembrolizumab) between March 2017 and
December 2020 at Severance Hospital were included in this study. All
patients agreed to participate in the lung cancer registry cohort, allowing the
use of human-derived materials acquired during diagnostic research pro-
cedures. All patients providedwritten informed consent for inclusion in this
cohort. This study adhered to the recommendations of the World Medical
Association Declaration of Helsinki and was approved by the Institutional
Review Board of Severance Hospital (IRB #4-2021-1747).

GeoMx digital spatial transcriptomics
To compare differential gene expression in tumor and immune cells, ana-
lysis based on the NanoString GeoMx™ Digital Spatial Profiling (DSP)
technology was performed (Fig. 1A). A tissue microarray with a 2mm core
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Fig. 4 | Derivation of clusters by NMF and characteristics of each cluster. a The
heatmap of NSCLC tumor H-matrix and NMF-derived signature expression of
tumorDEGs (tumor response signature).bProportion of tumor responder and non-
responder in each tumor response cluster. c Barplot showing ssGSEA enrichment
score of tumor response signatures in the public dataset (GSE126044, GSE135222).
The p-value between responder and non-responder in each cluster was measured
using Kruskal–Wallis test. d Barplot showing ORA results using MSigDB cell type
signature gene sets in tumor response cluster 2. The dashed line indicates an adjusted
P-value of 0.25 and 0.05. e The heatmap of NSCLC immune H-matrix and NMF-
derived signature expression of immune DEGs (Immune response signature).
f Proportion of immune responder and non-responder in each immune response
cluster. gBarplot showing ssGSEA enrichment score of immune response signatures
in the public dataset (GSE126044, GSE135222). h Barplot showing ORA results

using MSigDB celltype signature gene sets in immune response cluster 1. i The
heatmap of NSCLC tumor H-matrix and NMF-derived signature expression of
DEGs between tumor vs. immune samples (tumorigenesis signature). j Proportion
of tumor responder and non-responder in each tumorigenesis clusters. k Barplot
showing ssGSEA enrichment score of tumorigenesis signatures in the public dataset
(GSE126044, GSE135222). l Barplot showing ORA results using MSigDB hallmark
gene sets in tumorigenesis cluster 1. NR non-responder, R responder, NMF non-
negative matrix factorization, ssGSEA single sample gene set enrichment analysis.
Box plot components: The center line of the box represents the median, and the
upper and lower limits of the box represent the upper and lower quantiles, respec-
tively. Whiskers indicate a value of 1.5 times the interquartile range.
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diameter was constructed from formalin-fixed paraffin-embedded tumor
tissues fromeligible patients. Fixed formalin-fixedparaffin-embedded tissue
sections of 5 µmthicknessweremountedoncharged slides.A representative
regionper samplewas chosen as the regionof interest (ROI) by apulmonary
pathologist (Fig. S1A). To segment areas of tumor and immune cells within

ROIs, multiplexed immunofluorescence staining was done by Cell DIVE™
technology (Leica Microsystems, Issaquah, USA) with morphologic mar-
kers as follows; anti-pan-cytokeratin for tumor cells (AE1/AE3, Novus,
USA) and anti-CD45 for immune cells (D9M8I, Cell Signaling Technology,
USA). Consequently, two areas of interest were selected per ROI. For each
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Fig. 5 | Expression profiling and molecular characteristics of WGCNA modules
in public datasets (GSE126044, GSE135222). a, b Expression barplot of a tumor
and b immuneWGCNAmodular genes by response in public datasets (n = 43). The
P-value between the responder and non-responder in each module was measured
using the Kruskal–Wallis test. c Barplot showing ORA results using MSigDB cell
type signature gene sets in the dark turquoise module. d Dotplot showing ORA
results using MSigDB KEGG gene sets in the salmon1 module. e Dotplot showing

ORA results using MSigDB hallmark gene sets in the dark slate blue module. The
dashed line indicates an adjusted P-value of 0.25. NR non-responder, R responder.
Box plot components: The center line of the box represents the median, and the
upper and lower limits of the box represent the upper and lower quantiles, respec-
tively. Whiskers indicate a value of 1.5 times the interquartile range.

Fig. 6 | Expression profiling and survival analysis of immune cell markers in
severance NSCLC cohort and public datasets (GSE126044, GSE135222).
a Dotplot is showing GSEA results using B cell and macrophage subtype markers
NSCLC responder and non-responder samples (n = 18). b Barplot shows ssGSEA
enrichment score of B cell and macrophage markers in the public dataset (n = 43).
The p-value between responder and non-responder in each module was measured

using Kruskal–Wallis test. c, d Kaplan–Meier plot of survival probability by B cell
immunity in c severance NSCLC cohort (n = 18) and d public datasets (n = 43). NR
non-responder, R responder. Box plot components: The center line of the box
represents themedian, and the upper and lower limits of the box represent the upper
and lower quantiles, respectively. Whiskers indicate a value of 1.5 times the inter-
quartile range.
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areaof interest, theGeoMxwhole-transcriptomeatlas (humanRNA)profile
was measured. From slide preparation to transcriptomic data acquisition,
detailed methods were followed as described in a previous protocol by
Merritt et al.18. After data collection, the reporter count conversionfileswere
loaded into the GeoMx Digital Spatial Profiler analysis suite (V.2.4.2.2),
where quality control and data scaling were performed. None of the ROIs
met the quality control criteria. Subsequently, the data were scaled to the
geometric mean of the number of nuclei and exported to R for further
analysis.

Transcriptome analysis
Downstream analysis of the transcriptome expression profiling obtained
from each ROI was performed using R. Normalization of raw transcript
counts, and differential gene expression (DEG) analysis was conducted
using the limma-voom pipeline of the limma R package19,20. Genes with an
adjusted P value (Padj) or nominal P value (Pnom) ≤ 0.05 were defined as
DEGs. Data visualization was performed using the R packages Complex-
heatmap, ggplot2, and ggpubr.

Functional enrichment analysis
For the functional analysis of transcriptome expression profiling, gene set
enrichment analysis (GSEA) was performed using the clusterProfiler R
package21,22. The gene sets used inGSEAwere the hallmark gene set and cell
type signature gene set from the MSigDB (Molecular Signatures Database)
collection on the GSEA website (https://www.gsea-msigdb.org/gsea/index.
jsp), and the GO BP (Gene Ontology Biologic Process) gene set and KEGG
(Kyoto Encyclopedia of Genes andGenomes) gene set. To analyze immune
cell subtypes, we conducted a literature review and identifiedB cell subtypes
callednaïve, activated, unswitchedand switchedmemoryB cells andplasma
cells;macrophage subtypes calledM1macrophage andM2macrophage and
markers for cytokines corresponding to each macrophage subtype. These
markers were used to performGSEA and ssGSEA (single sampleGSEA) for
immune cell subtypes. GSEA and ssGSEA for immune cell subtypes were
performed using these markers23–26. Significantly enriched pathways were
defined as pathways with Pnom ≤ 0.05 in the analysis of immune cell sub-
types and Padj ≤ 0.05 for other analyses.

Non-negative matrix factorization (NMF)
In addition toWGCNA, NMFwas performed as an alternativemethod to
identify gene modules associated with immune checkpoint blockade
responses. The DEGs (Padj ≤ 0.05) between tumor and immune samples
were defined as tumorigenesis signature if log2 fold change (LFC) ≥ 1
and immune cell signature if LFC ≤−1. We also defined the DEGs
(Pnom ≤ 0.05, LFC ≥ 0.5, or LFC ≤−0.5) between responder and non-
responder for immune checkpoint blockade in tumor samples as tumor
response signatures and the DEGs in immune samples as immune
response signatures. NMF was performed on each signature, and the
number of clusters was determined by the value that maximized the
cophenetic correlation coefficient and dispersion coefficient. For each
cluster, ssGSEA and ORA (over-representation analysis) was performed
to identify the clusters associated with responders and non-responders
and their functions.

Weighted gene co-expression network analysis (WGCNA)
WGCNA was performed to identify gene modules associated with
immune checkpoint blockade responses. First, the raw transcript counts
of tumor and immune samples were transformed to normalized log2
CPM (Count per million). Genes with log2 CPM ≥ 0.1 were used for
downstream analysis. To achieve a scale-free topology fit index of 0.9 or
higher for the entire sample and for subgroup analysis, we set the soft
thresholding power (β value) as 12 for entire NSCLC samples and
NSCLC tumor samples and 10 for NSCLC immune samples. Module
detection was conducted with a minModuleSize of 30 and merge-
CutHeight of 0.2527. Only modules with a P-value below 0.05 were used
for further analysis.

Survival analysis
B cell signature gene expression for each tumor and immune tissue was
obtained, and each tumor and immune tissue was divided into B cell sig-
nature high and low groups according to B cell signature gene expression.
Then, to divide patients into groups according toB cell signature expression,
patients were classified into the B cell signature high group if both their
tumor and immune tissues were in the B cell signature high group, into the
intermediate group if either was in the high group, and into the low group if
both tissues were in the low group. Kaplan–Meier survival analysis was
performed to compare progression-free survival in each group. In the
validation dataset, patients were categorized into B cell signature high and
lowgroups according toB cell signature gene expression, andKaplan–Meier
survival analysis was performed. The significance of the survival analysis
was expressed as a log-rank P value.

Statistics and reproducibility
All statistical analyses were performed using R software (version 4.3.3).
RNAseq data analysis was performed based on the limma-voompipeline of
the limma R package and defined as DEGs based on Padj or Pnom ≤ 0.05.
GSEA for transcriptome expression profiling was performed using the
Clusterprofiler R package, and pathways with Padj ≤ 0.05 were defined as
significantly enriched pathways. For the analysis of B cell and macrophage
subtypes only, pathways with Pnom ≤ 0.05 were defined as significantly
enriched pathways. The WGCNA package was used to perform WGCNA
analysis on genes with a normalized log2 CPM> 0.1, and modules with
Pnom ≤ 0.05 were defined as significant modules and used for downstream
analysis. Kaplan–Meier survival analysiswas performedonNSCLCpatients
(Severance cohort and validationdataset) divided intoB cell immunity high,
intermediate, and low groups according to B cell signature gene expression,
and the significance of survival analysis was expressed as a log-rank P value.
The sample size of each group used in the analysis is indicated in the figure
legend.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The anonymized datasets and additional documents used in this study can
be made available upon reasonable request from the corresponding author
with institutional approval. All human-derived materials from the Yonsei
University College of Medicine, Severance Hospital, were used for research
purposes for the current study and are not publicly available. The spatial
transcriptomics data analyzed in this article are publicly available in the
K-BDS database (BioProject ID: temp-grp-2-1720057798276).
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