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A B S T R A C T   

Ammonia (NH3) has been a subject of great interest due to its important roles in diverse technological appli
cations. However, high toxicity and corrosiveness of NH3 has made it an important task to develop an efficient 
carrier to safely capture NH3 with high capacity. Here, we employ a machine learning (ML) model to discover 
high-performance metal organic frameworks (MOFs) that will work as efficient NH3 carriers. By constructing 
databases at two distinct conditions, adsorption and desorption, through Grand Canonical Monte Carlo (GCMC) 
simulations to train ML models, we identify eight novel MOFs as potentially efficient NH3 carriers through 
screening the large-scale MOF databases with the trained models and GCMC verification. The identified MOFs 
exhibit the average NH3 working capacity exceeding 1100 mg/g, and subsequent molecular dynamics simula
tions demonstrate mechanical stability of the predicted MOFs. Moreover, analyses of the diffusion mechanism 
within the proposed MOFs underscore the strong dependence of NH₃ gas diffusivity on the structural details of 
the materials.   

1. Introduction 

Ammonia (NH3) is a colorless gas that plays a pivotal role in various 
technological domains such as refrigeration, fertilizer production, and 
manufacturing synthetic fibers and plastics [1–4]. Despite the wide
spread utilization, the safe handling of NH3 remains as a complex 
challenge due to its intrinsic toxicity and corrosive nature, and ensuring 
the safety of both workers and the environment thus necessitates a 
meticulous approach to treatment and storage of the gas. A critical 
aspect of securely storing NH3 gas involves the identification of a ma
terial capable of containing NH3 without undergoing reactions or 
degradation over time [5–7]. An optimal storage material is expected to 
exhibit resilience to high pressures and temperatures, resist corrosion 
and abrasion, and prevent gas leakage. Although conventional materials 
including resins [8], zeolites [9] and mesoporous silica [10] show 
promise as NH3 carriers, the burgeoning demand for NH3 underscores 
the ongoing pursuit of outstanding storage solutions. 

In this context, metal-organic frameworks (MOFs), characterized by 
metal ions or clusters interconnected with organic ligands, have 
emerged as promising candidates for efficient gas storage due to their 
appealing attributes such as high porosity, large pore-surface area, 
tunability and stability [11–15], and recent studies have indeed 

elucidated high performance of MOFs in storing NH3 gas [16–19]. One 
of the advantages of MOFs lies in the configurational diversity between 
metal ions and linkers which enables the optimization of properties, 
including adsorption capacity and stability [20]. Liu et al. have exam
ined various MOFs for NH3 adsorption capacity and structural stability, 
including MIL-101 whose NH3 adsorption capacity records 700 mg/g at 
303 K and 6.1 bar [21], and even higher adsorption capacity of 760 
mg/g has been reported for MIL-101 at 298 K and over 5 bar [22]. Also, 
computational screening finds appropriate ligands to construct 
MOF-303 (Al) which shows 335.5 mg/g for the NH3 adsorption capacity 
at at 25.0 ◦C and 1.0 bar [23]. Rieth et al. have studied on stable tri
azolate frameworks with open metal sites and found that the NH3 
adsorption capacity of Co2Cl2BBTA reaches 145.8 mg/g at 1000 ppm of 
NH3, which is higher than that of the state-of-the-art HKUST-1 by 27 % 
[24]. Interestingly, it should be noted that under conditions of room 
temperature and high pressure exceeding 5 bar, MIL-101 achieves a 
density nearly half that of liquid ammonia (681.9 kg/m3 at 240 K) [22, 
25]. 

While these results are interesting and promising, possibilities still 
exist to discover MOFs with further enhanced NH3 adsorption capacity, 
especially within narrow temperature range around room temperature 
and at an elevated pressure, but the expansive search space resulting 
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from myriad constituent combinations within MOFs poses a formidable 
challenge for determining proper candidate materials possessing satis
factory NH3 adsorption performance. In this work, we employ a machine 
learning (ML) model to expedite the identification of MOFs with high 
NH3 working capacity. Trained with a database generated via Grand 
Canonical Monte Carlo (GCMC) simulations, the ML model rapidly 
evaluates more than 12,000 MOFs in the Computation-Ready Experi
mental Metal Organic Framework (CoRE MOF) database [26] and, 
combined with GCMC calculations, identifies promising MOFs with high 
NH3 working capacity. Intriguingly, the selected MOFs exhibit type IV or 
V isotherms [27], showcasing high working capacities within narrow 
temperature range (20K) near room temperature. This characteristic 
offers advantages for both efficient NH3 gas transport and reducing the 
cycling time. In addition to ML screening and GCMC computations, 
molecular dynamics (MD) simulations are conducted to analyze diffu
sion processes. This step is crucial for understanding gas diffusivities 
within the proposed MOFs, providing valuable insights into their po
tential for various applications involving NH3 gas. 

2. Methods 

2.1. Machine learning 

All MOF data including structural information and material proper
ties used for constructing a database are collected from the Materials 
Project (MP) MOF explorer [28–30] and CoRE MOF database. 1290 
MOFs together with their atomic charge information are retrieved from 
the MP MOF database, and the NH3 adsorption capacities of each MOF 
are calculated by GCMC simulations. The obtained dataset is then split 
into the train and test datasets with 85 % and 15 % ratio to train a ML 
model and evaluate the model performance, respectively. The feature 
vectors for the ML model, as is implemented within a neural network 
(NN) scheme, are composed of eight geometric descriptors of MOFs and 
a one-hot encoded metal component. Geometric descriptors of MOFs 
include the largest cavity diameter (LCD) (Å), pore-limiting diameter 
(PLD) (Å), largest free path diameter (LFPD) (Å), density (g/cm3), 
volumetric surface area (VSA) (m2/cm3), gravimetric surface area (GSA) 
(m2/g), void fraction (VF) and accessible volume (AV) (cm3/g), which 
are available from CoRE MOF database. The metal element is one-hot 
encoded with element 1 at the position of its atomic number and the 
rest being 0. 

2.2. GCMC and electronic structure calculations 

The NH3 adsorption capacity of MOFs is calculated through GCMC 
simulations which are carried out with RASPA 2.0 code [31]. The GCMC 
simulations are first performed on MOF data to construct an in-house 
database for ML training, and afterwards to validate the predicted re
sults by the ML model. It is noted that all the atoms within MOFs are 
assumed to be immovable during the simulation processes. The in
teractions between atoms within the MOFs and those within NH3 mol
ecules are described by the Lennard-Jones (LJ) potentials in the 
Universal Force Field (UFF) [32] and Transferable Potentials for Phase 
Equilibria (TraPPE) force field (Table S1 in Supporting Information, SI) 
[33], respectively. For the interaction between MOFs and adsorbed NH3 
molecules, the Lorentz-Berthelot mixing rule with the LJ potential is 
employed [34]. Since all atoms are considered as charged, the Coulomb 
interaction is properly treated within Ewald scheme [31]. 

To address the LJ interactions, the spherical cutoff of 14 Å together 
with analytic tail correction is adopted. In the GCMC simulations, the 
atomic charge data is collected from the MP database for constructing 
the MOF databases to train the ML model and is computed through 
density functional theory (DFT) calculations for validating the screened 
properties, respectively. It should be noted that DFT calculations are 
conducted by employing SIESTA [35] package with the density derived 
electrostatic and chemical approach [36] and generalized gradient 

approximation [37] for the exchange-correlation interaction among 
electrons. The GCMC simulations are performed with five different types 
of Monte Carlo moves that have equal probability including translations, 
rotations, insertions, deletions and reinsertion. For constructing the 
dataset, the simulation runs 7500 cycles for equilibration and another 
7500 cycles to obtain the NH3 adsorption performance of MOFs, and 
subsequently to screen for high performance MOFs, the simulation runs 
2 × 104 cycles for equilibration, which is followed by additional 2 × 104 

cycles for production of the absolute adsorption amount of NH3 gas. All 
simulations are separately performed under adsorption (293K, 5 bar) 
and desorption conditions (313K, 5 bar). 

2.3. MD simulations 

MD simulations are performed with LAMMPS code [38] to calculate 
bulk modulus and examine the diffusion behavior of NH3 gas molecules 
within the proposed MOFs. The time step is set to be 0.1fs and the 
interatomic interactions are treated in the same manner as in the GCMC 
simulations. The number of NH3 molecules in a simulation box is 
determined from the GCMC simulation results of each MOF at the 
adsorption condition. After equilibrating for 1ns at 293K using the 
Nose-Hoover thermostat, the NH3 diffusion is simulated for 2.5ns within 
the NVT ensemble. During the simulations, the mean square displace
ments (MSD) of all ammonia molecules are collected from the mole
cules’ trajectories which are recorded every 0.1ps and averaged for 
multiple time intervals. The diffusivity of NH3 gas molecules inside 
MOFs is then calculated by taking a temporal gradient of MSD. 

3. Results and discussion 

3.1. GCMC simulations 

In order to assess the validity of the present GCMC simulations, we 
first compare the results from our GCMC simulations for MIL-101 with 
available experiment [22,39]. As is seen from Fig. 1(a), which shows the 
isotherms of the NH3 adsorption capacity at 298K, the simulation results 
agree very well with experiment under 4 bar. At higher pressures, 
however, the GCMC simulations tend to overestimate the NH3 adsorp
tion capacity, which can be attributed to several factors. Firstly, in the 
GCMC simulations MOFs are assumed to be rigid with unchanging pore 
volumes, possibly resulting in higher adsorption capacities compared to 
actual MOFs, particularly under high-pressure conditions. Secondly, the 
assumption of uniform distribution of ammonia molecules inside MOF in 
simulations may not properly reflect actual experimental conditions. 
Nonetheless, both experimental and simulated adsorption isotherms 
exhibit nearly the same variation with pressure, which validates the 
GCMC simulations for investigating the adsorption properties of NH3 in 
MOFs. Moreover, Liu et al. have shown that despite an overestimation 
by approximately 40 % in the simulated NH3 adsorption capacities of 
MIL-101 and NU-1000 compared to their experimental results, the 
GCMC simulations effectively capture the essence of experimental out
comes [21]. 

3.2. Screening MOFs with machine learning 

To predict the NH3 adsorption capacity of MOFs with a ML model, we 
first generate a MOF dataset by carrying out GCMC simulations as pre
viously described. The initial dataset is found to contain no MOF counts 
in the high-capacity range (Fig. S1(a) in SI), which would result in 
severely biased and inaccurate predictions. To circumvent this situation, 
the dataset is augmented with 104 additional MOFs which are selected 
from CoRE MOF database and predicted to show high NH3 adsorption 
capacity through combined pre-trained ML and GCMC simulations. The 
enlarged dataset contains a finite number of MOFs which show high NH3 
adsorption capacity exceeding 1000 mg/g (Fig. S1(b) in SI). 

Fig. 1(b) and (c) illustrate the performance of the trained NN-based 
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ML model against the test set at the adsorption and desorption condi
tions, respectively. Comparing to the results of GCMC simulations, it is 
found that the ML-predicted values present R2 = 0.978 (0.862) with 
33.49 (28.14) mg/g of the mean absolute error (MAE) in the adsorption 
(desorption) environment. Notably, while the MAEs are similar in both 
cases, R2 for the desorption is lower than that for the adsorption con
dition. This reduction in R2 is attributed primarily to the low pressure of 
the desorption state p/p0 = 0.32, where p0 is the saturation pressure of 
NH3 at a given temperature, as opposed to p/p0 = 0.56 under the 
adsorption condition. 

To assess the NH3 adsorption performance, we apply the trained ML 
model to the CoRE MOF database which contains more than 12,000 
MOFs and subsequently validate the ML-predicted results through 
GCMC simulations. For comparison purposes, MIL-101 is taken as a 
reference MOF which is one of the most well-studied materials for NH3 
adsorption. With MIL-101, GCMC simulations yield 1087.06 and 369.38 
mg/g for the NH3 adsorption capacities at 293K and 313K, respectively, 
resulting in 717.68 mg/g for the working capacity, the capacity differ
ence between the two temperatures. Taking 900 mg/g as a target 
working capacity, which is 20 % higher than the MIL-101 value, we first 
identify 56 MOFs whose distribution at each condition is given in Fig. 1 
(d). As is seen from Fig. 1(d), the adsorption capacity ranges from 1073 
to 1944 mg/g with 1492 mg/g on average at 293K, and the distribution 
is rather symmetric around the average adsorption capacity, showing a 
Gaussian-like envelope. In contrast, the result at 313K displays a highly 
left-biased distribution with a narrow range between 135 and 427 mg/g. 
In particular, it is found that nearly 50 % of the MOFs have the 
adsorption capacity lower than 200 mg/g at 313K, which then leads to 
an asymmetric distribution of the working capacity as is shown in Fig. 1 
(e). As is seen from Fig. 1(e), the working capacity ranges from 928 to 
1805 mg/g with average of 1259 mg/g, and nearly 90 % of the MOFs 
have their capacity less than 1500 mg/g. 

3.3. Feature importance 

Before final screening of potential MOFs for efficient NH3 capture, it 
is instructive to analyze how much each feature contributes to the NH3 
adsorption performance. To this end, the feature importance of the ML 
model is calculated based on the permutation importance algorithm 
(PIA). In PIA, the values of each feature column are randomly shuffled, 
and the score of the ML model (R2) is evaluated thereafter. The 

importance of each feature is then determined from the change in the R2 

value compared to the original model [40]. Specifically, for the i-th 
feature the score difference Δi = R2

i − R2
0, where R2

i and R2
0 are the 

model scores with and without random shuffling, respectively, is 
calculated and the relative importance of the i-th feature (ρi) is quanti
fied as ρi = Δi/

∑
jΔj with summation being carried out over all features. 

The larger ρi values implies that the corresponding feature plays a more 
important role in producing the result. Fig. 2(a) shows the obtained 
relative feature importance of the nine descriptors (LCD, PLD, LFPD, 
density, VSA, GSA, VF, AV and metal atoms) at the adsorption and 
desorption conditions, respectively. As is seen from Fig. 2(a)–AV, PLD 
and GSA are the most influential properties in determining the materials 
performance in that the average importance is 0.19 and 0.18 at 293K 
and 313K, respectively, which is 70 % higher than the next three deci
sive features (LFPD, VSA, LCD). The significance of PLD can be under
stood from the observation that MOFs with PLD less than the kinetic 
diameter of NH3 molecules display the poor adsorption performance 
[41]. Also, AV and GSA have strong effect on the adsorption perfor
mance because high AV and GSA makes more atomic sites within MOFs 
available for adsorption. 

Further insight into the relation between the structural parameters 
and NH3 adsorption performance can be achieved by examining the 
distribution of the working capacity with respect to the three most 
important features, PLD, GSA and AV, as is illustrated in Fig. 2(b–g). In 
Fig. 2(b), the adsorption capacity at 293K tends to increase with PLD and 
reaches a maximum around 13 Å below which most MOFs are present. 
For PLD larger than 13 Å, the adsorption capacity shows a rapid 
decrease. At the higher temperature, the calculated capacity exhibits 
nearly the same behavior except the maximum which is shifted to 
PLD~10 Å. The decrease in the adsorption capacity at high PLD values 
can be attributed to the point that larger PLD corresponds to expanded 
pore dimensions, which would reduce the fraction of ammonia mole
cules near the pore surface and thus lower the scattering rate. Enhanced 
pressure could contribute to maintaining the adsorption capacity by 
compensating the decreased scattering between NH3 and the surface. 
Combining the adsorption capacities at the two temperatures, the 
working capacity is appreciable only for PLD>10 Å, as is illustrated in 
Fig. 2(e). 

In Fig. 2(c), the adsorption capacity of MOFs is shown to increase 
with the GSA until the GSA becomes close to 3000 m2/g. For the GSA 

Fig. 1. (a) The isotherm comparison between the GCMC simulation and experiment [22,39] for MIL-101 at 298 K. Training performance of the ML model at (b) 
adsorption (293K, 5 bar) and (c) desorption (313K, 5 bar) conditions, respectively. (d) MOF distributions with respect to the NH3 adsorption capacity at both 
conditions, and (e) the working capacity. 
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higher than 3000 m2/g, the adsorption capacity continues to increase at 
the adsorption condition, whereas it decreases at the desorption condi
tion. As for the AV, the adsorption capacity of MOFs displays a strong 
linear dependence on the AV as is depicted in Fig. 2(d), and the primary 
difference between the two temperatures is the AV value around which 
the adsorption capacity begins to decrease. At 313K, it occurs AV~2.0 
cm3/g and the corresponding value for the low temperature is much 
higher. Due to the similar behavior in the adsorption capacity at 293K 
and 313K with respect to GSA and AV, the working capacity becomes 
appreciable only when GSA≳3000 m [2]/g (Fig. 2(f)) and AV≳2.0 cm3/g 
(Fig. 2(g)), respectively. For the other structural features, the adsorption 
performance is relatively similar to those of the PLD, GSA and AV (see 
Fig. S2 in SI). In cases of LFPD (Figs. S2(a) and (f) in SI), VSA (Figs. S2(b) 
and (g) in SI) and LCD (Figs. S2(c) and (h) in SI), the low- and 
high-temperature adsorption capacities becomes appreciably different 
only when the feature values become large, which is particularly pro
nounced for VF as is presented in Figs. S2(e) and (j) in SI. The working 
capacity shows an abrupt increase around VF~0.8. However, the NH3 
adsorption characteristic is opposite for density as is seen from Figs. S2 
(d) and (i) in SI, where the working capacity sharply decreases and 
becomes less than 100 mg/g when the density is higher than 0.5 cm3/g. 
The reason for such difference is that all the other descriptors are related 
with cavity or pore region within MOFs, and larger values of those 
features imply that more ammonia molecules can be accommodated 
inside MOFs, thus leading to higher working capacity in general. In cases 
of density, however, increased void fraction within MOFs results in 
decreased density, making low-density MOFs more advantageous for 
adsorbing NH3 molecules. 

3.4. Properties of the selected MOFs 

Since all MOFs in the present study are assumed to be rigid and 
immovable during GCMC simulations [31], the mechanical stability of 
the MOFs needs to be examined in addition to the NH3 working capacity. 

To this end, we compute bulk modulus (B) of each MOF with MD sim
ulations by employing LAMMPS code [38] with UFF [32] since B is 
considered as a useful metric to gauge mechanical stability [42]. Taking 
the bulk modulus of MIL-101 as a lower bound (10.06 GPa), we finally 
select eight MOFs for efficiently carrying ammonia molecules. The 
crystal structures of the selected MOFs are presented in Fig. 3 together 
with their Cambridge Structural Database (CSD) Refcodes and the 
physical properties of the MOFs are listed in Table 1, respectively. In 
Fig. 3, it should be noted that PIBNUK and PIBNUK01 are structurally 
very close since they are optical isomers and the difference between 
WUHCUZ and WUHDAG is organic ligands connecting metal elements 
(the situation is the same for MERLAZ and MERLED pair). As is seen 
from Table 1, the average working capacity and bulk modulus of the 
candidate MOFs are 1168.84 mg/g and 11.82 GPa, respectively, and the 
maximum values are 1533.35 mg/g and 13.8 GPa for each property, 
which are 113.6 % and 37.2 % higher than the corresponding values of 
MIL-101. 

It is noted that further insights can be gained by examining the 
adsorption isothermal graphs for the final MOFs which will provide the 
pressure dependence of NH3 adsorption performance. As is presented in 
Fig. 4(a), the adsorption capacity at 293K is nearly the same for most 
MOFs: it slowly increases from 100 mg/g or so and shows an abrupt 
jump to higher values between 3 and 4.5 bar, resulting in type V 
adsorption isotherms. Such low capacity at low pressure is due to the 
weak interaction between the MOF surfaces and NH3 molecules, arising 
from the hydrophobicity of organic linkers, which requires higher 
pressure of NH3 for efficient pore filling. This is also in line with the 
observation that the pressure at which the adsorption capacity exhibits a 
sharp upturn increases with LCD of MOFs (Table 1). At elevated pres
sures, on the other hand, the MOFs can be grouped into three different 
classes according to their saturated working capacities: (i) around 1000 
mg/g (PIBNUK, PIBNUK01), (ii) between 1200 and 1300 mg/g (AWU
PAL, YODWOF, MERLAZ, MERLED) and (iii) more than 1500 mg/g 
(WUHCUZ, WUHDAG). This difference in the high-pressure adsorption 

Fig. 2. (a) Relative feature importance of the MOF descriptors. The red and blue bars represent the relative importance at adsorption and desorption conditions, 
respectively. (b–g) The relationship between the three most important descriptors and NH3 adsorption capacities: (b, e) PLD (Å), (c, f) AV (cm3/g) and (d, g) GSA 
(m2/g). In (b)–(d), red and blue circles represent the GCMC simulation results at the adsorption desorption conditions, respectively. Green circles in (e)–(g) represent 
the working capacity. 
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capacity is attributed to the structural dissimilarity of the MOFs. As is 
illustrated in Fig. 3, the structures of PIBNUK and PIBNUK01 are nearly 
identical except for mirror reflection and the organic ligands 

differentiate WUHCUZ (MERLAZ) from WUHDAG (MERLED). It is also 
interesting to observe in Fig. 4(b) that the upturn pressure is shifted to 
higher values than lower temperature cases, which is for compensation 

Fig. 3. The crystal structures of the selected MOFs with high working capacity and bulk modulus.  

Table 1 
Physical properties of the selected MOF candidates.  

CSD code Bulk moduli (GPa) Calculated adsorption capacity (mg/g) Metal LCD PLD 

293 K 5 bar (a) 313 K 5 bar (b) (a-b) 

WUHCUZ [44] 13.8 1607.12 102.37 1504.75 Zr 23.13 12.21 
WUHDAG [44] 13.5 1631.27 97.92 1533.35 Zr 25.24 10.50 
YODWOF [45] 12.83 1372.41 358.38 1014.03 Zn 21.60 14.64 
AWUPAL [46] 11.7 1352.17 174.39 1177.78 In, Fe 18.42 9.24 
PIBNUK01 [47] 11.02 1065.64 146.05 919.59 Zn 15.37 14.18 
PIBNUK [47] 10.92 1075.49 147.24 928.25 Zn 15.38 14.19 
MERLAZ [48] 10.45 1358.64 165.35 1193.29 Fe, Co 27.21 25.55 
MERLED [48] 10.32 1252.62 172.92 1079.70 Fe 27.34 23.18  

Fig. 4. The isotherm graph for the eight selected MOFs at (a) 293 K and (b) 313 K. (c) The isobaric graph for the best eight MOFs at 5 bar. Snapshots of GCMC 
simulations of YODWOF with increasing pressure: (c) 0.1 bar, (d) 1 bar, (e) 3 bar and (f) 5 bar. 
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of enhanced thermal effect on NH3 molecules. In Fig. 4(c), the isobaric 
graphs of the NH3 adsorption capacity are presented for the eight MOFs 
at 5 bar, which show the decrease in the adsorption capacity as tem
perature increases. Interestingly, the adsorption capacity sharply 
changes within narrow temperature range, which will be advantageous 
in reducing the time required for regeneration cycles. Since a consid
erable amount of time is typically needed in adsorption/desorption cy
cles of NH3 molecules when commercially available methods are 
employed, the proposed MOFs are expected to expedite the regeneration 
cycles. 

It should be noted that the low-pressure absorption capacity YOD
WOF shows higher values than those of the other MOFs at both tem
peratures, resulting in type IV isotherm, which can be understood from 
structural consideration. As is shown in Fig. 3, YODWOF consists of two 
different sizes of pore, smaller ones having several binding sites and 
larger ones with high surface area. Such hierarchical porous structures 
make smaller pores filled first at lower pressures. Fig. 4(d)–(g) shows the 
snapshots of GCMC simulations at 293K for YODWOF at different 
pressures. When the pressure is less than 3 bar, NH3 molecules begin to 
fill smaller pores first (Fig. 4(d)–(f)) and larger pores are filled only after 
the pressure is increased to 5 bar (Fig. 4(g)). 

3.5. Diffusion process of NH3 molecules 

When studying NH3 adsorption within MOFs, a large number of 
ammonia molecules are considered in a unit cell, which would result in 
reduced mean free path of NH3 molecules and gas diffusivity. In 
contrast, MOFs in experiment will have more gas molecules near the 
surface than inside the bulk, and it is thus necessary to investigate the 
gaseous transport characteristics within MOFs by taking high NH3 gas 

loading into account. To this end, we carry out MD simulations by 
matching the NH3 gas loading in each MOF to the number of gas mol
ecules employed in GCMC simulations. 

Fig. 5(a) presents the mean square displacement (MSD) of the eight 
MOFs at 293K as a function of time after 1ns of equilibration. Since the 
MSD linearly increases with time as is clear from Fig. 5(a), and the 
diffusivity (D) can be easily estimated from the slope of the MSD line. It 
is seen from the figure that PIBNUK and WUHDAG possess the highest 
and lowest D values of 1.9 × 10− 8 m2/s and 3.7 × 10− 9 m2/s, respec
tively. In general cases, the PLD has a strong effect on the gaseous 
diffusivity in that D shows sharp decrease when the PLD is smaller than 
the kinetic diameter of gas molecules (dkin) whereas it monotonically 
increases if PLD > dkin

41 . In the present cases, however, the correlation 
between the PLDs and diffusivity of the proposed MOFs is weak as is 
shown in Fig. 5(b) because the PLDs of the MOFs are already higher than 
dkin of NH3 molecules, and the LCD also has a weak correlation with D 
(Fig. 5(b)). 

However, Fig. 5(c) reveals that the NH3 diffusivity of the MOFs 
displays a strong negative correlation with the LCD-to-PLD ratio. 
Notably, diffusion occurring between the cages of the MOFs exerts more 
substantial influence on both MSD and diffusivity than diffusion within a 
single cage, implying that active inter-cage jump positively correlates 
with higher diffusivity. Conversely, a smaller LCD/PLD value results in 
less frequent inter-cage jumping events, which will lead to a reduction in 
diffusivity. Thus, in cases of high NH3 gas loading, the ratio between the 
LCD and PLD plays a crucial role in determining the gaseous transport 
characteristics. 

For comparison purposes, we also compute the diffusivity under 
desorption condition. In cases of desorption, the number of gas mole
cules is generally lower than that of the adsorption cases, which 

Fig. 5. (a) The time-dependent MSDs of the selected MOFs. The MSDs during 2.5 ns are recorded after 1 ns equilibration. Their diffusivities are obtained from the 
gradient of the time-MSD line. The relationship between MSD, (b) PLD (red), LCD (blue) and (c) LCD/PLD are plotted. (d) The diffusivity difference between 
adsorption condition and desorption condition. 
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typically leads to an increase in gaseous diffusivity due to steric effects. 
The diffusivities are compared in Fig. 5(d) between the adsorption and 
desorption conditions. As is shown in Fig. 5(d), while WUHCUZ and 
WUHDAG show very limited diffusion under the desorption conditions 
since they contain a small number of NH3 gas molecules within a unit 
cell which are strongly bound to the adsorption sites, PIBNUK, PIB
NUK01, MERLAZ and MERLED exhibit an increase in diffusivity in 
desorption cases. And AWUPAL and YODWOF display minimal change 
and slight decrease in the diffusivity, respectively, under the desorption 
conditions, which is primarily due to the small cage effect. 

The small cage effect arises from the observation that inter-cage 
jumps between large pores are more active than between pores with 
dissimilar sizes, which allows for freer diffusion of gas molecules in 
larger pores while confining them in smaller pores. At high gas loading, 
in particular, the frequency of escaping from small cages due to in
teractions with external gas molecules is relatively high, but such 
escaping is reduced as gas loading decreases, causing diffusivity to in
crease at elevated gas loading [43]. As previously mentioned, YODWOF 
possesses a hierarchical pore configuration and exhibits a tendency to 
fill smaller pores first, which brings about lower diffusivity under the 
desorption condition due to the small cage effect. In cases of AWUPAL, 
the PLD is low compared to LCD, which leads to the decreased pore 
entrance, and the small cage effect is competing with steric effect, 
making almost no difference in diffusivity regardless of temperature. 

4. Conclusion 

In the present study, we have proposed novel MOFs which would 
possess high NH3 adsorption performance by employing a combined ML- 
aided screening and GCMC simulations. Although the ML model takes its 
most inputs from simple geometric parameters of the MOFs, the model 
performance is highly satisfactory as is evidenced by the R2 value. 
Moreover, by analyzing the feature importance, the available volume 
and pore-limiting diameter are the two most important factors in 
determining the NH3 adsorption performance. Considering two opera
tion temperatures, 293K and 313K, it is possible to identify eight po
tential MOFs with high NH3 working capacity, which exceeds the 
corresponding values of previously studied MOFs. The gaseous diffu
sivity is also a critical attribute that significantly affects the adsorption 
performance of the materials. During the regeneration cycles, the 
gaseous diffusivity experiences alterations in response to variations in 
the amount of adsorbed gas molecules. In typical MOFs, which are pri
marily influenced by steric effects, higher gaseous diffusivities are 
observed at lower gas loadings. However, when the small cage effect 
becomes stronger, the corresponding gaseous diffusivity is found to be 
lower at lower gas loadings. These findings show a promise of an ML- 
aided approach in accelerated search for novel MOFs for gas adsorp
tion applications. Moreover, our results demonstrate that geometric 
information of MOFs are crucial in determining adsorption performance, 
which will be advantageous for structural engineering to design high- 
performance MOFs. 
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