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ABSTRACT

Advancements in single-cell analysis have facilitated high-resolution observation of the transcriptome in individual cells.
However, standards for obtaining high-quality cells and data analysis pipelines remain variable. Here, we provide the
groundwork for improving the quality of single-cell analysis by delineating guidelines for selecting high-quality cells and
considerations throughout the analysis. This review will streamline researchers' access to single-cell analysis and serve as

a valuable guide for analysis.

© 2024 The Author(s). Published by Elsevier Inc. on behalf of Korean Society for Molecular and Cellular Biology. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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INTRODUCTION

The emergence of single-cell technology has revolutionized
biomedical science, enabling comprehensive exploration of
cellular heterogeneity, individual cell characteristics, and cell
lineage trajectory (Kim and Park, 2021; Yoon et al., 2024).
Despite these advancements, challenges persist due to batch
effects arising from variations such as tissue storage, dis-
sociation processes, and sequencing library preparation,
leading to inconsistent results (Lee et al., 2021). Moreover, in-
herent technical hurdles yield highly sparse data, complicating
result interpretation (Choi and Kim, 2019). In response, various
computational tools and quality control measures have been
proposed, yet the absence of consensus guidelines poses a
significant challenge in applying these tools to highly variable
experimental conditions and samples.

Additionally, downstream analysis involves several time-
consuming steps, each demanding careful evaluation for result
appropriateness. While various tools are available for these
downstream analyses, including batch correction, dimension
reduction, clustering, and cell-type annotation, those with lim-
ited experience in single-cell analysis still find it challenging to
determine the appropriate tool for specific circumstances and
conditions.

Beyond the studies benchmarking and explaining each step
in quality control and downstream analysis, our objective is to
address practical challenges by offering a comprehensive
guideline for quality control and each stage of downstream
analysis (Fig. 1). In particular, we focused on barcode-based
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single-cell RNA sequencing (scRNA-seq) techniques that are
widely used, including droplet-, microwell-, and combinatorial
barcoding-based methods. Consequently, we aim to enhance
the reliability and reproducibility of commonly employed single-
cell studies.

MAIN BODY

Considerations in Transcripts Quality Control
To ensure the reliability and quality of the analysis results, it is
crucial to address artifact transcripts like ambient RNAs. For
example, transcripts from damaged or apoptotic cells may leak
out from cells during single-cell isolation, exist in the solution,
and then potentially become encapsulated in droplets along
with other cells. Besides these ambient RNAs, contamination
between transcripts may arise by evaporation in plate-based
protocols and from chimeric complementary DNA being called
“barcode swap” due to incorrect binding between barcodes
during sequencing (Maxwell et al.,, 2023; Wagener and
Plennevaux, 2014; Yang et al., 2020). These transcripts com-
plicate cell-type annotation by contaminating endogenous gene
expression profiling and lead differences by ambient profiles
rather than true biological differences. Hence, we should con-
sider removing genes as artifact RNA in the following cases: (1)
detection of cell-type—specific markers from other cell types,
particularly those derived from cells with a higher proportion in
the given tissue; (2) genes from cells displaying elevated levels
of mitochondrial genes. Given that these cells, expressing high
mitochondrial genes, are likely dead or dying, the transcripts
may include RNAs originating from cell-free sources.

To remove ambient RNA contamination, several tools
were developed. SoupX does not depend significantly on
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Fig. 1. Factors requiring quality control in single-cell RNA sequencing analysis and considerations in each factor (left). Stages of down-
stream analysis after quality control and considerations at each stage (right). INcRNA, long non-coding RNA.

precise pre-annotation, but it does require prior knowledge
of the user’s marker genes due to the necessity of manual
input (Young and Behjati, 2020). Notably, SoupX performs
much better with single-nucleus compared to single-cell
data (Janssen et al., 2023). CellBender is suited for cleaning
up and extracting the biological signal from noisy datasets,
providing the most accurate estimation of background noise
when compared to other tools (Fleming et al., 2023; Janssen
et al., 2023).

2 Mol. Cells 2024; 47(9): 100103

Apart from ambient RNAs, specific studies have considered
ribosomal genes, immunoglobulin genes, human leukocyte
antigens genes, and specific long non-coding RNA (eg, me-
tastasis-associated lung adenocarcinoma transcript 1) as ele-
ments that should be filtered out. This is because they can
induce unwanted batch effects in downstream clustering steps
due to their overabundant expression and uncertain origination
from various cell types (Gharaie et al., 2023; Kunes et al., 2024;
Smillie et al., 2019).
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In addition, genes or cells associated with stress signatures are
considered for removal since they can reduce the reliability of re-
sults. Stress-related genes are induced by various factors, such as
sample storage and dissociation, and the values may vary following
cellular structure and characteristics even in the same sample. To
identify stress signatures, approximately 200 dissociation-related
genes or stress-related genes have been suggested (Romanov
et al., 2020; van den Brink et al., 2017). However, it is crucial to
cautiously approach their removal, as stress-related gene expres-
sion can reflect biological response and disease status.

Considerations in Cellular Quality Control

A doublet or multiplet, where more than 1 cell is captured within
a single droplet or microwell, arose as a technical artifact during
the scRNA-seq library preparation process. The multiplet rate is
influenced by the scRNA-seq platform and the number of
loaded cells (Depasquale et al., 2019; Nguyen et al., 2018). For
instance, 10x Genomics, which utilizes a droplet-based plat-
form, reported that when 7,000 target cells are loaded, 378
multiplets are identified, constituting 5.4% of the total cells
(10X_Genomics, 2022). Notably, this rate escalates to 7.6%
when the number of target cells is increased to 10,000. In
contrast, the BD rhapsody platform, which is based on a mi-
crowell-based system, exhibits significantly lower multiplet rates
compared to 10x Genomics by inspecting multiplets through
automated microscopy.

Several methods have been developed to filter out doublets,
each employing distinct algorithmic approaches and offering
unique advantages. Notably, Scrublet demonstrates scalability,
enabling analysis of large datasets, while doubletCells exhibits
strong statistical stability across varying cell and gene numbers
(Lun et al., 2016b; Wolock et al., 2019; Xi and Li, 2021). In terms
of accuracy and impact on downstream analyses like differential
gene expression, clustering, and trajectory inference, Dou-
bletFinder outperforms the other doublet-detection methods
suggested in this paper (McGinnis et al., 2019; Xi and Li, 2021).

While these multiplet removal tools are useful, even the
method with the highest multiplet-detection accuracy was rela-
tively low at 0.537, and they exhibit substantial variation across
different datasets (Xi and Li, 2021). Therefore, it is re-
commended to employ an appropriate combination of auto-
mated tools and manual inspection to account for the
complexity of the conditions and samples. Cells co-expressing
well-known markers of distinct cell types require careful scru-
tiny. In some instances, such co-expressing cells have been
identified as representing transitional states (Park et al., 2018).
However, other studies have opted to remove co-expressing
cells due to concerns about doublets (Karademir et al., 2022).

After removing transcript contamination and multiplets, ad-
ditional filtering is recommended to exclude cells with ex-
cessively high or low gene/unique molecular identifier (UMI)
counts. High counts may indicate multiplet artifacts, whereas
low counts indicate potential low-quality cells (Kim et al,
2022; Park et al., 2018).

Additionally, cells with a mitochondrial percentage exceeding
5% to 15% were excluded as considered low-quality cells (Luo
et al., 2021; Sikkema et al., 2023). However, the criteria for
removing cells based on mitochondrial percent can vary
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depending on factors such as species, sample types, and ex-
perimental conditions (Osorio and Cai, 2020; Subramanian
et al.,, 2022). For instance, human samples often exhibit a
higher percentage of mitochondrial genes compared to mice,
and highly metabolically active tissues like kidneys may display
robust expression of mitochondrial genes (Osorio and Cai,
2020; Uhlén et al., 2015).

Strategies and Considerations in scRNA-seq Analysis
After quality control, several important considerations arise in
the analysis pipeline. Typically, factors such as total UMIs per
cell, mitochondrial gene percentage, and stress signatures can
be selected for regression out during scaling analysis to ad-
dress unwanted technical and biological variations derived from
sequencing depth and cellular stress (Hafemeister and Satija,
2019). Furthermore, the cell cycle score is regarded as a con-
founding factor and regressed out to mitigate the effects of cell
cycle heterogeneity (Luecken and Theis, 2019).

Dimensional reduction is performed to extract biological
signals from the data, which requires users’ decision to set a
threshold. Recently, an unbiased scRNA-seq data analysis
method, single-cell low-dimension embedding using effective
noise subtraction, was developed, which reduces signal dis-
tortion and detects biological signals without manual tuning
(Kim et al., 2024b). Moreover, determining the optimal resolu-
tion value for cell clustering is challenging, as it heavily relies on
the unique characteristics of each dataset, the research pur-
pose, and the specific cell types of interest to researchers.
Hence, the following 2 types of strategies are recommended for
determining clusters: The first approach employs a top-down
strategy, classifying cells into the minimum number of main cell
types and then further subclustering each main cell type. The
second approach utilizes a bottom-up strategy, classifying cells
into a large number of initial clusters and then merging clusters
if a pair of clusters exhibits fewer than a certain number of dif-
ferentially expressed genes (eg, 10 genes) (Kim et al., 2024a).

When integrating multiple datasets for unified analysis,
identifying batch effects is crucial. Batch effects stem from
technical and experimental variations rather than biological
differences, potentially causing clusters to appear as distinct
cell types even when they are actually the same. A recent paper
benchmarked batch correction methods and indicated that their
performance varies depending on the scalability, complexity,
and availability of cell annotations within the dataset (Luecken
et al., 2022). For example, Harmony is a valuable option for
simple integration tasks involving distinct batch and biological
structures (Korsunsky et al., 2019). However, for more complex
integration tasks such as tissue or organ atlases, tools like
single-cell variational inference are more suitable (Lopez et al.,
2018). Additionally, BBKNN (batch balanced k nearest neigh-
bours) has demonstrated excellent performance in handling
scalable data concerning runtime and memory efficiency
(Polanski et al., 2020). While batch correction methods offer
substantial robustness in mitigating unwanted variation, it is
crucial to acknowledge that their application may not be uni-
versally effective. For example, in heterogeneous samples such
as tumors or cases involving biologically meaningful differences
in experimental conditions, improper correction of heterogeneity
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could lead to unintended biases in the data analysis (Wu et al.,
2021). Hence, it is strongly recommended to implement batch
correction with careful consideration of the specific context and
utmost caution.

Even after applying batch correction, uncertain clusters often
remain. For instance, cell clusters of the same cell type may be
segregated based on the total number of UMIs. This segrega-
tion can result from biological variance or technical bias, and
thus stably expressed genes are utilized to identify the source of
this segregation (Lin et al., 2019). Differential expression of
stably expressed genes across cells, correlating with variations
in UMI depth, suggests a technical effect, potentially due to
pooling inefficiencies. To minimize technical effects induced by
pooling, alternative normalization methods are employed (Lun
et al., 2016a).

Cell-type annotation of clusters is typically performed
manually, relying on established marker gene expression pro-
files within each cluster. However, this approach requires ex-
pertise and is often time-consuming (Pasquini et al., 2021).
Furthermore, annotating cell types can be particularly challen-
ging in 3 scenarios: (1) accurate annotation of immune cell
types often requires both positive and negative
markers (lanevski et al., 2022). (2) Annotating novel cell types
can be difficult when distinct marker genes are lacking. (3)
Distinguishing between multiple subcell types that exhibit si-
milar expression patterns of known marker genes is also chal-
lenging. In these cases, relying solely on specific marker genes
may be insufficient for accurate annotation. Therefore, it is
strongly recommended to adopt a combined strategy utilizing
both manual expertise and automated annotation tools. Various
automated cell-type annotation methods have been developed
based on marker gene databases, correlation analysis, and
supervised classification; further details are described in this
benchmarking paper (Pasquini et al., 2021). Additionally, a
Generative Pre-trained Transformers based approach has
emerged, demonstrating high accuracy, low laboriousness, and
consistency (Hou and Ji, 2024).

Collectively, this review offers useful and practical guidelines
for quality control at each stage of analysis. We anticipate that
this work will enhance the reliability and reproducibility of single-
cell studies.
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