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ABSTRACT
Advancements in single-cell analysis have facilitated high-resolution observation of the transcriptome in individual cells. 
However, standards for obtaining high-quality cells and data analysis pipelines remain variable. Here, we provide the 
groundwork for improving the quality of single-cell analysis by delineating guidelines for selecting high-quality cells and 
considerations throughout the analysis. This review will streamline researchers' access to single-cell analysis and serve as 
a valuable guide for analysis.

© 2024 The Author(s). Published by Elsevier Inc. on behalf of Korean Society for Molecular and Cellular Biology. This is an 
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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INTRODUCTION

The emergence of single-cell technology has revolutionized 
biomedical science, enabling comprehensive exploration of 
cellular heterogeneity, individual cell characteristics, and cell 
lineage trajectory (Kim and Park, 2021; Yoon et al., 2024). 
Despite these advancements, challenges persist due to batch 
effects arising from variations such as tissue storage, dis
sociation processes, and sequencing library preparation, 
leading to inconsistent results (Lee et al., 2021). Moreover, in
herent technical hurdles yield highly sparse data, complicating 
result interpretation (Choi and Kim, 2019). In response, various 
computational tools and quality control measures have been 
proposed, yet the absence of consensus guidelines poses a 
significant challenge in applying these tools to highly variable 
experimental conditions and samples.

Additionally, downstream analysis involves several time- 
consuming steps, each demanding careful evaluation for result 
appropriateness. While various tools are available for these 
downstream analyses, including batch correction, dimension 
reduction, clustering, and cell-type annotation, those with lim
ited experience in single-cell analysis still find it challenging to 
determine the appropriate tool for specific circumstances and 
conditions.

Beyond the studies benchmarking and explaining each step 
in quality control and downstream analysis, our objective is to 
address practical challenges by offering a comprehensive 
guideline for quality control and each stage of downstream 
analysis (Fig. 1). In particular, we focused on barcode-based 

single-cell RNA sequencing (scRNA-seq) techniques that are 
widely used, including droplet-, microwell-, and combinatorial 
barcoding-based methods. Consequently, we aim to enhance 
the reliability and reproducibility of commonly employed single- 
cell studies.

MAIN BODY

Considerations in Transcripts Quality Control
To ensure the reliability and quality of the analysis results, it is 
crucial to address artifact transcripts like ambient RNAs. For 
example, transcripts from damaged or apoptotic cells may leak 
out from cells during single-cell isolation, exist in the solution, 
and then potentially become encapsulated in droplets along 
with other cells. Besides these ambient RNAs, contamination 
between transcripts may arise by evaporation in plate-based 
protocols and from chimeric complementary DNA being called 
“barcode swap” due to incorrect binding between barcodes 
during sequencing (Maxwell et al., 2023; Wagener and 
Plennevaux, 2014; Yang et al., 2020). These transcripts com
plicate cell-type annotation by contaminating endogenous gene 
expression profiling and lead differences by ambient profiles 
rather than true biological differences. Hence, we should con
sider removing genes as artifact RNA in the following cases: (1) 
detection of cell-type–specific markers from other cell types, 
particularly those derived from cells with a higher proportion in 
the given tissue; (2) genes from cells displaying elevated levels 
of mitochondrial genes. Given that these cells, expressing high 
mitochondrial genes, are likely dead or dying, the transcripts 
may include RNAs originating from cell-free sources.

To remove ambient RNA contamination, several tools 
were developed. SoupX does not depend significantly on 
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precise pre-annotation, but it does require prior knowledge 
of the user’s marker genes due to the necessity of manual 
input (Young and Behjati, 2020). Notably, SoupX performs 
much better with single-nucleus compared to single-cell 
data (Janssen et al., 2023). CellBender is suited for cleaning 
up and extracting the biological signal from noisy datasets, 
providing the most accurate estimation of background noise 
when compared to other tools (Fleming et al., 2023; Janssen 
et al., 2023). 

Apart from ambient RNAs, specific studies have considered 
ribosomal genes, immunoglobulin genes, human leukocyte 
antigens genes, and specific long non-coding RNA (eg, me
tastasis-associated lung adenocarcinoma transcript 1) as ele
ments that should be filtered out. This is because they can 
induce unwanted batch effects in downstream clustering steps 
due to their overabundant expression and uncertain origination 
from various cell types (Gharaie et al., 2023; Kunes et al., 2024; 
Smillie et al., 2019). 

Multiplet

Cell viability

Transcripts 
contamination

Cellular stress

Considerations in quality control Considerations in downstream analysis

Clustering
• Regression out

- UMI counts
- Mitochondrial gene
- Cell cycle

• Clustering strategy 
- Top-down strategy
- Bottom-up strategy

Batch correction

• Simple integration 
- Harmony

• Complex integration   
- scVI

• Scalable data 
- BBKNN

Cluster annotation

• Manual annotation
• Automated tools

bead

bead

• Contamination origin
- Ambient RNA
- Barcode swap
- Evaporation 

(plate-based protocol)

• Considerations of remove
- Ribosomal gene
- Immunoglobulin
- HLA genes
- Specific lncRNA

• Cellular stress origin
- Dissociation stress
- Biological stress

• Cellular viability
- Mitochondrial percent 
- Excessively low gene/UMI counts

• Multiplet detection
- Manual inspection 
- Automated tools

Fig. 1. Factors requiring quality control in single-cell RNA sequencing analysis and considerations in each factor (left). Stages of down
stream analysis after quality control and considerations at each stage (right). IncRNA, long non-coding RNA. 
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In addition, genes or cells associated with stress signatures are 
considered for removal since they can reduce the reliability of re
sults. Stress-related genes are induced by various factors, such as 
sample storage and dissociation, and the values may vary following 
cellular structure and characteristics even in the same sample. To 
identify stress signatures, approximately 200 dissociation-related 
genes or stress-related genes have been suggested (Romanov 
et al., 2020; van den Brink et al., 2017). However, it is crucial to 
cautiously approach their removal, as stress-related gene expres
sion can reflect biological response and disease status. 

Considerations in Cellular Quality Control 
A doublet or multiplet, where more than 1 cell is captured within 
a single droplet or microwell, arose as a technical artifact during 
the scRNA-seq library preparation process. The multiplet rate is 
influenced by the scRNA-seq platform and the number of 
loaded cells (Depasquale et al., 2019; Nguyen et al., 2018). For 
instance, 10x Genomics, which utilizes a droplet-based plat
form, reported that when 7,000 target cells are loaded, 378 
multiplets are identified, constituting 5.4% of the total cells 
(10X_Genomics, 2022). Notably, this rate escalates to 7.6% 
when the number of target cells is increased to 10,000. In 
contrast, the BD rhapsody platform, which is based on a mi
crowell-based system, exhibits significantly lower multiplet rates 
compared to 10x Genomics by inspecting multiplets through 
automated microscopy. 

Several methods have been developed to filter out doublets, 
each employing distinct algorithmic approaches and offering 
unique advantages. Notably, Scrublet demonstrates scalability, 
enabling analysis of large datasets, while doubletCells exhibits 
strong statistical stability across varying cell and gene numbers 
(Lun et al., 2016b; Wolock et al., 2019; Xi and Li, 2021). In terms 
of accuracy and impact on downstream analyses like differential 
gene expression, clustering, and trajectory inference, Dou
bletFinder outperforms the other doublet-detection methods 
suggested in this paper (McGinnis et al., 2019; Xi and Li, 2021). 

While these multiplet removal tools are useful, even the 
method with the highest multiplet-detection accuracy was rela
tively low at 0.537, and they exhibit substantial variation across 
different datasets (Xi and Li, 2021). Therefore, it is re
commended to employ an appropriate combination of auto
mated tools and manual inspection to account for the 
complexity of the conditions and samples. Cells co-expressing 
well-known markers of distinct cell types require careful scru
tiny. In some instances, such co-expressing cells have been 
identified as representing transitional states (Park et al., 2018). 
However, other studies have opted to remove co-expressing 
cells due to concerns about doublets (Karademir et al., 2022). 

After removing transcript contamination and multiplets, ad
ditional filtering is recommended to exclude cells with ex
cessively high or low gene/unique molecular identifier (UMI) 
counts. High counts may indicate multiplet artifacts, whereas 
low counts indicate potential low-quality cells (Kim et al., 
2022; Park et al., 2018). 

Additionally, cells with a mitochondrial percentage exceeding 
5% to 15% were excluded as considered low-quality cells (Luo 
et al., 2021; Sikkema et al., 2023). However, the criteria for 
removing cells based on mitochondrial percent can vary 

depending on factors such as species, sample types, and ex
perimental conditions (Osorio and Cai, 2020; Subramanian 
et al., 2022). For instance, human samples often exhibit a 
higher percentage of mitochondrial genes compared to mice, 
and highly metabolically active tissues like kidneys may display 
robust expression of mitochondrial genes (Osorio and Cai, 
2020; Uhlën et al., 2015). 

Strategies and Considerations in scRNA-seq Analysis 
After quality control, several important considerations arise in 
the analysis pipeline. Typically, factors such as total UMIs per 
cell, mitochondrial gene percentage, and stress signatures can 
be selected for regression out during scaling analysis to ad
dress unwanted technical and biological variations derived from 
sequencing depth and cellular stress (Hafemeister and Satija, 
2019). Furthermore, the cell cycle score is regarded as a con
founding factor and regressed out to mitigate the effects of cell 
cycle heterogeneity (Luecken and Theis, 2019). 

Dimensional reduction is performed to extract biological 
signals from the data, which requires users’ decision to set a 
threshold. Recently, an unbiased scRNA-seq data analysis 
method, single-cell low-dimension embedding using effective 
noise subtraction, was developed, which reduces signal dis
tortion and detects biological signals without manual tuning 
(Kim et al., 2024b). Moreover, determining the optimal resolu
tion value for cell clustering is challenging, as it heavily relies on 
the unique characteristics of each dataset, the research pur
pose, and the specific cell types of interest to researchers. 
Hence, the following 2 types of strategies are recommended for 
determining clusters: The first approach employs a top-down 
strategy, classifying cells into the minimum number of main cell 
types and then further subclustering each main cell type. The 
second approach utilizes a bottom-up strategy, classifying cells 
into a large number of initial clusters and then merging clusters 
if a pair of clusters exhibits fewer than a certain number of dif
ferentially expressed genes (eg, 10 genes) (Kim et al., 2024a). 

When integrating multiple datasets for unified analysis, 
identifying batch effects is crucial. Batch effects stem from 
technical and experimental variations rather than biological 
differences, potentially causing clusters to appear as distinct 
cell types even when they are actually the same. A recent paper 
benchmarked batch correction methods and indicated that their 
performance varies depending on the scalability, complexity, 
and availability of cell annotations within the dataset (Luecken 
et al., 2022). For example, Harmony is a valuable option for 
simple integration tasks involving distinct batch and biological 
structures (Korsunsky et al., 2019). However, for more complex 
integration tasks such as tissue or organ atlases, tools like 
single-cell variational inference are more suitable (Lopez et al., 
2018). Additionally, BBKNN (batch balanced k nearest neigh
bours) has demonstrated excellent performance in handling 
scalable data concerning runtime and memory efficiency 
(Polański et al., 2020). While batch correction methods offer 
substantial robustness in mitigating unwanted variation, it is 
crucial to acknowledge that their application may not be uni
versally effective. For example, in heterogeneous samples such 
as tumors or cases involving biologically meaningful differences 
in experimental conditions, improper correction of heterogeneity 
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could lead to unintended biases in the data analysis (Wu et al., 
2021). Hence, it is strongly recommended to implement batch 
correction with careful consideration of the specific context and 
utmost caution. 

Even after applying batch correction, uncertain clusters often 
remain. For instance, cell clusters of the same cell type may be 
segregated based on the total number of UMIs. This segrega
tion can result from biological variance or technical bias, and 
thus stably expressed genes are utilized to identify the source of 
this segregation (Lin et al., 2019). Differential expression of 
stably expressed genes across cells, correlating with variations 
in UMI depth, suggests a technical effect, potentially due to 
pooling inefficiencies. To minimize technical effects induced by 
pooling, alternative normalization methods are employed (Lun 
et al., 2016a). 

Cell-type annotation of clusters is typically performed 
manually, relying on established marker gene expression pro
files within each cluster. However, this approach requires ex
pertise and is often time-consuming (Pasquini et al., 2021). 
Furthermore, annotating cell types can be particularly challen
ging in 3 scenarios: (1) accurate annotation of immune cell 
types often requires both positive and negative 
markers (Ianevski et al., 2022). (2) Annotating novel cell types 
can be difficult when distinct marker genes are lacking. (3) 
Distinguishing between multiple subcell types that exhibit si
milar expression patterns of known marker genes is also chal
lenging. In these cases, relying solely on specific marker genes 
may be insufficient for accurate annotation. Therefore, it is 
strongly recommended to adopt a combined strategy utilizing 
both manual expertise and automated annotation tools. Various 
automated cell-type annotation methods have been developed 
based on marker gene databases, correlation analysis, and 
supervised classification; further details are described in this 
benchmarking paper (Pasquini et al., 2021). Additionally, a 
Generative Pre-trained Transformers based approach has 
emerged, demonstrating high accuracy, low laboriousness, and 
consistency (Hou and Ji, 2024). 

Collectively, this review offers useful and practical guidelines 
for quality control at each stage of analysis. We anticipate that 
this work will enhance the reliability and reproducibility of single- 
cell studies. 
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