IEEE TRANSACTIONS ON GAMES, VOL. 16, NO. 3, SEPTEMBER 2024

645

RaidEnv: Exploring New Challenges in Automated
Content Balancing for Boss Raid Games

Hyeon-Chang Jeon
Hoyoun Jung

, In-Chang Baek

, Jinha Noh”, Seungwon Oh

Abstract—The balance of game content significantly impacts
the gaming experience. Unbalanced game content diminishes en-
gagement or increases frustration because of repetitive failure. Al-
though game designers intend to adjust the difficulty of game con-
tent, this is a repetitive, labor-intensive, and challenging process,
especially for commercial-level games with extensive content. To
address this issue, the game research community has explored auto-
mated game balancing using artificial intelligence (AI) techniques.
However, previous studies have focused on limited game content
and did not consider the importance of the generalization ability
of play-testing agents when encountering content changes. In this
study, we propose RaidEnv, a new game simulator that includes
diverse and customizable content for the boss raid scenario in the
MMORPG games. In addition, we design two benchmarks for the
boss raid scenario that can aid in the practical application of game
Al These benchmarks address two open problems in automatic
content balancing (ACB), and we introduce two evaluation metrics
to provide guidance for AI in ACB. This novel game research plat-
form expands the frontiers of automatic game balancing problems
and offers a framework within a realistic game production pipeline.
The open-source environment is available at a GitHub repository.

Index Terms—Boss raid game environment, content generation,
game play testing, MMORPG.

Manuscript received 12 July 2023; revised 10 October 2023; accepted
7 November 2023. Date of publication 28 November 2023; date of cur-
rent version 17 September 2024. This work was supported by the Na-
tional Research Foundation of Korea(NRF) funded by the MSIT under Grant
2021R1A4A1030075, in part by Culture, Sports and Tourism R&D Program
through the Korea Creative Content Agency grant funded by the Ministry of
Culture, Sports and Tourism in 2022 Project Name: Development of artificial
intelligence-based game simulation technology to support online game content
production, Project R2022020070, in part by the Institute of Information &
communications Technology Planning & Evaluation (IITP) grant funded by the
Korea government (MSIT) under Grant 2019-0-01842, and Artificial Intelli-
gence Graduate School Program (GIST) . Recommended by Associate Editor
M. Guzdial. (Hyeon-Chang Jeon and In-Chang Baek contributed equally to this
work.) (Corresponding author: Kyung-Joong Kim.)

Hyeon-Chang Jeon, In-Chang Baek, and Wonsang You are with the Arti-
ficial Intelligence Graduate School, Gwangju Institute of Science and Tech-
nology, Gwangju 61005, South Korea (e-mail: kevinjeonl19@gm.gist.ac.kr;
inchang.back @ gm.gist.ac.kr; u.wonsang0514 @gm.gist.ac.kr).

Cheong-mok Bae is with Computer Sciences and Engineering, Gwangju
Institute of Science and Technology, Gwangju 61005, South Korea (e-mail:
cjdahrl@gmail.com).

Taehwa Park, Taegwan Ha, Hoyoun Jung, Jinha Noh, Seungwon Oh, and
Kyung-Joong Kim are with the School of Integrated Technology, Gwangju
Institute of Science and Technology, Gwangju 61005, South Korea (e-mail: tae-
hwa-p@gm.gist.ac.kr; hataegwan @ gm.gist.ac.kr; nenomigami@gm.gist.ac.kr;
n0ah9905 @gm.gist.ac.kr; sw980907 @ gm.gist.ac.kr; kjkim @gist.ac.kr).

Data is available on-line at https://github.com/CILAB-CT-GAME/RaidEnv.

Digital Object Identifier 10.1109/TG.2023.3335399

, Cheong-mok Bae

, Tachwa Park”, Wonsang You”, Taegwan Ha"",
, and Kyung-Joong Kim", Member, IEEE

1. INTRODUCTION

AME content balancing is a crucial process in the game
G industry when releasing new game content. Unbalanced
game content can cause player dissatisfaction and frustration. To
mitigate this issue, game companies employ balancing processes
to prevent overpowered content that diminishes the game expe-
rience. Prior to content release, game testers evaluate the content
balancing and provide reports to the game designer, who then
verifies whether the content aligns with their intentions. Even
after content release, game designers analyze game log data and
readjust the content to achieve rebalancing.

However, several game companies rely on human testers
repeatedly playing new game content to measure its difficulty.
This approach has limitations as it does not allow testers to
acquire sufficient data owing to time constraints. Moreover,
the labor-intensive and expensive nature of this process limits
the collection of extensive data from game testers. Recently,
several scholars have attempted to employ machine learning
techniques to test game content in popular puzzle games [1],
[2], [3] and card-based real-time strategy games [4], for testing
game content.

Automatic content balancing (ACB) is an automated tech-
nique that aims to readjust or recombine game content to ensure a
balance of the game. Within the game research community, ACB
is regarded as a promising solution to address this challenge by
leveraging artificial intelligence (AI) players and generators (i.e.,
balancers) agents as game testers and designers, respectively. In
ACB, two repetitive phases are involved in automating game de-
sign tasks and quality assurance: 1) generating new game content
with machine learning (PCGML) [5] methods and 2) evaluating
the content through play testing with an Al player. These auto-
mated sequences allow generator models to be trained through
extensive trial-and-error iterations, surpassing the limited trials
feasible with human testers. The quality of the generated content
depends on the Al player’s robustness in playing diverse game
contents and fairly evaluating them [6]. Similarly, the content
generator should possess the ability to generate various contents
according to designer-specified requirements.

In this article, we present RaidEnv, a game environment
that aims to encompass the features found in commercial-level
MMORPG games, with a specific focus on the boss raid sce-
nario, a popular content type in MMORPGS. This highly cus-
tomizable environment includes machine learning interfaces for
play testing and procedural content generation (PCG) agents.

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-3526-5191
https://orcid.org/0000-0002-9409-9253
https://orcid.org/0000-0002-2232-5821
https://orcid.org/0000-0003-0502-8232
https://orcid.org/0000-0003-4993-1204
https://orcid.org/0009-0009-9172-0049
https://orcid.org/0000-0003-2643-9081
https://orcid.org/0000-0002-4071-2673
https://orcid.org/0000-0002-1550-9016
https://orcid.org/0000-0002-7732-0817
mailto:kevinjeon119@gm.gist.ac.kr
mailto:inchang.baek@gm.gist.ac.kr
mailto:u.wonsang0514@gm.gist.ac.kr
mailto:cjdahrl@gmail.com
mailto:taehwa-p@gm.gist.ac.kr
mailto:taehwa-p@gm.gist.ac.kr
mailto:hataegwan@gm.gist.ac.kr
mailto:nenomigami@gm.gist.ac.kr
mailto:noah9905@gm.gist.ac.kr
mailto:sw980907@gm.gist.ac.kr
mailto:kjkim@gist.ac.kr
https://github.com/CILAB-CT-GAME/RaidEnv

646

IEEE TRANSACTIONS ON GAMES, VOL. 16, NO. 3, SEPTEMBER 2024

TABLE I
SUMMARY OF THE ENVIRONMENTS FOR CONTENTS GENERATION AND PLAY-TESTING

Environment Ref. PCG Problem Multi-agent Problem Balancing Problem

Ludii [7] Game Rule - -

GVGAI [8] Game Rule, Map Layout - -

VizDoom [9] Skill, Map Layout - -

Mario Al Framework [10] Map Layout - -

Hanabi [117, [12] - Ad-hoc Generalization -

Pommerman [13] - High-performance -

Google Research Football [14] - High-performance -

Fever Basketball [15] - High-performance -

SMAC [16], [17] - Environmental Generalization -

Melting Pot [18] - Ad-hoc Generalization -

Neural MMO [19] Massive Map Layout High-performance -

Hearthstone [20] Card Deck Building - Single-content Balancing (Card)
Tower Defense [21] Map Layout - Multicontent Balancing (Spawn, Unit)
Overcooked-Al [22], [23] Map Layout Al-human Coordination Single-content Balancing (Layout)
Pokémon [24] Card Deck Building High-performance Automatic Team Assembly
microRTS [25], [26] Skill, Stats High-performance Multicontent Balancing (Skill, Stats)

RaidEnv (MMORPG) Skill, Stats

Environmental Generalization

Multicontent Balancing (Skill, Stats)

Our contribution includes the proposal of two benchmarks appli-
cable to ACB problems. These benchmarks comprise 1) training
generalized play-testing agents and 2) controllable content gen-
eration. We conduct the benchmarks within RaidEnv, providing
deep reinforcement learning (DRL) methods as baselines, in
addition to handwritten heuristics. Each benchmark was indi-
vidually analyzed, and a combined analysis is presented at the
end of this article. The major contributions of this study are
summarized as follows.

1) We developed RaidEnv, an open-source game simulator
that supports extensive customization, facilitating content
generation, and play-testing benchmarks.

2) We propose a benchmark for evaluating play-testing
agents, emphasizing their generalization ability when en-
countering content variations.

3) We propose a benchmark for skill content generation,
focusing on controllability and diversity aspects.

The rest of this article is organized as follows. In Section II,
we review previous studies to compare the features of our envi-
ronment, covering existing game environments, and balancing
scenarios. Section III provides a detailed description of the new
game environment, outlining its key features, and components.
In Section IV, we present our first benchmark, which focuses
on the development of robust play-testing agents. To adequately
evaluate the playtested result of the generated content, we pro-
pose adjusted test performance metrics considering the varying
difficulty in changing content. In Section V, we introduce the
second benchmark, the content generation benchmark, which
involves skill content generation and utilizes the play-testing
agent proposed in the first benchmark. Using agent-based sim-
ulations, the utility of the PCG models were evaluated in

terms of benchmarking controllability and diversity. Finally,
Section VII concludes this article.

II. RELATED WORK

Table I summarizes the existing game research platforms, and
the development purpose of those games is discussed. The liter-
ature review was conducted within popular literature databases,
i.e., Google Scholar, the IEEE digital library, and ACM digital
library. The keywords used to search for existing simulators were
“game simulator,” “procedural content generation,” “multiagent
and multiplayer,” and “game balancing.” In this process, more
than 30 papers with detailed environmental specifications and
experiments on PCG or multiagent training were reviewed. In
addition, previous work on metastudies was also reviewed for
PCG [27] taxonomies and multiagent-based gameplaying [28],
[29]. For summarizing previous works, we have included papers
from only public research platforms because we are proposing
an open-source game research framework. Table I summarizes
the previous work in three dimensions of criteria: 1) PCG, 2)
multiagent, and 3) balancing.

The PCG criterion describes the content types that are em-
ployed for content generation. Several game variables with
character properties (e.g., skill and stats) [9], [25], [26], map
layout [8], [10], [19], [21], [23], card decks [20], [24], and
game rules [7], [8] have been investigated. The game rules and
character properties are related to the game mechanics and map
layout, while the card deck is considered playable content. Skill
and stats are the character-related features and the representa-
tive methods to encourage role differentiation in multiplayer
games.

99 <

JEON et al.: RAIDENV: EXPLORING NEW CHALLENGES IN AUTOMATED CONTENT BALANCING FOR BOSS RAID GAMES 647

The multiagent criterion describes the most frequently
addressed problem definition in the game environment. The
high-performance class [13], [14], [15], [19], [24], [25], [26]
represents the environment that addresses the general multiagent
problem and the cooperative gameplay, while ad-hoc and envi-
ronmental generalization are specific subproblems addressed in
the specific environment. Ad-hoc generalization [11], [12], [18]
is the generation ability of gameplaying, where unseen agents are
not considered in the training step; AI-human coordination [23]
refers to the agent’s ability to adapt to human behavior policy,
and environmental generalization [16], [17] refers to the gen-
eralization ability to control diverse types of characters using a
single policy.

The balancing criterion determines whether the environment
addresses the procedural generation or combinational problems
for adjusting the game content to satisfy specific game results
measured among two or more players. We arranged the corre-
sponding papers with four taxonomies, where the content types
are used for balancing. Specifically, we describe the details of
these criteria in Section II-A.

Furthermore, a previous study [30] proposed DRL agent
play testing in a collective meta MMORPG game. Here, the
DRL agents involve two gameplay styles, i.e., craftsman and
adventurer, to simulate the in-game economics and assess the
inflation phenomenon. This previous study investigated the sim-
ulated economics using only play testing agents. In contrast, the
current study addresses automated content balancing problems
in cooperative combat scenarios.

A. Automated Content Balancing

In previous studies (see Balancing Problem in Table I), four
representative balancing problems have been proposed: auto-
matic team assembly and single/multicontent balancing. Auto-
matic team assembly aims to predict the power of a team [31] and
identify overpowering champion combinations [24] in battler
games. Single- and multicontent balancing focuses on regulating
game object parameters to ensure fair gameplay or intended
symmetry. In single-content balancing, the balancer module
regulates single-content item (e.g., skill) to meet game results for
aparticular setting, while in multicontent balancing, the balancer
regulates two or more content elements (e.g., skill and stats).
Evolutionary methods are employed in [26] to balance units
(characters) in real-time strategy (RTS) games. In particular,
Sorochan et al. [26] simulated the game with play-testing agents
of varying proficiency levels. The proposed environment, i.e.,
RaidEnv, can support the multicontent balancing of the char-
acter’s skill and stats; however, only the skill content item was
considered in this study.

This study applies the single-content balancing technique in
a different game genre, MMORPG. Although our environment
supports multicontent balancing for various game elements,
such as skills and stats, we demonstrated content generation
for a single content to simplify the problem size. Although this
research shares similarities with the VGC Al competition [24],
it exhibits notable differences. First, the VGC Al competition
focused on deck-building rather than altering the content, aiming

to determine the possible combinations. Second, they primarily
focused on the framework, whereas ours focused on evaluating
generated content. Furthermore, this research emphasizes the
robustness of the play-testing agents. We propose a balancing
study in a cooperative game scenario, specifically a boss raid
encompassing various game design components, such as char-
acter class and executable skills. We highlight the significance
of play-testing agents’ generation ability in game-balancing
studies. In addition, the proposed platform, which utilizes a
popular machine learning framework, had been published as
an open-source model for game researchers to generate accessi-
bility for multicontent generation tasks. This platform presents
numerous opportunities for exploring novel balancing scenarios
among the game research community.

B. Multiplayer Game Al Environments

Multiplayer game Al environments primarily focus on design-
ing algorithms that determine the behavior of each agent within a
game system involving cooperation, competition, or both among
two, or more players. Various environments have been proposed
to facilitate multiplayer game Al studies for addressing specific
problems using multiagent algorithms, as depicted in Table I.

Several multiplayer game environments have concentrated on
achieving superhuman-level Al performance in diverse games.
For example, the Starcraft Multi-Agent Challenge (SMAC) [16],
based on the RTS game StarCraft 11, offers a wide variety of
configurations, such as the number of units, the environmental
emphasis on long-term decision-making problem, and partial
observation setting. In the sports game genre, Google Research
Football (GRF) [14] and the Fever Basketball environment [15]
aims to develop high-performing agents in sports-related games.

Recently, the research focus has been shifted toward environ-
ments that prioritize performance generalization, as observed
in Melting Pot [18] and SMAC [16], [17]. Melting Pot focuses
on generalizing agent performance when playing against previ-
ously unseen agents. It encompasses sequential social dilemmas
(SSD), competitive games, and cooperative games. Our study
shares similarities with previous work [17] for achieving strong
performance in unseen environments. The previous study [17]
had extended the environmental features on the top of the
original SMAC environment [16] features. However, we focus
on developing robust play-testing agents capable of adapting to
a broad range of game content. In addition, our environment
introduces varying levels of difficulty through changing game
content.

C. Procedural Contents Generation Environments

PCG studies have explored various types of game content
generation, including game level layout, game rule generation,
and card deck generation. Game level layout generation has been
extensively researched in popular video games, such as Angry
Birds [32], [33], Super Mario Bros [34], [35], Minecraft [36], and
Overcooked! [37]. The objective of level generation is to create
playable game content that can be explored and completed by
players. Game rule generation involves automatically generating
the mechanics, dynamics, and constraints of a game. This area of

648

research has been proposed in platforms, such as general video
game Al (GVGAI) [8] and Ludii [7], which utilize game de-
scription languages. Card deck generation focuses on searching
for optimal combinations of game cards and has been studied in
representative card simulation games, such as Hearthstone [20]
and Pokémon [8].

To expand the scope of the PCG research to extensive game
contents, new customizable game elements must be considered.
However, alimited number of studies have focused on generating
game content, such as skills and player characteristics. There-
fore, this study introduces a novel content type for procedural
generation of game and demonstrates the game generation using
reinforcement learning. Game features, such as skills, character
classes, and items are common across various game genres, with
numerous features shared within the same genre.

To ensure the generality of our framework, we extract several
features from commercial games and provide them as control-
lable parameters. In this study, we referred to the user-generated
game wiki sites to cover two popular MMORPG games: World
of Warcraft' (Blizzard Entertainment, 2004) [38] and LostArk?
(Smilegate,2019) [39] games and we extracted common proper-
ties from the characters and skills. These two games utilize their
similar game mechanics to implement their game design and
we include the shared game variables. Here, we only included
the shared features between these two games to enhance the
generalizability of the framework. This approach offers new
perspectives on generating game content and opens up new
possibilities in the game research community.

III. RAIDENV: THE BOSS RAID ENVIRONMENT
A. Boss Raid Scenario

Boss raids are a prevalent form of cooperative multiplayer
content in most MMORPG games. The objective of a raid is
to defeat a powerful boss within a limited time frame in a
dungeon, while playing alongside other players, with the aim
of obtaining valuable rewards. Boss raid content is centered
around the challenge of overcoming a formidable boss with
limited resources and time. Typically, bosses are designed to be
stronger than a single player, featuring complex attack patterns
that pose a significant challenge in solo encounters. Certain
attack patterns necessitate player cooperation, such as spreading
out to minimize damage when the boss launches an area attack.
This highlights the importance of real-time communication
between players. As a fundamental principle in the design of
multiplayer games [40], [41], role differentiation is applied to
the boss raid content for assigning specific responsibilities to
individual players. In the boss raid scenario, role differentiation
is achieved by diversifying the skills and abilities of players,
with well-defined roles, such as tankers, dealers, and healers
being widely standardized. Commercial MMORPG games of-
ten offer numerous character roles to enhance the cooperative
gameplay experience. For instance, World of Warcraft (WoW)
game features over 30 specialized roles.

![Online]. Available: https://worldofwarcraft.blizzard.com/
2[Online]. Available: https://www.playlostark.com/en-us

IEEE TRANSACTIONS ON GAMES, VOL. 16, NO. 3, SEPTEMBER 2024

The increasing complexities of role types and game content
pose challenges for game designers for predicting the outcomes
of game updates and managing the combined effects of various
elements. Therefore, the use of ACB techniques becomes crucial
for assisting game designers and developers in this complex
landscape. However, only a few studies have attempted to ap-
ply ACB in the context of boss raids, and existing attempts
considered an inadequate number of customizable features to
facilitate comprehensive balancing studies. Consequently, the
RaidEnv simulator offers a valuable contribution by providing
a customization interface that enables the generation of diverse
character roles through game simulation. The implementation
details of the boss raid scenario are described in the following
section.

B. Contents Definition

To abstract boss raid content, we have categorized the game
elements into three components: 1) player class, 2) character
statistics, and 3) skill parameters. Fig. 1 provides an overview
of the design process for player classes, and the specific details
of each component are described as follows.

Class: The player class is a defining characteristic that im-
parts individuality to player characters and assigns distinct roles
within the game. The class of a character consists of two key
elements: 1) statistics and 2) a set of skills. For example, the
Tanker class specializes in withstanding enemy attacks, possess-
ing unique statistics, such as high health points and defensive
bonuses compared to other classes. In addition, tankers possess
skills that enable them to mitigate incoming damage and protect
their allies.

Statistics (Stats): Statistics represent the internal attributes
of characters in RPGs and are typically represented as numer-
ical values. RPGs, ranging from traditional tabletop games to
modern MMORPGs, utilize various statistics to define char-
acter attributes. These statistics can be gained permanently or
temporarily through character growth, equipment, consumables,
or special abilities. Examples of statistics include health/mana
points, strength, intelligence, dexterity, critical chances, and
more.

Skill: While modern games employ different terms, such
as abilities, talents, or traits, in our environment, we simplify
these concepts into the common notion of skills. Skills are
possessed by characters and can be categorized into two types:
1) active skills and 2) passive skills. Active skills are initiated
by a character’s action, allowing the player to enact decisions
regarding which skill to activate from their available set of skills.
Conversely, passive skills are latent abilities that have an impact
even when not directly activated by the character. Skills can
be differentiated by analyzing conditions for activation, target
affected, effects produced, and other relevant factors.

C. Environment Description

The RaidEnv environment is implemented using the Unity
platform, and for machine learning training, we utilized the
Unity ML-Agents Toolkit [42]. With the RaidEnv environment
as a foundation, we have designed several scenarios tailored

[Online]. ignorespaces Available: ignorespaces https://worldofwarcraft.blizzard.com/
[Online]. ignorespaces Available: ignorespaces https://www.playlostark.com/en-us

JEON et al.: RAIDENV: EXPLORING NEW CHALLENGES IN AUTOMATED CONTENT BALANCING FOR BOSS RAID GAMES 649

[Player Class]

Character Stats

[Att;ck I [Attri.bute

I Inforr;lation I I

[Coeff.'lcient]

[Defensive]] Condlition I
* Power =- Armor Primary Secondary - Name Cool Time Value
H) H N) |] {) H J]
’[Range] ='[Evasion] *[Strength] >[Critical] [Trigger Type] [Cast Time]
*[Speed] ‘[Parry] ’[Agility] ’[Haste] { Magic School] { Cost]
Intelligence | ¥ Versatilit . Hit Type Range
+(Uneettigence]+ y] we] H e)
. . . [Mastery] { Target Type] [Charge]
[Health Point] [Mana Point] [Spell] [Move Speed] { Projectile Speed] [Cast on Moving]
L { Affect on Ally] [Cast on Casting]

Fig. 1.

{ Affect on Enemy] [Cast on Channeling]

Overall game components in the RaidEnv environment. The game features and environmental variables are shown in a hierarchical structure, and the

equal-level groups are shown in the same color (e.g., light red and light green). Components in white boxes are the modifiable variables, and those is colored boxes
are not modifiable (but grouped with similar functional variables). Character Stats is a characteristic of the play-testing agents, and Skill(s) is a component that
can be owned by an agent. Each agent can have one to three executable skills, and all components are fully differentiated by the agent.

to each benchmark. During each training step, the agent col-
lects continuous observations (e.g., scalars and ray perception
sensors) and samples discrete actions for learning within the
environment. The RaidEnv environment encompasses a basic
MMORPG boss raid scenario comprising one enemy agent and
three player agents tasked with defeating the boss. Each player
agent possesses one skill targeted at the enemy. To efficiently
gather play-testing results during training, parallelization of the
environment, which is necessary. Therefore, we have included
multiple arenas within the environment to enable parallel play
testing. Furthermore, we created interfaces to promote learning
among multiplayer agents and PCG, including functions to
compile game logs for tracing action steps and episodes.

The Boss in the boss raid scenario serves as the opponent
nonplayer character (NPC). As mentioned in Section III-A, the
boss is intentionally designed to be more powerful than a single
player to foster cooperation among players. The boss has ten
times the health points of a player agent and is equipped with
two strong skills with ranges of 6 and 12. The boss properties
are configured to design a cooperative boss fight scenario, and
the difficulty level is set to barely beat the boss. The boss agent
follows a simple behavioral policy: it selects the closest player
agent as its target, moves toward that player, and launches an
attack when the skill is available. Fig. 2 provides a snapshot
of the environment, featuring one boss NPC, and three player
agents. In summary, the RaidEnv environment consists of one
static boss NPC and three customizable player agents.

D. Scenario Elements

This article introduces two benchmarks within this frame-
work, as illustrated in Fig. 3. The ACB task can be decom-
posed into two distinct subproblems: 1) training play-testing
agents and 2) generating skill content. Meanwhile, the PCG
task necessitates using a robust play-testing agent to evaluate the

Fig. 2. Snapshot of the RaidEnv environment. The blue ones are the player
agents and the green one is the boss agent.

generated content, with one of the play-testing agents serving as
the validated tool for the produced skill.

Both the play testing and PCG benchmarks leverage the skill
content. In the play-testing benchmark, we utilize the Range
property to introduce variability in skill characteristics, assess-
ing the agents’ ability to generalize across unseen skill ranges.
In the PCG benchmark, we incorporate four skill parameters:
1) Range, 2) Value (damage), 3) Cast Time, and 3) Cool Time to
address the skill generation task. This study incorporates four
environment parameters; however, an additional 30 parameters
remain to enhance the simulation outcomes, making them more
akin to those encountered in commercial games.

IV. BENCHMARK 1: PLAY-TESTING AGENT WITH CHANGING
CONTENTS

In this section, we present a play-testing agent trained using
multiagent reinforcement learning (MARL) and evaluate its
content robustness in different game contents. To effectively
utilize the play-testing agent in various scenarios, the agent

650 IEEE TRANSACTIONS ON GAMES, VOL. 16, NO. 3, SEPTEMBER 2024
Designer Description —— Benchmark 1: Training Playtesting Agent
Content Type Parameter
i Sl | Cool Time I Damage |
dh_Stats | CastTime | Range | "6’ PT-MARL Agent |
[Class (3 skl (Range 5)) (32 Skill (Range 3))
—— Automated Contents Balancing — Le1E 1o “I:'laytesting —— (3~ Skill (Range 9)) —» (3~ Skill (Range 4)
- Random Agent & Agent
Generalization (m) (3 skill (Range 19))
k- PT-MARLI1
Playtesting Models .
[P Training Skill-set Evaluating
o PT-MARL2 Generalization
‘g PT-MARL3
— Benchmark 2: Skill Content Generation
Training Generative Model
(oot] |
. Heuristic Agent Content Playtesting Agent
R) oz R ¥ G d Skill #2
| sis PCG-RL Generative Agent | Generator & (Heuristic) —> enerate
Random Agent . : -
; ;
@ @ @ Generative Models Training Generative Models Evaluating
Controllability & Diversity
Evaluating Contents
Fig. 3. Proposed two benchmarks in RaidEnv. The overall balancing process includes training play-testing agents and content generation with the play-testing

agents process. We separated the two processes as benchmarks to clarify the benchmark tasks. The integrated process (ACB) is considered as future work by

integrating the results from the two benchmarks.

should demonstrate adaptability with unseen content parame-
ters. Therefore, we assess whether the agent maintains consis-
tent performance across different skill parameter value settings
within the environment. Furthermore, to account for the vari-
ation in content difficulty resulting from content changes, we
propose the use of a generalization score metric that considers
difficulty adjustments using the agent population.

A. Environment Settings for Play-Testing Agent

Agent: Here, we introduce a DRL-based baseline for multi-
agent gameplaying. The MA-POCA [43] algorithm is a state-
of-the-art multiagent algorithm in gameplay. It addresses the
posthumous credit assignment problem, which occurs when an
agent is removed from the environment during training. This
problem is particularly critical in games where agent death is a
common occurrence. Moreover, MA-POCA is constructed using
the counterfactual multiagent policy gradient (COMA) [44], and
incorporates a self-attention layer [45] in the network to handle
the posthumous credit assignment problem. The inputs of agents
are going throughout the fully connected layer for the embedding
and normalization layer as [43]. The objective of MA-POCA
involves utilizing a counterfactual baseline [46] and updating
for agent ¢ is performed as follows:

Tiiie =7 =Y _Q(s,(a”",a)) 8))
aictor = logﬂ-i (aiIS)A(Sa a‘ia aii) (2)
A(s,a',a™") =G —Q(s, (a",a")) 3)

where 7¢ represents the temporal difference (TD) target, @
denotes the state-value function, and ; represents the policy
of agent ¢, applicable to both homogeneous and heterogeneous
agent settings. G denotes the TD value function estimates.

State: At each time step, an agent collects observations on
the boss and the status of all team members, including position,
velocity, health, and remaining skill cooldown. In addition, the
agent gathers information on existing skill projectiles. Further-
more, to facilitate generalized behavior across skill parameters,
the agent obtains parameters, such as range, damage, and cast
time associated with the skills. Total the number of states size is
33. All features are normalized based on their maximum values.

Action: Agents have a total of eight actions, including move,
rotate, and execute skills. In our setup, each agent can execute
a single action per time step, such as stay, move forward, move
backward, turn right, turn left, move left, move right, and execute
skill.

Reward: Agents receive individual rewards from the envi-
ronment based on the amount of damage they inflict on the
boss. The damage reward is calculated as damage x 0.01. In
addition, agents receive group rewards from the environment,
which are set to 1.0 when the boss is defeated. Moreover, we
introduce a cooperative element by incorporating a back attack
reward. A back attack occurs when one agent distracts the boss
while other agents turn around and attack the boss’ vulnerable
rearside. The reward for successful back attack is calculated as
damage x 0.012, which is higher than the reward for regular
attacks.

B. Play-Testing Agent Evaluation Setup

1) Baselines: In the context of RaidEnv, employing play-
testing agents capable of handling the complexity of MMORPG
games while showcasing robustness to content variations, which
is vital for play testing. To validate the robustness of content
variations, we employ three play-testing agents: 1) the rein-
forcement learning agent utilizing the MARL algorithm [43]
(PT-MARL), 2) the play-testing heuristic (PT-HR) agent, and 3)
the play-testing random (PT-RD) agent.

JEON et al.: RAIDENV: EXPLORING NEW CHALLENGES IN AUTOMATED CONTENT BALANCING FOR BOSS RAID GAMES 651

TABLE II
SKILL RANGE VALUES IN ROBUSTNESS EXPERIMENT

Agent #Samples Sampled Skill Ranges
PT-MARLI1 1 [5]

PT-MARL2 2 [5, 9]

PT-MARL3 3 [5,9, 13]

PT-MARL4 4 [5,9, 13, 17]

1) PT-MARL agent makes a decision regarding the actions
taken to defeat the boss and receives rewards based on
the combat performance. In the self-play experiment, the
PT-MARL agent is trained and tested using the same skill
range environment. In contrast, we compared the perfor-
mance of the unseen skill range environment settings. The
detailed parameters are listed in Table VIII.

2) PT-HR agent follows a simple strategy, i.e., it moves
around the boss agent and selects available skills randomly
during combat. Here, the agent maintains a maximum
attack range from the boss and avoids its attacks. This
is the baseline used to compare the multiagent algorithm.

3) 3)PT-RD agent selects actions from the action space by
uniformly sampling distributions.

2) Experiment Setup and Evaluation Metrics: In this bench-
mark, we conducted two experiments: 1) comparing the heuristic
play-testing agent to the MARL agent using fixed content pa-
rameter settings and 2) evaluating the agents’ robustness with
unseen content parameters.

Optimality: The experiment was conducted to compare the
win rate of the PT-RD, PT-HR, and PT-MARL algorithms across
various skill range values, specifically skill ranges of 5,9, 13, and
17. PT-MARL agents who trained in each skill range evaluated
them at the same skill range (e.g., a DRL model was trained on
skill 5 and evaluated on the same condition, i.e., skill 5).

Robustness: This experiment was conducted to measure the
agents’ generalizability by varying the number of skill range
values. Here, the evaluation environment equips different skill
settings with the training environment, and it is assumed as an
updated game version. The metric evaluates the availability of
the play-testing agent in the updated game environment. Here,
the agents were labeled PT-MARL1, PT-MARL?2, PT-MARL3,
and PT-MARL4 based on the number of skill range values, which
the agent was sampled on training. The corresponding values are
summarized in Table II. The agent uniformly samples one of the
skills and trains an episode with the sampled skills; further, the
skill is changed at the beginning of each episode.

The robustness is measured with the performance ratio that
increases/decreases in an unseen environment. We adopt the win
rate metric to evaluate an agent’s performance in an environment,
and the win rate is a widely used metric for agent-based play
testing [2], [47]; the win rate is calculated by dividing the number
of wins by total number of episodes.

To utilize the approach [48] for measuring the performance
generalization of environment diversity, we measured the test
gap between the heuristic play-testing agent and PT-MARL
agents with various skill range parameter values. Here, we
measured the performance of a setting, which is commonly

TABLE III
WIN RATE BETWEEN MARL AND HEURISTIC AGENT

Parameter | Skill. Range
Valie | 5 9 13 17
0.485 0.857 0.990 0.990
PEMARL | 10013) (40.143) (+0.006) (+0.008)
- 0.089 0371 0.698 0.830
(+0.017) (£0.025) (+0.021) (£0.089)
PLRD 0.000 0.002 0.029 0.058
(+£0.000) (£0.002) (£0.006) (+0.013)

The bold text denotes the best (highest) value among the values.

found in trained skill range parameter settings, while the content
parameter setting that is not found in any agent was selected for
the test.

Unlike the previous environment [48], where the game diffi-
culty was constant even if the parameter changes, the proposed
approach considers skill range changes that causes variations
to the difficulty level. For example, if adjusting a skill’s range
values leads to reduced attack range, the scenario becomes
increasingly difficult. Here, we denote the agent’s performance
in unseen skill ranges as score"™*". To calculate an adjusted
score, we generated a population (N = 5) trained with the
unseen skill ranges (3, 4, 19, and 20) and obtained the average
performance score,giiion Of the population for a representative
score in that skill range. Further, we calculated the adjusted score
AdjustedScore as follows:

Scoreunseen

scoreunseen : (4)
population

AdjustedScore =

C. Experimental Result

1) Optimality: Inthis section, we present a comparison of the
average win rate among the MARL agent (PT-MARL), PT-HR
agent, and PT-RD agent over 500 games. The objective is to
demonstrate why RL agents can be used for obtaining a more
reliable test result. The PT-MARL agent was trained with 50
million steps for every five runs according to the skill range
setting. As shown in Table III, the PT-MARL agents exhibited
better results than the PT-HR and PT-RD in their corresponding
settings regardless of the range. Specifically, the PT-HR agent
demonstrated worse results as the skill range decreased . This
indicates that the PT-HR has limitations for solving difficult
levels of the game, while the complex PT-MARL agent solves it
well. The PT-RD agent cannot win even one game in the range
5 because the game is much more difficult because the agents
should get close to the boss. In contrast, as the range increases,
even simple PT-RD agents can defeat the boss, suggesting that
the game’s difficulty is low. The PT-MARL agent converged suc-
cessfully, unlike the relatively fast convergence of skill ranges
13 and 17 settings; skill ranges 5 and 9 settings require more
steps for convergence during training, as shown in Section I'V.

2) Robustness: We trained the four MARL models (i.e., PT-
MARLI1, -MARL2, -MARL3, and -MARLA4) using 50 M steps
with the four skill sets (Table II), and the performance was
averaged with five seeds. After the training, the unseen skill
ranges 3, 4, 19, and 20 were evaluated and compared. The results

o
o
o
I.,

652 IEEE TRANSACTIONS ON GAMES, VOL. 16, NO. 3, SEPTEMBER 2024
TABLE IV
TESTING AND TRAINING PERFORMANCE WITH ADJUSTED DIFFICULTY LEVEL
Train Test
5 3(Hard) 4(Hard) 19(Easy) 20(Easy) Test Avg.
PT-MARL 1 1.049 (4+0.063) | 0.004 (£0.005) 0.553 (+0.085) 0.597 (£0.055) 0.597 (£0.048) 0.506 (£0.310)
PT-MARL 2 | 1.004 (£0.122) | 0.028 (£0.033) 0.553 (£0.224) 0.523 (4+0.082) 0.525 (+0.079) 0.473 (£0.306)
PT-MARL 3 | 0.630 (£0.268) | 0.013 (£0.024) 0.369 (£0.192) 0.826 (£0.109) 0.778 (£0.151) 0.511 (£0.351)
PT-MARL 4 | 0.049 (£0.031) | 0.000 (£0.000) 0.016 (£0.015) 0.980 (+0.017) 0.971 (£0.022) 0.443 (£0.477)
PT-HR 0.119 (£0.038) | 0.013 (£0.007) 0.115 (£0.015) 0.89 (£0.011) 0.868 (£0.021) 0.441 (£0.396)
The bold text denotes the best (highest) value among the values.
Adjusted Score in Test Skill Ranges Trajectory of the PT-MARL Agents
Skill Range 3 Skill Range 4 Skill Range 19 Skill Range 20
10 Lo ---- Population Avg.
, Range 3
I ‘ Range 4 -
0.8 -
o Range 19 <
S Range 20 ;
< os | | | |
! |
o4
<
0.24 m
; 4
0.0 L | | i E
PT-HR PT-MARLL PT-MARL2 PT-MARL3 PT-MARL4 =
Agent
Fig. 4. Figure of adjusted score results in test skill range settings. The red

line indicates the average adjusted score of the population (N = 5) in unseen
settings. Adjusted score is the ratio of the test performance of the trained agent
to the average performance of the population. As the adjusted score achieves a
higher test adjusted score, the score is near 1 (sometimes even higher than 1).

are described in Table IV and Fig. 4. Fig. 4 demonstrates the
comparison between the trained agents and nonlearning PT-HR
agents. The population of agents (/N = 5) serves as an indicator
of game difficulty at each skill range. Notably, this population
was established by training a separate MARL algorithm for
each skill range. The performance of the population is shown
in Table VII in Appendix.

Overall, PT-MARL agents outperformed PT-HR agents in the
test content parameter settings. Among the PT-MARL agents,
PT-MARL3 exhibited the highest average performance for the
test skill ranges (3, 4, 19, and 20), as in Table I'V. In contrast, PT-
MARLA displayed intensive learning of long-distance skills but
struggled with short-distance encounters. PI-MARL1 demon-
strated consistent performance across all test content parameter
settings because of its reliance on a single strategy. Notably,
all agents struggled to learn in the skill range 3, suggesting
room for further improvement and development. See Table VII
for detailed information regarding the adjusted score and raw
information.

D. Further Analysis

We analyzed the movement patterns of PT-MARLI and PT-
MARLS3 agents based on the number of sampled skill ranges. We
played 500 games for each agent and averaged their occupied
locations. As depicted in Fig. 5, the PT-MARLI agent, who
only observed a skill range of 5, exhibited consistent behavior
regardless of skill range changes. In contrast, the PT-MARL3
agent recognized the variation in skill ranges and adapted dif-
ferent strategies accordingly. For example, PT-MARL3 agents
move to the boss and shoot skills in skill range 4. In contrast,

Fig.5. Heatmap of the average game position occupancy of PT-MARL1, and
PT-MARLS3 using 500 games. The red spot is the initial position of the boss. The
results show that the PT-MARLI agent did not change strategy effectively even
when the skill range changed. In contrast, the PT-MARL3 agent recognized the
change in a parameter, which enabled it to change its movement strategy.

BackAttack Ratio Analysis across Different Agents

T range3
o range4
rangel9

I’
B

0.0 i

PT-MARL3

0.54

o
IS
f

BackAttack Ratio
°
[
L

o
N
N

T T T T
PT-HR PT-MARL1 PT-MARL2 PT-MARL4

Fig.6. Backattackratioin test skill range settings. The back attack ratio counts
the number of back attacks and divides it by the total number of attacks. Here,
the black line is the minimum and maximum of the back attack ratio among five
runs.

the PT-MARL3 agents executed skills sustaining the maximum
range of the skills when they had a higher skill range (skill ranges
19 and 20).

Fig. 6 compares the back attack ratios of PT-HR, PT-
MARL, PT-MARL?2, PT-MARLS3, and PT-MARLA4 in unseen
skill ranges for over 500 games. For PT-HR, a back attack rate of
approximately 10% was obtained in the test ranges. On average,
the PT-MARLI1 agent exhibited the best performance in terms
of the back attack ratio. Because PT-MARLI’s strategy is not
changed (Fig. 5), PT-MARLI did not exhibit many variations
for the back attack ratio across the skill range. Although the PT-
MARLS3 agent achieved the highest adjusted score on average,

JEON et al.: RAIDENV: EXPLORING NEW CHALLENGES IN AUTOMATED CONTENT BALANCING FOR BOSS RAID GAMES 653

it did not exhibit a significant increase in back attacks in skill
ranges 19 and 20.

V. BENCHMARK 2: CONTENTS GENERATION

In this section, we present three baselines for the content
generation task in the boss raid scenario. The primary objective
of designing PCG agents is to generate or rebalance game
content to achieve specific target game outcomes. For instance,
a game designer may request the generator agent to produce a
skill that yields a desired win rate (e.g., 60%), and the agent
should adjust the skill parameters to achieve the designated
win rate. This approach can be applied to both generating new
game content from scratch and rebalancing existing content.
We introduce two notations for this task: 1) current win rate,
W, which represents the simulated result with arbitrary game
content, and 2) target win rate, W, which is the desired outcome
of the generation process. The ultimate goal of this task is to
minimize the difference between W, and W, by adjusting the
skill parameter values.

As an example of skill content generation, we propose a DRL
method. The DRL framework for PCG was initially introduced
in [49], and the authors of [50] further enhanced this framework
to improve its controllability. As a machine learning approach
for content generation, we adopt a DRL-based baseline utilizing
the controllable PCGRL framework presented in the previous
study [49]. The specific details of the DRL implementation for
our work are described as follows. To evaluate the generated
content, we employ the heuristic play-testing agent discussed in
the previous section (Section IV-B), and we refer to this agent
as the PT-HR agent to avoid confusion with the heuristic PCG
agent.

A. Environment Settings for DRL

Agent PCGRL (PCG via RL) [49] proposed a new framework
for generating game content by training a DRL-based generative
model. The state is defined as the scalar or tabular representation
of game content; the action involves modifying the content;
while the reward is measured based on the completeness of
the generated content. Subsequent works, such as controllable
PCGRL have been introduced for 2-D [50] and 3-D games
[36] by designing goal-oriented reward functions that calculate
the distance to a designer-defined value. Controllable PCGRL
facilitates the training of a generative model to produce a desired
output specified by the designer, enhancing the utility of PCGRL
models by enriching customization features and reducing quality
assurance labor. In this study, we utilize controllable PCGRL to
demonstrate the skill generation task in Section V, training the
generative model to generate diverse game outcomes.

State: The state for the generator includes the skill parameter
values required for generating the target skill. The generator
agent receives four scaled values representing the balancing
parameters: cool time, range, damage, and cast time. In our
setup, each value is scaled between a minimum and maximum
value. For example, cool time and range is defined as 0.5-0.6,
the skill range is set from 1-20, the damage range is between
0.5 and 1, and the cast time falls within the interval of 0.5-1.5.

Action: The generator has an action space of NV, where each
action consists of five discrete values. Here, N represents the
number of skills, and the action determines the parameter up-
dates. We consider four parameters for skill generation (N = 4):
cool time, range, damage, and cast time. The action determines
the increment or decrement of each parameter using a hand-
crafted scaler. The granularity of the scaler was set to 0.16%
of each parameter range allowing for decreases (-) or increases
(+) of [-0.16%, -0.08%, 0.0%, +0.08%, +0.16%] within each
parameter range.

Reward: The reward function is designed to provide nonsparse
reward signals to the generator. The generator receives positive
rewards when it updates the skill parameters to achieve the target
game win rate (g, goal). To design the reward function for a
controllable generator, we adopt a well-designed reward system
proposed in the PCGRL framework [36], [50]. The L1 norm
distance to the goal [is calculated as [, = abs(||g: — pt||r1)s
where p, represents the playtested win rate at time ¢. The reward
at time ¢ is then calculated as r; = l;_1 — ;. A positive reward
value indicates that the updated skill is closer to the target
win rate. In summary, the generator was trained to adjust the
skill parameters for achieving the designer-defined play-testing
result.

Notably, p is measured by simulating the generated skills
multiple times under the same conditions. In our setup, we repeat
the simulation (N = 100) using the PT-HR agent described
in Section IV-B, and we report the average value of p in the
experimental results. The use of the PT-HR agent is preferred
in PCG studies due to its reasonable performance and lower
computational cost.

Terminal: The episode was terminated on the simulated win
rate that is sufficiently close to the target game win rate, and
the difference between the play-tested result and the target win
rate was < 0.02, i.e., abs(||g: — p¢]|£1) < 0.02. The maximum
episode length was 40, and the environment was reset once the
termination condition was satisfied. We terminated the episode
if the content generation is completed to enhance the sampling
for training the DRL agent and this condition was used only in
the training step.

B. Generator Evaluation Setup

1) Baselines: We compare the performance of three content
generator models in the content generation experiment: the
proposed PCG agent utilizing the proximal policy optimization
(PPO) algorithm [51], PCG-heuristic (PCG-HR) agent, and
PCG-random (PCG-RD) agent. PPO is a popular DRL algorithm
known for its stability and has been widely used in previous
content generation studies [36], [49]. To provide performance
comparisons for the PPO agent, we include a simple heuristic
agent and a random agent.

1) PCG-RL agent is based on the DRL approach and is
implemented using the PCGRL framework [49], as de-
tailed in Section V-A. The PPO agent enacts decisions to
update skill parameters and receives rewards based on the
play-testing results. The detailed parameters are shown in
Table IX.

654

2) PCG-HR agent greedily adjusts the skill parameters based
on the expert knowledge. The agent selects one of the four
skill parameters and adjusts the selected parameter based
on the play-tested win rate result, which is returned from
the environment; the parameter is adjusted to meet the
target win rate. The agent increases or decreases one of
the skill parameters per action (e.g., the agent reduces the
cool time value if the play-tested win rate is smaller than
the target win rate.).

3) PCG-RD agentadjusts the parameters without considering
the target win rate. The agent randomly samples one
action from the five possible action branches in uniform
probability. Each random action is then applied to the four
skill parameters.

2) Experiment Setup: We evaluated the performance of the
generator models, PCG-RL, PCG-HR, and PCG-RD. We com-
piled 300 game results at each step to ensure an accurate evalu-
ation of the generated contents. The heuristic play-testing agent
(PT-HR in Section IV-B) was employed during the play-testing
process. In addition, this section focuses on demonstrating the
generation of skill contents, and the heuristic method speeds
up the experiment time and enhances the reliability of the
evaluation.

Because PCG-RL is trained from arandomly initialized neural
network, we repeated the experiment five times to mitigate
performance variations caused by initial weights. After training
the PCG-RL models for 20K steps, we generated 1K skills
for each model, resulting in a total of 5K samples (5 models
x 1K samples = 5K samples). All experimental results are
summarized by averaging the simulated game results across the
five seed runs.

3) Evaluation Metrics: To evaluate the contents generated
by the generator models, two commonly used metrics in PCG
studies are used: 1) controllability and 2) diversity. A lack of
controllability implies that the agent cannot generate contents
that fulfill the game designer’s requirements, while a lack of
diversity results in repetitive content that can only be used once.

Controllability: Controllability is measured by evaluating the
error between the designer’s desired target win rate (W;) and the
simulated results obtained from the generated skills (WW.). The
error measurement for controllability is defined in (5), where NV
represents the number of samples

N
WinrateError = Z (Wit — Wi . (5

W, denotes the target win rate desired by the designer, and
W, represents the win rate of the generated skill. The equation
calculates the mean error of the win rates of skills relative to the
target value. The lower error indicates that the skills produced
by the generator are more closely aligned with the designer’s
requirements.

Diversity: Diversity measures the variety of styles in which
the contents are generated while still satisfying the intended con-
ditions. A higher diversity enriches the gameplay experience and
provides designers with a wide range of options. The procedure
for sampling skills is the same as in controllability; however,

IEEE TRANSACTIONS ON GAMES, VOL. 16, NO. 3, SEPTEMBER 2024

TABLE V
DESCRIPTIVE STATISTICS ON THE CONTROLLABILITY OF THE GENERATIVE
MODELS
Generated (W.) RMSE (||W; — We|])
Mean (£SD) Mean (£SD)
Target
Meth:
W) ethod ‘
PCG-HR | 0.107 (£0065) | 0.044 (CH0.049)

0.1 PCG-RL 0.149 (£0.242) 0.156 (£0.191)
PCG-RD 0.354 (£0.389) 0.335 (£0.321)
PCG-HR | 0.206 (0.098) [N0:0741(EE0:065)000

0.2 PCG-RL 0.266 (£0.343) 0.268 (£0.225)
PCG-RD 0.366 (£0.381) 0.333 (£0.249)
PCG-HR 0.297 (+0.108) [INON79I(EE073)IN

0.3 PCG-RL 0.217 (£0.189) 0.169 (£0.119)
PCG-RD 0.418 (£0.382) 0.348 (£0.196)
PCG-HR | 0.416 (£0.122) [N0N8ONE0085)

0.4 PCG-RL 0.377 (£0.315) 0.276 (£0.153)
PCG-RD 0.381 (£0.394) 0.362 (£0.154)
PCG-HR 0.489 (£0.133) 1010997 (=£0:089) |

0.5 PCG-RL 0.435 (£0.334) 0.296 (£0.167)
PCG-RD 0.390 (£0.391) 0.379 (£0.144)
PCG-HR 0.592 (£0.132)

0.6 PCG-RL 0.606 (£0.309) 0.276 (£0.138)
PCG-RD 0.409 (£0.395) 0.405 (£0.168)
PCG-HR 0.684 (£0.113)

0.7 PCG-RL 0.652 (£0.354) 0.292 (£0.205)
PCG-RD 0.387 (£0.397) 0.445 (£0.239)
PCG-HR -

Mean PCG-RL - 0.248 (£0.183)
PCG-RD - 0.373 (£0.221)

The bold text denotes the best (highest) value among the values.

we apply a root mean squared error (RMSE) < 0.1 filter to
evaluate the diversity of the contents. This filtering ensures that
the evaluated diversity that represents the skill parameter ranges
satisfies the designer-defined win rates; the diversity metric
measures the diversity of the generated content that meets a
target play-testing result (e.g., win rate). Therefore, diversity
assesses the range of choices in the options, where the generator
provides the designer with numerous options depending on the
designer’s desired conditions. A higher value indicates that the
generator has generated contents with diverse skill parameter
ranges, resulting in various game experiences even with the same
balanced results (). To simplify the interpretation of the skill
diversity, we employed the principal component analysis (PCA)
[52] to represent the four parameters as a single value.

C. Experimental Result

1) Controllability: The descriptive results for measuring the
controllability of the generated win rate targets (1) are listed
in Table V. Cells with a blue background color indicate lower
values, while red cells indicate higher values. We trained the
PCG-RL model using seven target parameters ranging from
0.1-0.7 and compared its performance with the mentioned ap-
proaches. Each of the three models generated N = 1000 skill
parameters for each target (I¥;) and was evaluated using the
heuristic play-testing agent (PT-HR).

JEON et al.: RAIDENV: EXPLORING NEW CHALLENGES IN AUTOMATED CONTENT BALANCING FOR BOSS RAID GAMES 655

TABLE VI
DESCRIPTIVE STATISTICS ON THE DIVERSITY OF THE GENERATED CONTENTS

Cool Cast
Range Time Time Damage PCA
(£SD) (£SD) (£SD) (£SD) (£SD)
Target
Meth
W) ethod
PCG-HR 0.258 0.300 0.269 0.265 0.302
0.1 PCG-RL 0.315 0.482 0.258 0.472 0.625
PCG-RD 0.266 0.325 0.294 0.283 0.336
PCG-HR 0.262 0.324 0.249 0.288 0.298
0.2 PCG-RL 0.351 0.381 0.292 0.428 0.421
PCG-RD 0.284 0.329 0.279 0.316 0.359
PCG-HR 0.271 0.312 0.265 0.292 0.312
0.3 PCG-RL 0.218 0.398 0.261 0.349 0.488
PCG-RD 0.268 0.331 0.264 0.308 0.329
PCG-HR 0.252 0.312 0.233 0.278 0.304
0.4 PCG-RL 0.180 0.377 0.364 0.476 0.559
PCG-RD 0.277 0.333 0.287 0.292 0.358
PCG-HR 0.257 0.316 0.236 0.269 0.310
0.5 PCG-RL 0.204 0.393 0.391 0.405 0.519
PCG-RD 0.278 0.328 0.280 0.269 0.326
PCG-HR 0.247 0.313 0.236 0.269 0.303
0.6 PCG-RL 0.105 0.284 0.214 0.212 0.258
PCG-RD 0.261 0.317 0.302 0.306 0.385
PCG-HR 0.257 0.293 0.227 0.263 0.293
0.7 PCG-RL 0.194 0.271 0.447 0.406 0.625
PCG-RD 0.262 0.322 0.258 0.305 0.358
PCG-HR 0.258 0.310 0.246 0.275 0.303
Mean PCG-RL 0.237 0.375 0.328 0.402 0.513
PCG-RD 0.271 0.326 0.281 0.297 0.351

The bold text denotes the best (highest) value among the values.

According to this criterion, the PCG-HR agent demonstrated
the best performance, followed by the PCG-RL agent in second
place, and the PCG-RD agent in last place. The PCG-HR agent
consistently achieved the lowest RMSE values across all target
win rate conditions. On average, its error in win rate estimation
was approximately 8.1%. Surprisingly, the PCG-RL agent per-
formed worse than the heuristic agent. However, we observed
that the PCG-RL model was trained to minimize win rate errors
compared to the random agent. We discuss the reason for the
low performance of the PCG-RL agent in the discussion section
(Section VI-B).

2) Diversity: Table VI presents the descriptive results for
measuring the diversity of the generated content characteristics.
Different background colors represent each parameter type, with
darker colors indicating higher values. We provide the stan-
dard deviation (SD) values for each skill parameter in separate
columns of Table VI. The SD value is calculated using N = 300
samples for each parameter, and the samples are filtered based
on a threshold (RMSE< 0.1) to measuring the diversity using
only with valid skills that meet the designer’s requirements. A
higher SD value indicates that the generator generated contents
with diverse skill parameter ranges, resulting in various game
experiences even with the same balanced results (11;). To better
understand the diversity of the skills, which are represented
in 4-D values (i.e., range, cool time, cast time, and damage),
we employed the PCA [53] technique, a dimension reduction
technique, to represent the four parameters in a 1-D metric. By

Generated Skills (Parameter: Range, W¢: 0.3)

PCG-HR PCG-RL

20.0 20.0

Fig. 7. Visualization of generated skills in a 2-D plot using t-SNE, based
on range parameter. Totally, 2100 entries (300 samples x 7 target win rates)
are involved, respectively. Note that gray dots denote all skills generated by
the PCG-HR and -RL, and colorized dots denote the skill generated with each
generator.

representing the skills in this metric, we measured the variance
of the skills using a single value that encompasses all the param-
eters of the skill content. The mean SD value is calculated across
all win rates. The best values are marked in bold, and PCG-RL
outperformed the other models in diversity, showing the best
performance in six out of seven conditions. This result implies
that the PCG-RL agent can provide rich options for designers
even when given a specific condition. We conducted a further
analysis of the diversity using a visualization technique, which
is discussed in Section V-D.

D. Further Analysis

In diversity criteria (Section V-C2), the PCG-RL agent out-
performed other methods, while showing the highest variance
in generated skill parameters. Fig. 7 illustrates visualizations of
the skills generated by PCG-HR and PCG-RL agents; the points
denote the skills, and the 4-D parameters were reduced to two
dimensions using the PCA dimension reduction technique. We
employed the skills generated with a target win rate of 0.3 (W, =
0.3) parameter to clarify the visualization, and colorization was
applied using the range parameter values. The skills generated
by the PCG-HR are mostly located at the center of the plot;
meanwhile, the skills generated by PCG-RL are more widely dis-
persed than those generated by PCG-HR. This clue suggests that
the PGG-RL generated more conspicuous characteristic skills
than PCG-HR. The distinguished skills induce high variances
in the diversity metric (PCA column in Table VI). Interestingly,
the colors that indicate the range value are congregated with the
same color in the same cluster in the PCG-RL plot. This indicates
that the skills within a cluster have similar skill parameter values;
further, these characteristics exhibit little diversity within each
cluster. Consequently, the clues imply that the PCG-RL could
generate more distinguishable skills; however, the diversity in
a distinguished skill group could be low. We discuss the low
diversity in a distinguished skill cluster in Section VI-B.

VI. DISCUSSION
A. Play-Testing Agent With Changing Contents

Although MARL algorithms have demonstrated successful
learning across all content difficulties, a fully robust agent has

656

yet to be achieved. Specifically, PT-MARL4 encountered diffi-
culties in learning even with seen skill range 5 (see Table IV).
This suggests that the PT-MARL4 agent struggled to adapt
to challenging environments due to overfitting caused by its
ease in learning from simpler environments. Furthermore, in
the case of the skill range 3, representing extremely challenging
levels, the agent failed to generalize altogether. Nevertheless,
the PT-MARL agent showcases its strength in slightly more
challenging environments. We anticipate that learning can be
accelerated through approaches, such as curriculum learning.

B. Content Generation

In terms of the controllability criteria (Section V-C1), the
DRL-based (PCG-RL) agent underperformed compared to the
heuristic (PCG-HR) agent. The suboptimal performance of the
PCG-RL agent could be attributed to noise in the reward signal.
The reward of the PCG agent is measured via subtracting the
previous play-testing results from the current results. The vari-
ance of the results is high even with the same skill parameters.
The reward noise occurred during the subtraction of the previous
game results from the current results and the accumulated error
increases due to high variance. This problem disrupts the DRL
model training and can explain the low performance compared
to PCG-HR. In addition, PCG-HR makes the decision based on
a single game result (i.e., the current win rate), and the error
of the playtested result is relatively lower than the measuring
of PCG-RL reward. Thus, denoising of the simulated result is
expected to enhance the performance of the PCG-RL agent.
Constructing a world model on game simulation or increasing
the repetition of the simulation could address this problem.

In the further analysis of the diversity criteria (Section V-D),
the PCG-RL successfully generated distinguished skills; how-
ever, the low diversity was observed in a distinguished skill
set. DRL attempts to determine an optimal solution rather than
diversity, and it can be converged to explore particular skills.
Rather than seeking a single optimal solution, an alternative
approach is required to encourage the algorithm to alleviate
the repetitive exploration of local optimal. In addition, further
studies are necessary to measure the diversity in a more empirical
manner, where practical game experiences are also considered.

VII. CONCLUSION

This article presents the introduction of two benchmarks,
namely, training play-testing agents and content generators, to
facilitate the ACB technique development. To illustrate ACB
subtechnique, a boss raid game environment was developed
to support the multiplayer play testing and content generator
interfaces. In addition, to extend the applicability of our work
to commercial games, various representative game components
were examined and integrated as customizable elements in the
boss raid game environment. The findings from the two bench-
marks are summarized as follows.

In the play-testing benchmark (Section IV), the comprehen-
sive results showed that the MARL agent exhibits superior per-
formance compared to the heuristic agent. Interestingly, no sin-
gle agent exhibited dominance in terms of generalization, even

IEEE TRANSACTIONS ON GAMES, VOL. 16, NO. 3, SEPTEMBER 2024

after training with different skill sets. However, the PT-MARL3
agent exhibited consistent performance across the entire test skill
sets, suggesting that a nonoverfitted agent can reliably evaluate
newly generated contents. Hence, training a dominant agent
capable of performing well with all unseen content remains a
challenging problem.

In the PCG benchmark (Section V), the results demonstrated
that the DRL-based (PCG-RL) approach achieved intermediate
performance between the heuristic and random agents. Although
the DRL agent outperformed the other agents in terms of gener-
ating diverse content, it exhibited lower controllability compared
to the heuristic agent. Content reliability is of the utmost impor-
tance because diversity is also measured with a valid skill that
satisfies a condition. Therefore, enhancing the controllability of
the DRL agents will be the focus of future work.

In conclusion, the development of these two benchmarks con-
tributes remarkably to the advancement of the ACB technique.
While integrated experiments were not included in this study, we
posit that generalized multiplayer agents can provide reliable
reward signals to the PCG agent. In addition, the multiplayer
play-testing results, which emulate human-like behavior, con-
tribute to the generation of high-quality content and assist in
evaluating human-designed content.

The proposed framework offers numerous avenues for future
work in terms of PCG and MARL, which were not explored in
this study. In the following, we summarize the relevant limita-
tions of this study. First, we acknowledge the limitation of con-
tent types generated in this work. Herein, the content generators
only handled four representative parameters; however, there are
13 remaining unused skill parameters, in addition to character
stats (see Fig. 1). The reason for using only four representative
parameters is to reduce the action shape complexity for the
DRL-based approach to present a reasonable problem size for
introducing a new content generation. The content generation
result that the DRL method exhibited lower performance than the
heuristic; hence, there is room for improvement. To handle more
diverse content types, future work will consider multiobjective
learning [54] is expected to handle multiple reward signals by
enlarging the criteria of the play-testing targets.

Second, training robust agents in heterogeneous settings re-
mains a task for future exploration. This would indicate the class
(e.g., magician, attacker, or tanker) and type of the player. In
this work, we employed a homogeneous agent setting where the
characteristics and skills are the same for all agents during play
testing. However, in real boss raid scenarios, the performance of
play-testing agents may decrease when their teammates change.
Therefore, the issue of generalization with respect to different
teammates will be a substantial challenge.

APPENDIX

A. Play-Testing Agent Result

Table VII showed the performance on train and test content pa-
rameters. The results showed that PT-MARL4 and PT-MARL3
are not trained perfectly using trained settings (seen). Especially,
PT-MARLA4 has shown that it has failed to learn about the
strategy when their skill has short distance. Overall, PT-MARL3

TABLE VII
TEST AND TRAIN ORIGIN PERFORMANCE

Train Test
5 3(Hard) 4(Hard) 19(Easy) 20(Easy)
Population 0.45 0.39 0.44 0.992 0.995
PT-MARLI1 | 0.485 0.002 0.243 0.593 0.594
PT-MARL2 | 0.452 0.01 0.243 0.519 0.522
PT-MARL3 | 0.284 0.05 0.162 0.82 0.774
PT-MARL4 | 0.021 0.000 0.007 0.972 0.996
PT-HR 0.089 0.005 0.05 0.883 0.863
TABLE VIII
MODEL HYPERPARAMETERS AND EXPERIMENTAL SETTINGS FOR TRAINING
MA-POCA
Parameter Value
MA-POCA Agent Setting
A 0.95
B 0.01
Number of Epochs 3
Minibatch size 256
Clipping coefficient (¢) 0.2
Learning rate 0.0003
Learning rate schedule constant
Network
Hidden Units 256
Number of layers 2
Experimental Setting
ol 0.99
State Vector Size 33
Action Vector Size 8
Goal extrinsic
Maximum steps 20,000,000
TABLE IX
MODEL HYPERPARAMETERS AND EXPERIMENTAL SETTINGS FOR TRAINING
PPO
Parameter Value

PPO Agent Setting

AGAE 0.99
Number of Epochs 3
Rollout Length 120
Minibatch size 16
Clipping coefficient (¢) 0.2
Learning rate 0.0003
Learning rate schedule constant
Entropy Coefficient 0.005
Network

Hidden Units 256
Number of layers 4
Return normalization yes
Deterministic yes

Experimental Setting

¥ 0.99
State Vector Size 44
Action Vector Size 4

Goal extrinsic
Reward L1 norm
Maximum steps 20,000

showed the best average performance in unseen environments.
However, because all agents fail to generalize in skill range 3, it

indicates this benchmark is considered challenging.

JEON et al.: RAIDENV: EXPLORING NEW CHALLENGES IN AUTOMATED CONTENT BALANCING FOR BOSS RAID GAMES 657

B. Full Environment Description

The RaidEnv platform offers extensive customization options
for various game features, which can be controlled using dif-
ferent variables. Fig. 1 provides an overview of all the game
components, while the detailed data type, range, and descriptions
of the 17 character statistics and 17 game skills are described in
the documentations.?

C. Agent Parameters

Tables VIII and IX show the model hyperparameters and
experimental settings used for training the play-testing (PT-
MARL) and PCG agents (PCG-RL).

REFERENCES

[1] E.R.Poromaa, “Crushing Candy Crush: Predicting human success rate in
a mobile game using Monte-Carlo tree search,” Master’s Thesis, School
Comput. Sci. Commun., KTH Roy. Inst. Technol., Stockholm, Sweden,
2017.

[2] S. F. Gudmundsson et al., “Human-like playtesting with deep learning,”
in Proc. IEEE Conf. Comput. Intell. Games, 2018, pp. 1-8.

[3] F.Lorenzo, S. Asadi, A. Karnsund, L. Cao, T. Wang, and A. H. Payberah,
“Use all your skills, not only the most popular ones,” in Proc. IEEE Conf.
Games, 2020, pp. 682—685.

[4] T. Liu, Z. Zheng, H. Li, K. Bian, and L. Song, “Playing card-based RTS
games with deep reinforcement learning,” in Proc. 28th Int. Joint Conf.
Artif. Intell., 2019, pp. 4540-4546.

[5] A.Summervilleetal., “Procedural content generation via machine learning
(PCGML),” IEEE Trans. Games, vol. 10, no. 3, pp. 257-270, Sep. 2018.

[6] L. Gisslén, A. Eakins, C. Gordillo, J. Bergdahl, and K. Tollmar, “Adver-
sarial reinforcement learning for procedural content generation,” in Proc.
IEEE Conf. Games, 2021, pp. 1-8.

[71 M. Stephenson, E. Piette, D. J. Soemers, and C. Browne, “Ludii as a
competition platform,” in Proc. IEEE Conf. Games, 2019, pp. 1-8.

[8] D. Perez-Liebana, J. Liu, A. Khalifa, R. D. Gaina, J. Togelius, and S. M.
Lucas, “General video game Al: A multitrack framework for evaluating
agents, games, and content generation algorithms,” IEEE Trans. Games,
vol. 11, no. 3, pp. 195-214, Sep. 2019.

[9] M. Wydmuch, M. Kempka, and W. Jaskowski, “ViZDoom competi-
tions: Playing doom from pixels,” IEEE Trans. Games, vol. 11, no. 3,
pp. 248-259, Sep. 2019.

[10] S. Karakovskiy and J. Togelius, “The mario Al benchmark and compe-
titions,” IEEE Trans. Comput. Intell. AI Games, vol. 4, no. 1, pp. 55-67,
Mar. 2012.

[11] N. Bardet al., “The hanabi challenge: A new frontier for Al research,”
Artif. Intell., vol. 280, 2020, Art. no. 103216.

[12] B.Cui, H. Hu, L. Pineda, and J. Foerster, “K-level reasoning for zero-shot
coordination in Hanabi,” in Proc. Adv. Neural Inf. Process. Syst., 2021,
pp. 8215-8228.

[13] C.Resnicketal., “Pommerman: A multi-agent playground,” in Proc. AAAI
Conf. Artif. Intell. Interactive Digit. Entertainment, 2018, pp. 1-6.

[14] K. Kurachetal., “Google research football: A novel reinforcement learning
environment,” in Proc. AAAI Conf. Artif. Intell., 2020, pp. 4501-4510.

[15] H. Jia et al., “Fever basketball: A complex, flexible, and asynchronized
sports game environment for multi-agent reinforcement learning,” 2020,
arXiv:2012.03204.

[16] M. Samvelyan et al., “The StarCraft multi-agent challenge,” 2019,
arXiv:1902.04043.

[17] B.Ellis et al., “SMACv2: An improved benchmark for cooperative multi-
agent reinforcement learning,” 2022, arXiv:2212.07489.

[18] J. Z. Leibo et al., “Scalable evaluation of multi-agent reinforcement
learning with melting pot,” in Proc. Int. Conf. Mach. Learn., 2021,
pp. 6187-6199.

[19] J. Suarez, Y. Du, P. Isola, and I. Mordatch, “Neural MMO: A mas-
sively multiagent game environment for training and evaluating intelligent
agents,” 2019, arXiv:1903.00784.

3[Online]. Available: https://github.com/CILAB-CT-GAME/RaidEnv/tree/
main/docs

[Online]. ignorespaces Available: ignorespaces https://github.com/CILAB-CT-GAME/RaidEnv/tree/main/docs
[Online]. ignorespaces Available: ignorespaces https://github.com/CILAB-CT-GAME/RaidEnv/tree/main/docs

658

[20]

[21]
[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

M. Swiechowski, T. Tajmajer, and A. Janusz, “Improving hearthstone Al
by combining MCTS and supervised learning algorithms,” in Proc. IEEE
Conf. Comput. Intell. Games, 2018, pp. 1-8.

P. Beau and S. Bakkes, “Automated game balancing of asymmetric video
games,” in Proc. IEEE Conf. Comput. Intell. Games, 2016, pp. 1-8.

M. Carroll et al., “On the utility of learning about humans for human-Al
coordination,” in Proc. Adv. Neural Inf. Process. Syst., 2019, Art. no. 465.
M. Fontaine, Y.-C. Hsu, Y. Zhang, B. Tjanaka, and S. Nikolaidis, “On
the importance of environments in human-robot coordination,” in Proc.
Robot.: Sci. Syst., 2021, pp. 1-17.

S. Reis, L. P. Reis, and N. Lau, “VGC AI competition—A new model of
meta-game balance Al competition,” in Proc. IEEE Conf. Games, 2021,
pp. 01-08.

S. Huang, S. Ontafién, C. Bamford, and L. Grela, “Gym-uRTS: Toward
affordable full game real-time strategy games research with deep rein-
forcement learning,” in Proc. IEEE Conf. Games, Copenhagen, Denmark,
2021, pp. 671-678.

K. Sorochan and M. Guzdial, “Generating real-time strategy game units
using search-based procedural content generation and monte carlo tree
search,” 2022, arXiv:2212.03387.

J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne, “Search-
based procedural content generation: A taxonomy and survey,” /IEEE
Trans. Comput. Intell. AI Games, vol. 3, no. 3, pp. 172-186, Sep. 2011.
R. Beal, T. J. Norman, and S. D. Ramchurn, “Artificial intelligence for
team sports: A survey,” Knowl. Eng. Rev., vol. 34, 2019, Art. no. e28.

J. Barambones, J. Cano-Benito, I. Sianchez-Rivero, R. Imbert, and F.
Richoux, “Multi-agent systems on virtual games: A systematic mapping
study,” IEEE Trans. Games, vol. 15, no. 2, pp. 134-147, Jun. 2023.

C. Stephens and C. Exton, “Measuring inflation within virtual economies
using deep reinforcement learning,” in Proc. Int. Conf. Agents Artif. Intell.,
2021, pp. 444-453.

Y.-J. Gong et al., “Automated team assembly in mobile games: A data-
driven evolutionary approach using a deep learning surrogate,” IEEE
Trans. Games, vol. 15, no. 1, pp. 67-80, Mar. 2023.

M. Kaidan, T. Harada, C. Y. Chu, and R. Thawonmas, “Procedural genera-
tion of angry birds levels with adjustable difficulty,” in Proc. IEEE Congr.
Evol. Comput., 2016, pp. 1311-1316.

L. N. Ferreira and C. F. M. Toledo, “Tanager: A generator of feasible
and engaging levels for angry birds,” IEEE Trans. Games, vol. 10, no. 3,
pp. 304-316, Sep. 2018.

T. Shu, J. Liu, and G. N. Yannakakis, “Experience-driven PCG via re-
inforcement learning: A super Mario Bros study,” in Proc. IEEE Conf.
Games, 2021, pp. 1-9.

V. Volz, J. Schrum, J. Liu, S. M. Lucas, A. Smith, and S. Risi, “Evolving
mario levels in the latent space of a deep convolutional generative adver-
sarial network,” in Proc. Genet. Evol. Comput. Conf., 2018, pp. 221-228.
Z. Jiang, S. Earle, M. Green, and J. Togelius, “Learning controllable 3D
level generators,” in Proc. 17th Int. Conf. Found. Digit. Games, 2022,
pp. 1-9.

[37]

[38]

[39]
[40]

[41]

[42]
[43]

[44]

[45]
[46]

[47]

[48]

[49]

[50]

[51]
[52]
[53]

[54]

IEEE TRANSACTIONS ON GAMES, VOL. 16, NO. 3, SEPTEMBER 2024

1.-C. Baek, T.-G. Ha, T.-H. Park, and K.-J. Kim, “Toward cooperative level
generation in multiplayer games: A user study in overcooked!,” in Proc.
IEEE Conf. Games, 2022, pp. 276-283.

Wowpedia, “The World of Warcraft wiki encyclopedia.” 2023. Accessed:
Sep. 16, 2023. [Online]. Available: https://wowpedia.fandom.com/wiki/
Wowpedia

Lost Ark wiki. 2023. Accessed: Sep. 16, 2023. [Online]. Available: https:
/Nostark.fandom.com/wiki/Lost_Ark_Wiki

M. Seif El-Nasr et al., “Understanding and evaluating cooperative games,”
in Proc. SIGCHI Conf. Hum. Factors Comput. Syst., 2010, pp. 253-262.
N. P. Zea, J. L. G. Sanchez, F. L. Gutiérrez, M. J. Cabrera, and
P. Paderewski, “Design of educational multiplayer videogames: A vi-
sion from collaborative learning,” Adv. Eng. Softw., vol. 40, no. 12,
pp. 1251-1260, 2009.

A. Juliani et al., “Unity: A general platform for intelligent agents,” 2020,
arXiv:1809.02627.

A. Cohen et al., “On the use and misuse of absorbing states in multi-agent
reinforcement learning,” 2021, arXiv:2111.05992.

J. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson, “Coun-
terfactual multi-agent policy gradients,” in Proc. AAAI Conf. Artif. Intell.,
2018, Art. no. 363.

A. Vaswani et al., “Attention is all you need,” in Proc. Adv. Neural Inf.
Process. Syst., 2017, pp. 6000-6010.

D. H. Wolpert and K. Tumer, “Optimal payoff functions for members of
collectives,” Adv. Complex Syst., vol. 4, no. 02n03, pp. 265-279, 2001.

J. T. Kristensen, A. Valdivia, and P. Burelli, “Estimating player completion
rate in mobile puzzle games using reinforcement learning,” in Proc. IEEE
Conf. Games, 2020, pp. 636-639.

K. R. McKee, J. Z. Leibo, C. Beattie, and R. Everett, “Quantifying the ef-
fects of environment and population diversity in multi-agent reinforcement
learning,” Auton. Agents Multi-Agent Syst., vol. 36, no. 1,2022, Art. no. 21.
A. Khalifa, P. Bontrager, S. Earle, and J. Togelius, “PCGRL: Procedural
content generation via reinforcement learning,” in Proc. AAAI Conf. Artif.
Intell. Interactive Digit. Entertainment, 2020, pp. 95-101.

S. Earle, M. Edwards, A. Khalifa, P. Bontrager, and J. Togelius, “Learn-
ing controllable content generators,” in Proc. IEEE Conf. Games, 2021,
pp. 1-9.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal
policy optimization algorithms,” 2017, arXiv:1707.06347.

S. Wold, K. Esbensen, and P. Geladi, “Principal component analysis,”
Chemometrics Intell. Lab. Syst., vol. 2, no. 1/3, pp. 37-52, 1987.

H. Abdi and L. J. Williams, “Principal component analysis,” Wiley Inter-
discipl. Rev.: Comput. Statist., vol. 2, no. 4, pp. 433-459, 2010.

A. Abels, D. Roijers, T. Lenaerts, A. Nowé, and D. Steckelmacher, “Dy-
namic weights in multi-objective deep reinforcement learning,” in Proc.
Int. Conf. Mach. Learn., 2019, pp. 11-20.

https://wowpedia.fandom.com/wiki/Wowpedia
https://wowpedia.fandom.com/wiki/Wowpedia
https://lostark.fandom.com/wiki/Lost_Ark_Wiki
https://lostark.fandom.com/wiki/Lost_Ark_Wiki

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

