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Abstract
Evaluating forecast models encompasses assessing their ability to accurately depict observed climate states and predict future 
climate variables. Various evaluation methods, from computationally efficient measures like the anomaly correlation coef-
ficient to more intricate approaches, have been formulated. While simpler methods provide limited information, climatology, 
due to its simplicity and immediate linkage to model performance, is a commonly utilized primary evaluation metric. In this 
study focusing on temperature and precipitation, we propose a novel metric based on the model’s mean state, integrating both 
climatology and the seasonal cycle for a more accurate assessment of the relationship between mean state performance and 
prediction skill on weather and sub-seasonal time scales compared to relying solely on climatology. This integrated metric 
reveals a robust correlation between temperature and precipitation across diverse geographical locations, with a more pro-
nounced effect in tropical areas when considering the seasonal cycle. Additionally, we find that temperature exhibits higher 
prediction skill compared to precipitation. The discovered relationship serves as a potential early indicator for predicting 
the efficacy of Seasonal to Sub-seasonal (S2S) models and offers valuable insights for model development, emphasizing the 
significance of this integrated metric in enhancing S2S model performance and advancing climate prediction capabilities.

Keywords  Sub-seasonal to Seasonal(S2S) · Prediction skill · Mean state · S2S project

1  Introduction

Despite decades of scientific achievements, sub-seasonal 
prediction skill experiences a substantial decline beyond 3–4 
weeks, particularly in contrast to the 1–2 week range (de 
Andrade et al. 2021). Such achievements efforts have been 
dedicated to enhancing sub-seasonal prediction skill, exem-
plified by initiatives like the World Weather Research Pro-
gram (WWRP)/World Climate Research Program (WCRP) 
Sub-seasonal to Seasonal prediction (S2S) project, which 
aims to advance forecast skill (Robertson et al. 2015; Vitart 
et al. 2012). Over the past decade, this project has amassed 

hindcasts and real-time forecasts from 12 models, resulting 
in notable advancements in predicting the Madden-Julian 
Oscillation (MJO), considered one of the most significant 
variabilities on sub-seasonal timescales (Kim et al. 2018). 
Particularly noteworthy is its success in forecasting extreme 
events, such as the 2010 Russian heatwave and the July 2015 
West-European heatwave, with lead times of up to three to 
four weeks (Ardilouze et al. 2017; Vitart and Robertson 
2018).

The assessment of a forecasting model is integral to its 
development, encompassing the evaluation of both the mean 
state and prediction skill. The mean state assessment, rooted 
in climatology, utilizes straightforward metrics such as root 
mean square error (RMSE) and correlation coefficient to 
measure the model’s proficiency in replicating long-term 
averages. In evaluating anomaly-based prediction skill, met-
rics range from the simplicity of RMSE and the anomaly 
correlation coefficient (ACC) to more complex approaches, 
such as a six-step framework (Coelho et al. 2018).

Improving the simulation of the mean state in climate 
models is recognized as a key factor in enhancing their 
forecast skills, extending to the accurate representation of 
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interannual variability in regions such as the equatorial 
Atlantic (Ding et al. 2015). Further, climate models that 
effectively simulate the tropical Pacific’s cold tongue exhibit 
reduced mean state bias in the equatorial Pacific (Ding et al. 
2020). Similarly, within the realm of seasonal forecasting, 
the 1-month lead seasonal forecasting skill has been found 
to be associated with both the annual mean and the annual 
cycle (Lee et al. 2010). Overall, a more profound compre-
hension of the relationship between prediction skill and the 
mean state on sub-seasonal timescales is essential. If such 
a relationship exists, the mean state could potentially serve 
as both an evaluation metric and an indicator of prediction 
skill.

In summary, there are two main points. First, straightfor-
ward methods for evaluating prediction skill are time-effi-
cient but yield rather limited information. In contrast, more 
elaborate methods offer an in-depth assessment but likely 
require a considerable investment of time for analysis. Sec-
ond, the relationship between prediction skill and the mean 
state on sub-seasonal timescales has not been thoroughly 
investigated. Bearing these in mind, this study endeavors to 
explore the relationship between prediction skill in the sub-
seasonal timescales and mean state.

The goal of this study is to answer the following two 
primary questions: (1) Is there a noticeable relationship 
between performance of the mean state and prediction skill 
in sub-seasonal timescales, and (2) Does this relationship 
differ based on regions, seasons, or forecast lead times? 
Section 2 provides the data and methodology employed to 
evaluate prediction skill and mean state simulation perfor-
mance including improved metrics tailored for our research 
goals. Section 3 presents the findings regarding the evalu-
ation of prediction skill and mean state simulation perfor-
mance, along with the relationship between the two. Finally, 
Section 4 concludes the paper and offers further discussion.

2 � Data and method

2.1 � Data

In this study, temperature and precipitation hindcasts from 
11 models within the S2S project were analyzed, with 
detailed information about each model provided in Table 1. It 
is important to note that (i) the Japan Meteorological Agency 
(JMA) result was excluded due to its hindcast frequency 
being twice monthly, deemed insufficient for a robust sample 
size (Vitart et al. 2017), and (ii) the UK Met Office (UKMO) 
has two versions, GloSea5(GS5) and GloSea6(GS6), which 
were both analyzed. To address differences in ensemble sizes 
across the models, only the control forecast was analyzed. 
The study focused on a ten-year dataset spanning from 2001 

to 2010, utilizing 32 forecast days and hindcasts interpolated 
on a 1.5° x 1.5° latitude-longitude grid.

For the validation of the S2S models, temperature data 
from ERA5 (Hersbach et al. 2020) and precipitation data 
from the Global Precipitation Climatology Project (GPCP) 
version 1.3 were employed (Huffman et al. 2001). Both data-
sets were re-gridded to match the resolution of the S2S data.

2.2 � Method

The objective of this study was to assess the performance 
of the S2S models on a global scale. The evaluation consid-
ered two primary aspects: (i) Mean state and (ii) Prediction 
skill. To discern regional traits, the world was divided into 
36 areas using a 30° x 60° latitude-longitude grid. Both the 
mean state and prediction skill were analyzed within these 
areas, which were further categorized into global, mid-lat-
itude, and tropical regions. The results were the same for a 
smaller region based on a 30° x 30° latitude-longitude grid.

2.2.1 � Evaluation metric for the mean state

Here, the mean state is characterized as a state that incor-
porates both climatology and the seasonal cycle (Lee et al. 
2010). The first step is to compute the climatology of each 
S2S model. A challenge arises because the forecast fre-
quency of the S2S model is not sufficient to uniformly com-
pute daily climatology across different models. Therefore, 
this study opts to calculate a monthly climatology with a 
0-month lead forecast. Initially, the forecast data for each 
month was averaged if it contained more than 15 days in the 
forecast’s start month. Subsequently, the averaged forecast 
data for the identical months was averaged again to obtain 
the 0-month lead forecast. This process yielded the monthly 
climatology.

By employing the monthly climatology derived from a 
0-month lead forecast, an evaluation metric for climatol-
ogy, Ecli , was calculated according to Eq. 1, indicating the 
performance of climatology. This metric uses both the cor-
relation (r) and normalized RMSE (nRMSE) between each 
S2S model and the reanalysis data. Specifically, the nRMSE 
across regions was considered to prevent the biasing of 
results towards high RMSE values in particular areas. This 
study utilizes the average of the two metrics because they 
are the most widely used metrics for evaluating models, with 
the correlation coefficient indicating the linear relationship 
between the model and reality, and the nRMSE indicating 
how well the model is simulating quantitatively. To give 
equal weight to both indicators, the r and nRMSE were sub-
jected to min-max normalization for S2S models. For the 
r, we utilized the normalized values directly, assigning the 
highest-performing model a score of 1 and the lowest a score 
of 0. For nRMSE, the model with the smallest nRMSE is 
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given a 0, and the model with the largest nRMSE is a 1. We 
then adjusted the nRMSE by subtracting 1 from its normal-
ized value and taking the absolute, so that the model with the 
smallest nRMSE earns a 1, aligning with the model with the 
best r. Consequently, a model that tops both metrics receives 
a composite score of 1, denoting optimal performance.

Following that, the seasonal cycle evaluation metric was 
computed. Empirical Orthogonal Function (EOF) analysis 
was used to derive two annual and two semi-annual cycles 
from the monthly climatology computed from the 0-month 
lead forecast. A previous study has considered up to two 
semi-annual cycles for precipitation (Meyer et al. 2021). 
However, in the case of temperature, the fraction of vari-
ance of the semi-annual cycle was generally small in most 
regions. For example, the variance of the first through fourth 

(1)Ecli =
1

2

(

Normmin−max(r) + Normmin−max(nRMSE)
)

EOF modes of the monthly climatology of global tempera-
ture is 92.3%, 5.7%, 1.1%, and 0.6%, respectively. On the 
other hand, precipitation showed a variance of 62.8%, 16.5%, 
8.0%, and 4.8%, respectively. As a result, only two annual 
cycles were included in temperature, while two annual and 
two semi-annual cycles were used for precipitation.

The seasonal cycle metric, ESC , as defined in Eq. 2, 
was computed as the sum of the product of the time series 
correlation of the Principal Component (PC) time series 
( r(PCtobs,mod,PCtpre,mod) ) and the pattern correlation of the 
PC spatial pattern ( r(PCsobs,mod,PCspre,mod) ) for each mode. 
This metric takes into account both the direction and inten-
sity of each mode in the seasonal cycle. To accentuate the 
distinctions between the modes, min-max normalization 
was applied. Essentially, ESC considers the alignment and 
strength of each seasonal cycle mode and is a combination 
of the correlations of the PC time series and the PC spatial 
patterns for every mode, incorporating a constant derived 
through integration. Min-max normalization was utilized to 
emphasize the differences among them.

(2)ESC =
1

M

M
∑

mod=1

Normmin−max

{

r
(

PCsobs,mod,PCspre,mod
)

× r
(

PCtobs,mod,PCtpre,mod
)}

Finally, a metric representing the mean state, EMS , was 
computed according to Eq. 3, by simply adding both clima-
tology and the seasonal cycle. In this computation, equal 
weights were assigned to climatology and the seasonal cycle, 
and the average of values obtained from Eqs. 1 and 2 was 
calculated. The theoretical maximum value of EMS is 1, 
which signifies superior performance.

2.2.2 � Evaluation metric for the prediction skill

Various approaches are employed for the evaluation of 
model prediction skill. Direct assessment of variables often 
employs simple and widely-used metrics, such as RMSE 
and the ACC (Li and Robertson 2015; Zhu et al. 2014). The 
Taylor diagram offers a slightly more advanced method, pro-
viding a graphical representation that combines variance and 
correlation coefficient metrics (Taylor 2001). This graphical 
representation can be further condensed into a single metric 
(Yang et al. 2013). Additionally, more intricate approaches, 
like the six-step framework, have been utilized to gener-
ate a comprehensive spectrum of quality assessment data 
(Coelho et al. 2018; de Andrade et al. 2021). Alongside the 

(3)EMS =
Ecli + ESC

2

overall prediction skill assessment, some previous studies 
have focused on specific and critical climate variabilities, 
such as the MJO, quasi-biennial oscillation (QBO), and 
El Niño–Southern Oscillation (ENSO), to evaluate sub-
seasonal prediction skill (de Andrade et  al. 2019; Kim 
et al. 2019, 2020; Li and Robertson 2015; Lim et al. 2018). 
Additionally, assessments of specific phenomena, such as 
the onset dates of rainfall, have been explored (Kumi et al. 
2020).

To assess prediction skill, precipitation, and tempera-
ture anomalies were calculated for each model’s forecast 
lead time in the daily time scale. Due to the limited daily 
hindcast frequency available in just three models, a 7-day 
moving average was applied to obtain the daily climatology 
required for anomaly calculations. Following the compu-
tation of anomalies, three metrics were utilized: the ACC, 
RMSE, and Eq. 4. Notably, Eq. 4, a formula employed in 
previous studies (Wang et al. 2021; Yang et al. 2013), was 
predominantly used for our assessment. This particular met-
ric is built upon Taylor diagrams and employs the standard 
deviation ( � ) and the pattern correlation coefficient (r). r0 is 
computed as 1, meaning the idealized correlation coefficient, 
which i denotes the time step. So, Epre has a value of 0 when 
the prediction matches the observation, and it increases as 
the difference grows.
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3 � Results and discussion

3.1 � Performance of the mean state of the S2S 
models

The S2S models demonstrate commendable performance 
in simulating climatology of precipitation and temperature. 
Figure 1 presents the global performance with Taylor dia-
grams, illustrating correlation coefficients and variances 
averaged for each region (Taylor 2001). It’s noteworthy that 
precipitation in the tropics exhibits higher variance com-
pared to other regions, potentially biasing the results. To 
mitigate this, the variances were normalized for each region 
as the ratio of the variance between predicted and observed 
and then calculated as a weighted average. Similarly, we 
calculated the correlation coefficient for each region and 
subsequently determined the weighted average for the global 
region. For temperature climatology (Fig. 1a, all S2S models 
exhibit correlation coefficients surpassing 0.99, indicating 
that all models simulate well. As for precipitation clima-
tology, on the other hand, most models record correlations 
close to 0.9, indicating that differences in precipitation 
among models are somewhat more discernible compared 
to those in temperature. These results align with an earlier 

(4)Epre =
1

N

N
�

i=1

log

⎡

⎢

⎢

⎢

⎢

⎣

�

�obs,i

�pre,i

+
�pre,i

�obs,i

�2
�

1 + r0
�

4

�

1 + ri
�4

⎤

⎥

⎥

⎥

⎥

⎦

study (Lee et al. 2010) on the pattern correlation coefficients 
of annual precipitation in tropical regions for seasonal pre-
diction. Overall, the assessment indicates that solely relying 
on climatology to distinguish between models is formidable.

To include the performance of the seasonal cycle simu-
lated by the S2S models, EOF analysis was applied to the 
monthly climatology. In doing so, four components were 
obtained, describing the seasonal cycle. These four compo-
nents were proposed in a prior study and derived by apply-
ing the Fast Fourier Transform (FFT) and EOF techniques 
to the monthly climatology (Meyer et al. 2021). The two 
annual cycle modes are characterized by a single wave per 
year, followed by two semi-annual cycle modes that exhibit 
two waves per year (Hsu and Wallace 1976). The two annual 
cycle modes can be subdivided into a winter-summer pat-
tern, peaking during summer and waning during winter, and 
a spring-fall pattern, reaching its peak in spring and declin-
ing in fall. The two semi-annual cycle modes can be further 
divided into the first and second semi-annual cycles. In this 
study, we employed EOF analysis to derive these four com-
ponents, similar to Meyer et al. (2021). When utilizing EOFs 
for the monthly climatology, the first and second EOF modes 
correspond to the winter-summer and spring-fall patterns 
with one wave (Lee et al. 2010). Furthermore, the third and 
fourth EOF modes were indicative of the semi-annual modes 
1 and 2, each exhibiting two waves per year, respectively. 
This is shown in Fig. S1, utilizing global monthly climatol-
ogy by EOF analysis.

As a result, the model simulated seasonal cycle is now 
decomposed into two annual and two semi-annual modes 
with the PC time series and the corresponding spatial pat-
terns. This process was repeated for all S2S models and 

Fig. 1   Taylor diagram of the climatology for the global average 0-month forecast for temperature a, and precipitation b 
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reanalysis. The similarity between the model and reanaly-
sis was evaluated with correlation coefficients. The scat-
ter plot in Fig. 2 displays a positive relationship between 
the performance of spatial patterns and that of time series 
measured by the correlation between the reanalysis and 
each S2S model. It is noteworthy that the PC time series 
exhibits higher correlation coefficients than the PC spa-
tial patterns. The first mode is distinguished as the most 
accurate depiction by almost all models, with diminishing 
coefficients for modes with lesser fractions. In the case 

of temperature, the S2S models demonstrate high perfor-
mance in simulating the seasonal cycle, with correlation 
coefficients surpassing 0.8, respectively, up to the second 
mode. Conversely, precipitation exhibits lower correla-
tions compared to temperature, and the disparity among 
models is more conspicuous.

To evaluate the relationship between climatology and 
the seasonal cycle, two metrics, ECli and ESC , were com-
puted and depicted in Fig. 3. These metrics were min-max 
normalized to ensure equal comparison and to scale the 

Fig. 2   Correlation between PC time series and PC spatial patterns of each mode in climatology by EOF analysis. a and b are the first and second 
modes of temperature, respectively, and c to f are the first to fourth modes of precipitation
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original values within a range from 0 to 1. Although a lin-
ear relationship between the two metrics generally holds, 
deviation from a perfect linear relationship is found in the 
S2S models. This suggests that climatology and the sea-
sonal cycle encompass distinct facets of the mean state 
simulation. As a result, our final metric ( EMS ) was intro-
duced, which incorporates both climatology and the annual 
cycle in assessing the performance of the mean state.

3.2 � Weather and sub‑seasonal prediction skill 
of S2S models

Figure 4 shows the prediction skill for each S2S model on 
daily base using Taylor diagrams, which include an arrow 
and four circles representing forecasts at a lead-time of 7, 14, 
21, and 28 days. As the forecast lead time increases, the cor-
relation coefficient decreases. However, after approximately 

Fig. 3   Relationship between climatology and seasonal cycle. a is temperature, b is precipitation

Fig. 4   Taylor diagram of the S2S models prediction for 1–32 forecast days. a is temperature, b is precipitation. Starting at the arrow, each mark 
represents a prediction in 7, 14, 21, and 28 days
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14 days, there is a tendency of convergence, as indicated by 
the close proximity or merging of the circles representing 
forecasts at lead time of 21 and 28 days. The variance is 
fairly stable as the lead time increases, except for the initial 
lead day. Generally, the prediction skill of temperature is 
robust, albeit some models have a propensity to overstate the 
variance. Conversely, the prediction skill of precipitation is 
consistently underestimated across the models.

Further analysis on the prediction skill of temperature 
was carried out by using correlation, nRMSE, and Epre 
(Fig. S2). The analysis is segmented into the whole globe, 
mid-latitude, and tropics. Among the 36 divided regions, 
the first includes all 36, mid-latitude only includes 12 
regions between 30 °N(°S) and 60 °N(°S), and tropics only 
includes 12 regions between 30 °S and 30 °N. On a global 
scale, prediction skill tends to stabilize at a certain value 
depending on the S2S models, with stabilization generally 
occurring around 15 days for all three metrics. Moreover, 
a noteworthy level of prediction skill is exhibited by 10 
out of the 12 models, with correlation coefficients con-
sistently exceeding 0.5 for forecast lead times of up to 
31 days. Such elevated prediction skill has been demon-
strated through probabilistic analyses to facilitate the pre-
diction of temperature-based heatwaves up to four weeks 
in advance (Ardilouze et al. 2017; Vitart and Robertson 
2018). Furthermore, it was observed that the predictive 
capabilities of the S2S models were extensively distrib-
uted in the tropics, as evident in the correlation coefficient, 
while in the mid-latitudes for the nRMSE. In contrast, the 
Epre metric reveals a substantial disparity among the S2S 
models prior to convergence, but post-convergence, the 
values tend to be similar across the models.

Similarly, the prediction skill of precipitation was fur-
ther analyzed in Fig. S3. On a global scale, the outcomes 
are somewhat parallel to those of temperature. However, 
the correlation coefficient for precipitation takes a dip, 
falling below 0.5, between 2 and 8 days after the forecast, 
depending on the model. This signifies that precipitation 
prediction skill is inferior to that of temperature. This 
finding is consistent with previous studies in which the 
prediction skill of precipitation starts to decrease from the 
second week onwards (de Andrade et al. 2019; Moron and 
Robertson 2021). On a regional level, the majority of the 
models exhibit superior prediction skill in the tropics com-
pared to the mid-latitudes across all indicators, but there 
is a noticeable variation among the S2S models. Although 
the exact cause for such diverging result is unclear, it can 
be related to each model’s performance on MJO, which is 
considered a crucial contributor to sub-seasonal prediction 
skill and the prevailing variability during winter(Li and 
Robertson 2015; Zhang and Dong 2004). Furthermore, 
while the mid-latitudes distinctly converged to a specific 

value, the tropics exhibit a persistent decline in both cor-
relation coefficients and nRMSE.

In light of our result here, it was decided to divide the 
forecast period into two regimes – a 14-day forecast and a 
sub-seasonal forecast, which encompasses 15 days onward, 
as different from conducting an analysis on a weekly basis. 
The weekly analysis was introduced by Li and Robertson 
(2015) and widely used to evaluate S2S prediction skill 
(Coelho et al. 2018; de Andrade et al. 2019). There is also a 
study that utilized a bi-weekly approach (Moron and Rob-
ertson 2021). Nonetheless, we decided that if the prediction 
skill of S2S models hinges on the feature of convergence, 
splitting the forecast period of 0–31 days into two regimes is 
more appropriate than dividing it into weeks. Secondly, we 
opted to employ Epre as the metric for assessing prediction 
skill. This is based on the fact Epre is a more stringent and 
discerning metric in comparison to the correlation coeffi-
cient and nRMSE, as it more clearly delineates the conver-
gence of prediction skill, especially for precipitation.

Epre was used to evaluate each model for prediction skill 
at the weather and the sub-seasonal regime, respectively. 
First and foremost, concerning temperature as shown in 
Table S1, spring emerged as the most reliable prediction 
skill globally. It also demonstrated modest prediction skill 
for summer in the tropics, and for fall and winter in the mid-
latitudes, regardless of the time scale. Moving on to precipi-
tation, as depicted in Table S2, winter stood out as the most 
dependable prediction skill globally across both weather 
and sub-seasonal regimes. Conversely, summer in the trop-
ics proved to be less predictable across all forecast periods. 
Moreover, fall exhibited slightly diminished prediction skill 
at the weather regime, and spring at the sub-seasonal regime 
in mid-latitude regions.

3.3 � Relationship between the performance of mean 
state and prediction skill

So far, we have conducted individual analyses of the mean 
state performance and prediction skill. Our attention now 
turns to investigating the relationship between the two 
aspects. To commence this exploration, we utilize simple 
mean state and prediction skill indicators in Figs. 5 and 6 
for temperature and precipitation correspondingly. Figures 5 
and 6 include four mean state metrics: the mean absolute 
error (MAE) of the annual mean, the correlation coefficient 
of the annual pattern, the RMSE of climatology, and the 
correlation coefficient of climatology. Additionally, two pre-
diction skill metrics, RMSE and the correlation coefficient, 
are utilized. Additionally, Table S3 presents an overview 
of the mean state simulation performance across models, 
including the mean, standard deviation, count, maximum, 
and minimum values.
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Fig. 5   Relationship between mean state performance and predic-
tion skill in temperature. The black diamond is an ideal value. a–f is 
based on the annual mean absolute error for the mean state metric, 
g–l is based on the annual mean pattern correlation, m –r is based on 

RMSE of climatology, and s-x is based on correlation of climatology. 
a–c, g–i, m–o, and s–u are based on correlation correlations for the 
prediction skill metrics, and the rest are RMSE
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Analyzing temperature reveals that the correlation coefficient 
indicates a mean state greater than 0.92, and the RMSE and 
MAE results demonstrate a clustering of the majority of models. 

Precipitation, with a wider distribution than temperature, clusters 
in certain values. This implies that the S2S models have advanced 
to a level where differentiating their abilities to simulate the mean 

Fig. 6   Same as Fig. 5, but for the precipitation
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Fig. 7   Relationship between mean state performance and prediction 
skill in temperature. Solid lines, filled marks, and black equation and 
R2 represent the weather scale, while dashed lines, non-scaled marks, 
and gray equation and R2 represent the Sub-seasonal scale. a–c  are 

based on climatology, d–f  considered both the climatology and sea-
sonal cycles. a and d are global, b and e are mid-latitude regions, and 
c and f are tropical regions
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state using simple metrics is increasingly difficult. As a result, 
this could obscure or present a false impression of the relation-
ship between mean state performance and prediction skill. In a 
puzzling case, it was noted that prediction skill for sub-seasonal 

precipitation forecasts in mid-latitude regions increased when 
there was a decrease in mean state performance.

Since then, the analysis has been centered on evaluat-
ing the performance of the mean state in the S2S models, 

Fig. 8   Same as Fig. 7, but for the precipitation
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Fig. 9   Seasonal relationship between mean state performance and prediction skill. a–c is temperature, d–f is precipitation. a and d are global, 
b and e are mid-latitude regions, and c and f are tropical regions
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with emphasis on climatology and the seasonal cycle as an 
important component of the mean state. Additionally, there 
has been a comparative analysis of three indicators for pre-
diction skill: correlation coefficient, nRMSE, and Epre . Here, 
the focus shifts to examining the relationship between the 
performance of the mean state and prediction skill. Further 
scrutiny is also applied to ascertain which metric of the 
mean state better captures this relationship: whether it is 
climatology alone or EMS , which considers both climatology 
and the seasonal cycle.

Firstly, Fig. 7 displays the results for temperature. The 
filled marks with solid lines denote the weather regime, 
while the hollow markers with dashed lines represent the 
sub-seasonal regime. At the global level, as in Fig. 7a and 
d, a linear relation is observed for both metrics at both the 
weather and the sub-seasonal regimes. This linearity is more 
distinct at the weather regime, while the convergence of pre-
diction skill in the S2S models becomes quite clear at the 
sub-seasonal regime, resulting in less noticeable differences 
among models. On a regional scale, a linear relationship is 
similarly evident across all cases. Moreover, the incorpora-
tion of both climatology and the seasonal cycle ( EMS ) leads 
to higher R-square values for the trend line, which indicates 
an advantage in explaining the relationship between mean 
state and prediction skill.

Analogous to temperature, analysis results of precipita-
tion are illustrated in Fig. 8, and it generally exhibits similar 
patterns, albeit with a few notable differences. Particularly in 
the tropics, the differences in prediction skill are more pro-
nounced compared to temperature. In Fig. 8c, when solely 
utilizing climatology, the R-square values at the weather and 
sub-seasonal regimes are considerably low, standing at 0.312 
and 0.359, respectively. Conversely, Fig. 8f, which employs 
EMS by integrating both climatology and the seasonal cycle, 
reveals a substantial escalation in the R-square values, 
recording 0.683 and 0.699. Consequently, in analyzing the 
interrelationship between the mean state and prediction skill 
across various seasons, only EMS was employed.

In order to discern seasonal variations, prediction skill 
was divided into four seasons as in Fig. 9. For mid-latitudes, 
the Southern Hemisphere experiences seasons opposite to 
those in the Northern Hemisphere, and hence the compu-
tations were adjusted accordingly. For instance, the term 
‘summer’ in the mid-latitudes denotes June-July-August in 
the Northern Hemisphere, and December-January-Febru-
ary in the Southern Hemisphere. In contrast, the tropics do 
not exhibit pronounced seasonality, so no distinction was 
made between the Southern and Northern Hemispheres, 
and instead the seasons of the Northern Hemisphere were 
adopted. As such, ‘summer’ in the tropics refers to June-
July-August in both hemispheres. When examined in terms 
of R-square values, winter emerges as the season with the 

highest values on the weather scale, except for temperature 
in the tropical region. On the other hand, it is difficult to find 
a clear seasonal feature for sub-seasonal forecasts. The rela-
tively robust connection observed between the performance 
of mean state and prediction skill during winter can likely 
be attributed to the MJO, as previously mentioned. Notably, 
it has been reported that MJO exhibits greater predictive 
potential during the winter season compared to other seasons 
(Liu et al. 2017).

Our analysis initially focused on comparing the simula-
tion performance of the mean state across various models. 
We then proceeded with a within-model comparison for 
each S2S model, applying min-max normalization across 36 
regions. The outcomes are presented in Figs. S4 and S5 for 
temperature and precipitation, respectively. For temperature, 
we did not find a clear relationship, which we speculate may 
be due to the models reaching a saturation point in their abil-
ity to simulate the mean state. In contrast, for precipitation, 
we discovered a correlation between mean state simulation 
and predictability, likely due to the considerable variability 
in mean state simulation performance across regions.

Improving the mean state in climate models has a sig-
nificant impact on forecast predictability (Lee et al. 2010). 
Specifically, enhancing the mean state leads to improved 
simulation accuracy of the MJO and ENSO, a critical pattern 
of climate variability that influences the global climate sys-
tem (Bayr et al. 2018; Kang et al. 2020). The improvement 
of the MJO and ENSO representation plays a crucial role in 
the enhancement of bias correction, hydroclimate, and ther-
mocline within the models (Kim et al. 2014, 2017; Lim et al. 
2018). These improvements ensure that the models more 
accurately reflect the process and mechanisms of the actual 
climate system, thereby comprehensively enhancing the 
predictive skill for weather and seasonal climate variability. 
Therefore, conducting a deeper analysis and understanding 
of how the mean state affects the sub-seasonal forecast skill 
is a critical step towards increasing the accuracy of climate 
modeling and predictions.

4 � Conclusions

We investigated the relationship between the performance of 
mean state simulation and the prediction skill of anomalies 
in weather and sub-seasonal forecasting. We concluded that 
a linear relationship is present in the mean state and predic-
tion skill in weather and sub-seasonal forecasting. When the 
seasonal cycle is considered, this linear relationship is more 
distinctly exhibited compared to climatology. Nevertheless, 
In sub-seasonal forecasting, the disparity in prediction skill 
among models is insignificant, meaning that the variability 
in anomaly prediction skill relative to the performance of 
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mean state simulation is not as pronounced as it is on the 
weather timescale. The interrelationship between the accu-
racy of mean state simulation and prediction skill has been 
studied from various angles. For instance, an earlier study 
(Richter et al. 2018) using atmospheric model intercompari-
son project models indicated that the RMSE has a relation-
ship with the mean state, whereas the ACC does not. In 
the context of seasonal forecasts, it has been demonstrated 
that both the annual mean and annual cycle have a positive 
correlation with precipitation anomalies (Lee et al. 2010). 
Additionally, at the subregional level, the ability to simulate 
the tropical Pacific cold tongue is linked to mean state bias 
(Ding et al. 2020).

The results of evaluating the mean field and prediction 
skill respectively are as follows: first, the performance of the 
mean state was undertaken from two perspectives: climatol-
ogy and the seasonal cycle. The S2S model exhibits strong 
performance in replicating the climatology of temperature, 
with minimal divergence among the models. For precipita-
tion, on the other hand, there is a more marked variation 
among the models compared to temperature. Secondly, pre-
diction skill was examined utilizing the correlation coef-
ficient, nRMSE, and Epre . The S2S model demonstrates a 
higher prediction accuracy for temperature as opposed to 
precipitation across all the metrics assessed. A common 
characteristics of both temperature and precipitation is that 
their prediction skill appears to coalesce at a forecast lead 
time of roughly 15 days. This finding aligns with previous 
research that indicates a limit of prediction skill of 3–4 
weeks compared to that of 1–2 weeks (de Andrade et al. 
2019, 2021).

Forecasting within the sub-seasonal timescale continues 
to be a formidable task, and endeavors must be directed 
toward enhancing prediction skill. In the course of model 
development, the mean state is constantly evaluated in terms 
of rather simpler metrics focusing on how close it is to obser-
vation. Nonetheless, the findings of this study strongly imply 
that the mean state in the S2S models holds potential as a 
prime indicator of prediction skill, and that improving the 
simulation of the mean state could contribute to augmenting 
prediction skill, especially when it is more comprehensively 
measured, such as including the seasonal cycle.
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