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A B S T R A C T

This paper introduces a framework to yield an electricity rate for vehicle-to-grid (V2G) charging station (CS) to
minimize installation capacity of a charging station considering electric vehicle (EV) arrival/departure time
distribution. Two different layers are designed to avoid an obstacle encountered when formulating the problem
as a convex optimization and to represent an EV aggregator and an electricity rate decision maker – a regulator.
The EV aggregator layer focuses on increasing the profit and the regulator minimizes the peak load of the V2G
CS. Linear programming was formulated for the former layer, and a modified particle swarm optimization (PSO)
method was developed for the latter. Modification of the PSO approach allowed for easier escape of local
minima, resulting in a new electricity rate for the V2G CS based on the EV arrival/departure time distribution
data. The algorithm employs new matrices devised in this paper to accommodate EV information in the opti-
mization process. In a simulation study, two distinct CSs with V2G operations were evaluated, each with a
different EV arrival/departure time distribution. The simulation revealed that the peak load and the profit of the
aggregator vary dramatically depending on the arrival/departure time distributions.

Note that the indices belong to any set are denoted as subscripts,
italic, and lowercase letters. Non-italic superscripts describe abbrevia-
tions of certain terms – e.g., superscripts ch and di stand for charging and
discharging.

1. Introduction

Many countries in Europe and North America have announced plans
to phase out the sale and registration of internal combustion engine-
powered passenger cars [1]. In 2022, South Korea’s president pledged
to freeze new registrations of internal combustion engine automobiles
beginning in 2035. The rise of electric vehicles (EVs) has created need
for more fast-charging stations, given the inconvenience and time costs
of long charging queues [2]. The global market for EV fast-charging
systems is expected to reach a value of 10.82 billion USD by 2031,
increasing at a compound annual growth rate of 16.56 % from 2022 to
2031 [3]. However, plans for new power equipment installations have
not been well publicized, such that the proposed timing of imple-
mentation is questionable.

In Korea, the maximum capacity of the main feeder is regulated at 10
MVA per circuit by the Korea Electric Power Company (KEPCO) [4].
This value is also applied to the available total capacity of a distributed
energy resources (DERs) connection, based on the name plate power
rating of the DERs. The maximum number of fast chargers that can be
placed on a single main feeder ranges from 50 to 200, with power ratings
between 50 and 200 kW [3]. The total capacity of Korean substation
transformers is 153,020 MVA [5]; thus, only 765,100–3,060,400 fast
chargers may be used simultaneously if no other loads consume elec-
tricity. However, the traffic volume per day is about
4,200,000–6,400,000 cars [6], which requires more than the current
maximum number of fast chargers that can be installed.

The integration of EVs into the power grid would thus necessitate the
installation of new distribution substations and/or substation trans-
formers. However, the cost of establishing a new distribution substation
is significant, approaching 1.2 million USD on average [7]. In South
Korea, depending on the transformer capacity (30–60 MVA) and dis-
tribution line length and type, the total cost ranges from 4,916 million
South Korean Won (KRW) to 18,900 million KRW; the total cost
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comprises transformer and distribution line construction costs, as well as
social, maintenance, and environmental costs [8]. According to a
simulation study [9], even substituting 10 % of conventional vehicles
with EVs might produce unacceptable voltage fluctuations in a distri-
bution network.

Given the 25,350,000 cars, including 300,000 EVs, registered in
Korea at the end of the third quarter of 2022 [10], one of the most
important issues for EV adoption is decreasing the power rating of EV
charging stations (CSs), as evidenced by the numerous solutions for EV
grid integration problems proposed in the literature.

A methodological framework for plug-in EVs scheduling considering
uncertainties was introduced in [11]. In addition to uncertain departure
time and time-of-use (TOU) price rates, optimal charging timing for EVs
was considered in [12]. In [13], an optimum EV charging scheduling
problem for co-CSs is defined to reduce overall charging costs. In [14], a
conic optimization strategy for EV charging scheduling is proposed with
consideration of battery voltage constraints. Many different approaches
for reducing the peak load have also been proposed [15–21]. However,
all of the solutions are centered on EV charging schedules, which typi-
cally have specific objectives such as profit maximization or peak load
reduction throughout the whole power grid. These objectives prevent
minimization of the power rating of each CS. Given that EV owners and
CS operators are interested only in maximizing profits, price tariffs
should be modified to encourage a reduction in CS capacity.

Few studies have been conducted on the pricing tariffs for EV charging.
The overall costs of fueling plug-in hybrid EVs are compared in [22] using
predicted and real-world TOU rates, with the goal of maximizing each
consumer’s profit. However, when EVs are managed by an aggregator, the
overall profit might be enhanced. It has been demonstrated that aggre-
gating EVs through an aggregator and participating in market services
may increase the overall benefit for EV owners [23,24]. To lessen the daily
load pattern’s peak-valley disparity, a novel time series of the TOU tech-
nique is suggested in [25]; however, the study focused on the entire power
system rather than the peak of a single CS. Furthermore, it did not take
into account the optimal charging schedule for EVs.

Manymore studies have been conducted on EVs for different reasons,
including approaches for optimizing the location and size of EV CSs

[26–29]. The research in [30–32] concentrated on reducing grid effects,
whereas in [15,33,34] the authors evaluated reducing billing costs for
all stakeholders. However, no study has examined optimal EV charging
price tariffs to reduce each CS’s power rating.

In this paper, a framework for acquiring optimal vehicle-to-grid (V2G)
CS electricity rate is introduced to minimize the installation capacity of a
V2G CS for the regulator. We considered the regulator since the regulator
1) designs ((or at least approves) a new electricity tariff, and 2) endeav-
ours to maximize social welfare, a goal impacted by network expansion
investments [35] – minimizing the installation capacity of each CS helps
deferring the network expansion. Two different layers are introduced to
acquire a new electricity rate. The first layer depicts the optimization for
an EV aggregator and defines the objective to maximize the aggregator’s
profit under current TOU rate conditions. The second layer reduces the
peak load of a CS by adjusting the TOU rates. The peak load is chosen as
the objective function for this layer since it is the most relevant factor to
the installation capacity of a CS. Several probability distribution functions
for EV departure and arrival times were applied; their parameters changed
depending on the location of the CS (e.g., residential area, workplace,
etc.). The simulation results showed that the TOU rate should be calcu-
lated based on the arrival and departure times of EVs at a CS, rather than
the entire power system load profile, which is typically used to estimate
the TOU rate. In the perspective of the regulators, they don’t have to ask or
get any kind of information or data from the aggregator. They only need a
representative EV arrival/departure time distribution for a certain type of
CS, e.g., workplace and residential area, which can be acquired from open
data platform. The contributions of this paper are summarized in the
following:

• An optimization framework is introduced to determine the new
electricity rate, considering demand-side power capacity limitations.
The proposed framework can solve the problem which cannot be
formulated as a standard bi-level convex optimization.

• Algorithms to determine optimal TOU price for each time slot
considering the arrival/departure time distribution of EVs are
developed, which has been barely studied previously.

Nomenclature

Sets and Indices
I = {∀i ∈ N} Set of electric vehicles (EVs)
J = {∀j ∈ N} Set of EV chargers
T = {∀t ∈ N} Set of timeslots
T a =

{
∀tai ∈ N

}
Set of EV arrival timeslots

T d =
{
∀tdi ∈ N

}
Set of EV departure timeslots

S = {∀si ∈ R} Set of initial state-of-charges (SOCs) of EVs
R = {∀r ∈ Z} Set of time-of-use (TOU) electricity rate indices: r =

0/1/2 for off-peak/mid-peak/peak time
I o

t Set of online EVs time t
I

a/d
t Set of arrival/departure EVs at time t

T o/m/p Set of off-peak/mid-peak/peak timeslots

Parameters
Δt Unit time interval [hour]
ηch/di Charging/discharging efficiency [%]
κdcom Discomfort rate of EV owner [KRW]
γ1/2 Acceleration constants for PSO algorithm
ρ1/2 Random numbers in range [0, 1] for PSO algorithm
Ei Energy rating of EV i [kWh]
Pi Power rating of EV i [kW]
SOC Minimum SOC of EV [%]

SOC Maximum SOC of EV [%]
Niter Number of iterations for PSO algorithm
Npop Number of populations for PSO algorithm
Nvar Number of variables for PSO algorithm
Ncnt Maximum number of counts of consecutive iterations with

the same Xgbest in the PSO algorithm
C EV connection matrix
ci,t ith row, tth column element of C: 1 if EV i is connected to a

charger at time t, 0 otherwise
O Charger occupation matrix
oj,t jth row, tth column element of O: i if EV i is connected to

charger j at time t, 0 otherwise

Variables
si Initial SOC of EV i, random variable
ta/di Arrival/departure time of EV i, random variables
no/m/p Number of off-peak/mid-peak/peak time indices in R

uch/dii,t Charging/discharging status of EV i: 1 if EV i is charging/
discharging, 0 otherwise

pch/dii,t Charging/discharging power of EV i at time t [kW]

ech/dir,t Charging/discharging electricity rate with rate index r at
time t [KRW]

soci,t SOC of EV i at time t [%]
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• An EV connection matrix was developed to make charging/dis-
charging scheduling algorithm implementation much easier.

• The modified particle swarm optimization (PSO) algorithm increases
the convergence rate of the algorithm.

• Simulation results revealed that the TOU rates for EV CSs should be
adjusted according to EV arrival/departure time distribution.

We used known optimization and simple uncertainty models in this
paper since we focus on regulators to easily adopt mathematically
comprehensible method and hence to deploy a new electricity tariff for
EV CSs in the real-world. Deployment of a new electricity tariff is
especially urgent in South Korea, which has 1) no grid interconnection
with surrounded countries to support the grid, 2) no surplus area to
expand the grid, and 3) aggressive EV penetration plans as mentioned at
the beginning of this section.

The remainder of this paper is organized as follows. Section 2 depicts
the overall framework of the optimization technique. Section 3 provides
algorithms for each layer. The simulation environment and results are
described in Section 4. Section 5 summarizes the findings of this paper.

2. Optimization problem formulation

2.1. Problem statement

The objective of the regulator is to solve the problem of the mini-
mization of a daily peak load as follow:

min
r∈R

.max

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⃒
⃒
⃒
⃒
⃒

∑

i∈I
pchi,1 − pdii,1

⃒
⃒
⃒
⃒
⃒
,

⃒
⃒
⃒
⃒
⃒

∑

i∈I
pchi,2 − pdii,2

⃒
⃒
⃒
⃒
⃒
,

...,

⃒
⃒
⃒
⃒
⃒

∑

i∈I
pchi,T − pdii,T

⃒
⃒
⃒
⃒
⃒

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(1)

where T is the terminal timeslot index and is also equivalent to the
cardinality of T , |T |. Note that ‘min.’ stands for ‘minimize’ and ‘max’
denotes themax function, which selects themaximum value among a list
and is a convex function [36]. However, the values in the max function
cannot be explicitly expressed by using r, which is the TOU rate index
(decision variable) for the regulator’s problem (minimization problem)
and has discrete values. Even if the price itself is set as the decision
variable instead of the index, the problem remains the same since the
prices are discrete values which are not integers nor real numbers as
shown in Table 1. Hence, (1) cannot be formulated as a convex function.
In order to relate r and pch/dii,t , the EV aggregator is introduced and its
objective is to minimize the operation cost (or maximization of the
profit) of the CS as follow (the details are discussed in Section 2.3):

min.
pchi,t ,p

di
i,t

OC (2)

OC =
∑

i∈I

⎧
⎪⎨

⎪⎩

∑

t∈T
ci,tΔt

(
pchi,t e

ch
r,t − pdii,te

di
r,t

)

+κdcom
(
SOC

− soci,tdi
)

⎫
⎪⎬

⎪⎭
(3)

In order to formulate a complete bi-level (the regulator level and the

EV aggregator level) convex optimization problem, (2) and (3) should be
incorporated into (1). However, it is unable to merge them without
losing convexity. Hence, an optimization framework to solve this
problem is proposed.

2.2. Optimization framework

The electricity rate for the V2G CS is acquired by employing the
optimization framework depicted in Fig. 1. One layer is an EV aggre-
gator optimization (EAO) layer, which yields the optimal charging/
discharging schedule for each EV to maximize EV aggregator profit
while minimizing EV owner discomfort by fully charging the battery
before departure. The EAO layer is responsible for determining the
optimal charge/discharge schedule, which results in a convex optimi-
zation problem that can be solved using linear programming (LP) [32].

The other layer is an electricity rate optimization (ERO) layer, which
establishes a new electricity rate by implementing the PSO algorithm to
minimize the peak load demand of the V2G CS. Moreover, the EAO acts
as a fitness function that outputs the peak load demand to the PSO al-
gorithm at a given electricity rate. The PSO algorithm is applied because
the relationship between the electricity rate and peak load demand
cannot be modeled as a convex function. Hence, both layers cannot be
combined into a single minimax problem. One downside of the PSO
algorithm is that it cannot mathematically guarantee a global optimum;
consequently, in Section 3, we suggest a modified PSO algorithm to
address this issue.

The modified PSO algorithm attempts to reduce peak load demand
by allocating one of three rates to each timeslot: off-peak, mid-peak, or
on-peak. The EV charging TOU rate is based on the KEPCO EV charging
rate in summer [37]; the details are presented in Table 1. Given the daily
load activities, the temporal horizon is discretized into 24 h with 1-h
timeslots. Following the data in Table 1, 10 timeslots are designated
as off-peak times, 8 as mid-peak times, and 6 as on-peak times for each
day.

Adopting the electricity rate as a decision variable may enhance the
flexibility of the problem, thereby allowing the electricity rate to be
divided into more than three levels and/or to be increased to excessively
expensive price. To limit the degree of freedom of the electricity rate as
the decision variable, the following assumptions were applied:

• There are only three types of times – off-peak, mid-peak, and peak
times.

• Each time slot has a constant energy charge.
• The numbers of off-peak, mid-peak, and peak timeslots (10, 8, and 6,
respectively) stay the same.

According to these assumptions, only the time intervals between
each load level can be exchanged. For instance, if the time interval
23:00–24:00 is changed from off-peak to on-peak, only one of the on-
peak time intervals must be changed to the off-peak time. Changing
the time of the load level is reasonable because the current TOU rate is
based on the national load pattern of South Korea, whereas the load of
the EV station may differ.

For the V2G system, the price rates for selling electricity from EVs are
also required. However, the current electricity rate does not provide the
price rates for selling. Thus, we assumed that the electricity price for
selling is 130 % of the TOU rates in Table 1, given that approximately
124 % (1.24 ≈ 1/0.9/0.9, where 90 % is the charging/discharging ef-
ficiency) is the minimum rate that enables the EV aggregator to make a
profit considering the charging/discharging efficiency. If the selling
price is less than 124 % of the buying price, the EVs will never be dis-
charged since they cannot recover the power losses in converters and
batteries. On the other hand, higher selling price would result economic
inefficiency for the utility. Investigation of a proper upper level of the
electricity selling price for the V2G is worthwhile to be discussed as a
new research topic. It is out of scope of this paper since higher electricity

Table 1
KEPCO TOU rate for EV charging in summer.

Voltage
level

Optiona Demand charge
(KRW/kW)

Time regarding
load levelb

Energy charge
(KRW/kWh)

Medium
voltage

II 2,580 Off-peak 51.4
Mid-peak 86.2
Peak 171.8

a There are several more options with different demand and energy charges.
b In summer, off-peak time is 23:00–09:00, mid-peak time is 09:00–10:00,

12:00–13:00, and 17:00–23:00, and peak time is 10:00–12:00, and 13:00–17:00.
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selling price would not yield a different result if EVs are subjected to be
fully charged before they leave, which can be implemented by consid-
ering the discomfort rate of EV owners.

2.3. Objective functions and constraints

The EAO problem is formulated as an LP problem with the objective
function as (2) and (3), where r ∈ R is the TOU rate calculated from the
ERO layer. The V2G CS operating cost minimization is defined in (2) and
further detailed in (3). It includes the total cost of purchasing electricity
(first term), total cost of selling electricity (second term), and total
discomfort cost for EV owners (last term). The EV connection indicator
ci,t is a predefined (i.e., non-variable) parameter calculated by the EV
arrival/departure time distribution generator, as detailed in Section 3.
The discomfort cost is the aggregate of all EV owners’ discomfort levels,
and it is represented by the greatest discomfort level of an ith EV owner
if the SOC at departure time tdi deviates significantly from the SOC level.
The discomfort rate κdcom is set at 200 KRW, which means that for every
1 % SOC deviation from the maximum value, it costs 200 KRW. How-
ever, due to its temporal-spatial variability, accurately estimating the
cost for EV owners’ discomfort is extremely difficult. For instance, a AAA
battery costs 10,000 times more than the same amount of energy from
the power grid [38]. However, the discomfort rate is intended to be
higher than the average electricity rate in South Korea, which is around
100 KRW/kWh.

The charging/discharging of EVs is constrained as (∀t ∈ T , ∀i ∈ I ):

0 ≤ pchi,t ≤ ci,tuchi,t Pi (4a)

0 ≤ pdii,t ≤ ci,tudii,tPi (4b)

0 ≤ uchi,t + udii,t ≤ 1 (4c)

SOC ≤ soci,t ≤ SOC (4d)

soci,t = soci,t− 1 +
ci,tΔt
Ei

(
ηchpchi,t − pdii,t/ηdi

)
(4e)

where soci,t = 0 for t < tai and soci,tai = si ∈ S . Since tdi differs between
each EV, acquiring soci,tdi in (3) for each EV is quite laborious in terms of
algorithm implementation; however, incorporating ci,t , greatly sim-

plifies the process, as t > tdi and ∀i ∈ I , ci,t = 0. Hence, from (4e),
soci,tdi = soci,T. Therefore, instead of obtaining every tdi to calculate soci,tdi
in (3), we can use soci,T, ∀i ∈ I .

The ERO problem is reformulated from (1) using the following
objective function (∀t ∈ T ):

min.
r∈R

⃒
⃒
⃒PL

(
echr,t , e

di
r,t ,C,S

) ⃒
⃒
⃒ (5)

subject to:

0 ≤ r ≤ 2, ∀r ∈ Z (6a)

no = |T o
|, nm = |T m

|, np = |T p
| (6b)

Note that (5) is exactly the same problem as (1) but (5) is described as
a function of controllable variables and acquirable parameters to the
regulator whereas (1) is described as a function of charging/discharging
power of EVs at each time interval, which is controlled by the aggre-
gator. So, the peak load of the V2G CS, PL, cannot be described explicitly
by using the regulator’s decision variable (the electricity rate index).
However, the electricity rate directly affects the aggregator’s scheduling
strategy which yields PL as a result. Consequently, by introducing the
EAO (aggregator’s) problem, the ERO (regulator’s) problem is able to
relate the electricity rate and PL. The PSO algorithm is utilized to solve
the ERO problem based on the following equations [39]:

Vk+1,l = Vk,l + γ1ρ1
(
Xlbest
k,l − Xk,l

)
+ γ2ρ2

(
Xgbest − Xk,l

)
(7)

Xk+1,l = Xk,l +Vk+1,l (8)

where V and X are the velocity and the position vectors, respectively,
and the superscripts lbest and gbest denote local best and global best,
respectively. The element of X consists of r and the size of vectors X and
V is Nvar × 1. The EAO layer is used to calculate the objective function of
the ERO layer as shown in Fig. 1. So, the EAO layer is conducted every
iteration of the ERO layer. The iteration of the ERO layer (the modified
PSO algorithm) stops when the number of iterations reaches Niter.

The network constraints are not considered in the problem since it is
considered by the utility whereas the EAO and the ERO problems rep-
resents the aggregator and the regulator, respectively. The utility re-
views an available power capacity for the EV CS considering network
constraints. Once the available power capacity is determined for the EV

Fig. 1. A proposed framework to yield a new electricity rate for V2G CS peak load minimization.
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CS, the aggregator must not exceed the capacity while they manage the
EV CS. Hence, in this paper, we did not incorporate the network con-
straints, which is the utility’s concern, into the electricity tariff decision
problem, which is the regulator’s concern or into the EV charging/dis-
charging scheduling problem, which is the aggregator’s concern.

3. Algorithms

3.1. EAO layer

Algorithm 1 Generation of charger occupation matrix O

Input: T a/d, |J |, |T |

Output: Charger occupation matrix O

01:Initialize O as |J | by |T | zero matrix
02:fort ← 1 to |T | do

03:Compute
⃒
⃒
⃒I

a/d
t

⃒
⃒
⃒// number of EV arr./dep. at t

04:if (
⃒
⃒I d

t
⃒
⃒ > 0) then

05:Extract I d
t randomly among I o

t− 1
06:for j ← 1 to |J | do
05:Choose i randomly from I d

t

07:if (O[j, t] = = i ∈ I d
t ) then ▸ If j is occupied

08: O[j, t] ← 0 ▸ Mark j as empty
09:Remove i from I d

t
10: end if
11: end for
12:else if (

⃒
⃒I a

t
⃒
⃒ > 0) then

13Get I a
t from

( ⋃t− 1
x=1I

a
x
)C

14:for j ← 1 to |J | do
15:if (O[j, t] = = 0) then▸ If j is empty
16:O[j, t] ← i ∈ I a

t ▸ Assign EV i to charger j
17:Remove i from I a

t
18:end if
19: end for
20:end if
21:end for

To solve the EAO problem deterministically, probability density func-
tions (PDFs) are employed to generate the EV arrival/departure time-
slots and EV SOCs at the arrival time before running the EAO problem.
Since we focus on the types (e.g., workplace, residential area, and so on)
of V2G TOU price, the PDF can be used to represent the pattern of many,
but same types of loads instead of a specific pattern of a single load. The
PDFs of the EV arrival and departure times are referred to in [11] and
[40] with slight modification, which gives the Weibull distribution
T d ∼ W(k, λ) and generalized extreme value (GEV) distribution
T a ∼ G(μ, σ, ξ), where μ is the location parameter, σ and k are shape

parameters, and ξ and λ are scale parameters. The PDF of EV SOCs at the
arrival time is modeled as a normal distribution function S ∼ N(μN, σN),
where μN and σN are the mean and standard deviation of the normal
distribution, respectively. However, depending on the on-site statistics,
any alternative distribution function can replace these distribution
functions. The details of the PDFs are discussed in Section 4.

The data extracted from the PDFs are input into the algorithm that
generates charger occupation matrix O; the algorithm’s pseudocode is
shown in Algorithm 1. In Algorithm 1, one of the input T a/d is extracted
from PDFs of EV arrival/departure times under the assumption that
|T a| =

⃒
⃒T d⃒⃒ = |I |. Note that

⋃
∀t∈T I a

t =
⋃

∀t∈T I d
t = J , and

I a
t ⊆

( ⋃t− 1
x=1I

a
x
)C
. In Line 03, the algorithm computes

⃒
⃒
⃒I

a/d
t

⃒
⃒
⃒ by

counting the number of identical values in T a/d, such that T a = {1,1,
2, 2,2} means that

⃒
⃒I a

t=1
⃒
⃒ = 2 and

⃒
⃒I a

t=2
⃒
⃒ = 3. In Line 05, I d

t is
extracted randomly from I

o
t− 1, where I

d
t ⊆ I

o
t− 1 and I

o
t− 1 =

( ⋃t− 1
x=1I

a
x −

⋃t− 1
x=1I

d
x
)
. The row and column indices ofO represent the EV

charger and timeslot, respectively. The value of an element ofO is i if the
charger j (=row index) is occupied by the ith EV at time t (=column
index), and 0 if the charger is empty.
Algorithm 2 Generation of EV connection matrix C

Input: O, |I |, |J |, |T |

Output: EV connection matrix C

01:Initialize C as |I | by |T | zero matrix
02:for i ← 1 to |I | do
03:for j ← 1 to |J | do
04:for t ← 1 to |T | do
05:if (O[j, t] = = i) then
06:C[i, t] ← 1▸ EV plugged in
07: else
08C[i, t] ← 0▸ EV plugged off
07:end if
08:end for
09:end for
10:end for

Algorithm 2 provides the pseudocode for generating the EV connection
matrix C, which takes as input matrixO and the terminal values |I |, |J |,
and |T |. The row and column indices of C denote the EV and timeslot,
respectively. The value of an element of C is 1 if the EV i (=row index) is
occupying the charger at time t (=column index), and 0 if the EV i is not
occupying the charger (i.e., the EV i has not arrived yet or has already
left the charger). Illustrations of matrices O and C are shown in Figs. 2
and 3, respectively.

3.2. ERO layer

The objective of the ERO layer is to minimize the peak load PL of the
V2G CS, which is acquired from the E-AO result. The PSO algorithm is
utilized because the connection between the control variable r and
objective function (5) cannot be expressed explicitly. However, the
applied heuristic optimization algorithm, i.e., the PSO, has the problem
of being stuck in a local minimum; hence, a modified PSO algorithm is
presented. The modified PSO algorithm’s pseudocode is illustrated in
Algorithm 3, where the bold line numbers (05–13, 15, 18–21, and
23–31) emphasize the modified parts of the original algorithm.
Algorithm 3 Modified PSO algorithm

Input: PL, Niter, Npop, Nvar

Output: X (=R )

01:Initialize PSO parameters
02:count ← 0
03:for k ← 1 to Niter do
04:Update Vk, Xk▸ According to (5) and (6)

(continued on next page)Fig. 2. Illustration of the charger occupation matrix O.
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(continued )

Algorithm 3 Modified PSO algorithm

05:for m ← 1 to Nvar do
06:for l ← 1 to Npop do
07:if (Xk,l,m > Xm) then
08:Xk,l,m ← Xm

09:else if (Xk,l,m < Xm ) then
10:Xk,l,m ← Xm

11:end if
12:end for
13:end for
14:for l ← 1 to Npop do
15:Xk,l ← Recount_TOU_Rate(arguments)
16:Compute PL by running the EAO layer
17:Update Xlbestk,l , Xgbest

18:if (Xgbest = = Xlbestk,l ) then
19:Initialize Xk,l

20:Xk,l ← Recount_TOU_Rate(arguments)
21:end if
22:end for
23:if (Xgbest = = Xgbestk ) then
24:count ← count + 1
25:if (count = = Ncnt) then
26:count ← 0
27:Initialize randomly chosen half particles in Xk
28:end if
29:else if (Xgbest! = Xgbestk ) then
30:count ← 0
31:end if
32:end for

The first modified part (Lines 05–13) implements the constraint condi-
tion (6a) by constraining the element X of position vector Xwithin lower
and higher limits, X and X, respectively. Since X = r ∈ {0,1, 2}, X and X
are 0 and 2, respectively. It is worth noting that X s are integers, but the
updates of V and X provide real numbers for X s. To make X s integers
and hence implement integer PSO, they are rounded down to the nearest
integer in every update and initialization. Likewise, the second amended
component (Line 15) is intended to confine no/m/p so that it is compa-
rable to

⃒
⃒T o/m/p⃒⃒, to execute the constraint condition (6b). According to

Table 1, |T o|, |T m|, and |T p| are 10, 8, and 6, respectively, whereas no,
nm, and np can be adjusted during the PSO algorithm’s solution
searching process. To reset no/m/p to

⃒
⃒T o/m/p⃒⃒, the Recount_TOU_rate

algorithm is created and used at Lines 15 and 20, where the pseudocode
of the Recount_TOU_rate algorithm is presented in Algorithm 4. The
algorithm takes inputs |T o|, |T m|, |T p|, and X (=R ) and counts np

whichcould be different from |T p|. If np > |T p|, the algorithm changes
nΔp (= |np − |T p| |) ‘2’s (peak-time indices) in R into ‘0’s (off-peak time

indices), whereas if np < |T p|, the algorithm changes nΔp ‘0’s and ‘1’s
(mid-time indices) in R into ‘2’s. Then, the algorithm counts nm, which
could be different from |T m|. If nm > |T m|, the algorithm changes nΔm

(= |nm − |T m| |) ‘1’s in R into ‘0’s. If nm < |T m|, the algorithm changes
nΔm ‘0’s and ‘2’s in R into ‘1’s. Eventually, no/m/p become equivalent to
⃒
⃒T o/m/p⃒⃒.
Algorithm 4 Recount_TOU_Rate(arguments)

Input: |T o |, |T m|, |T p|, X (=R )
Output: X (=Rwith no, nm, and np recounted)

01:np ← Number of peak time indices in R

02:nΔp ← |np − |T p| |

03: if (np > |T p|) then
04:Randomly choose nΔp ‘2’s in R

05:Change chosen ‘2’s into ‘0’s in R

06:else if (np < |T p|) then
07:Randomly choose nΔp ‘0’s and ‘1’s in R

08:Change chosen ‘0’s and ‘1’s into ‘2’s in R

09:end if
10:nm ← Number of mid-peak time indices in R

11: nΔm ← |nm − |T m| |

12:if (nm > |T m|) then
13:Randomly choose nΔm ‘1’s in R

14:Change chosen ‘1’s into ‘0’s in R

15:else if (nm < |T m|) then
16:Randomly choose nΔm ‘0’s and ‘2’s in R

17:Change chosen ‘0’s and ‘2’s into ‘1’s in R

18:end if
19:Return updated R

The third modified part of the PSO algorithm (Lines 18–21) aims to
maximize particle resource utilization. This section initializes the lth
particle Xl, which reaches Xgbest since leaving Xl near Xgbest is ineffective.
Since every particle is heading toward Xgbest, Xl can seek an entirely new
region, thereby enhancing the particle’s utilization and assisting other
particles to escape from local minima.

The fourth updated section (Lines 23–31) is also intended to allow
particles to avoid local minima, and it counts the number of successive
iterations with the same Xgbest. If the number of counts reaches Ncnt,
which is set by the user, half of the particles in X are picked at random
and initialized to seek a new region.

The convergence rate to the global optimum is boosted by devel-
oping and employing the third and fourth modified parts of the PSO
algorithm. To demonstrate the efficiency of the modified PSO algorithm,
the original PSO algorithm and genetic algorithm (GA) are developed
and applied to an example problemwith the same constraints as the ERO
problems (6a) and (6b). The Appendix provides the details of the
example problem. Three algorithms are used in the example problem,
where Niter = 2,000, and they stop iterating once they hit the global
optimum. The global optimum value is 106, as illustrated in the Ap-
pendix. The performance of the three algorithms is compared in Fig. 4
and Table 2. The simulation results are calculated by taking the average,
minimum, maximum, and standard deviation of 1,000 distinct algo-
rithm outputs. Only the average value is used for Fig. 4. As shown in
Fig. 4(a), the modified PSO outperforms the original one. The GA ap-
pears to be quicker than the modified PSO in terms of iteration count.
However, as shown in Fig. 4(b), the computational time of the GA is
nearly 6.3 times slower than that of the modified PSO and 3.1 times
slower than that of the PSO. Furthermore, as shown in Table 2, the GA
never approaches the global optimum at iteration number 2,000,
whereas the modified PSO reaches the global optimum at iteration
number 1,253 at most. In average, by modifying (or by adding the third
and fourth modified parts to) the PSO algorithm as proposed, the global
optimum value is reduced by 5.4 %. The first and second modified parts
cannot be removed because the constraint conditions are violated
without them.

Note that the result does not guarantee the effectiveness of theFig. 3. Illustration of the EV connection matrix C.
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modified PSO algorithm for all general optimization problems. The
heuristic optimization still cannot be proven for the global optimality
mathematically, so the effectiveness check should be done for every
problem that could use the modified PSO algorithm. The modified PSO
algorithm proposed in this paper is effective for problems with integer
variables where the values of variables are under inequality constraint
conditions and the number of each integer that should be used are under
equality constraint conditions.

The algorithm was evaluated on a computer that has an Intel Core i7
12700 @ 2.1 GHz CPU, 64-bit operating system, and 32 GB of RAM
(Intel Corp., Santa Clara, CA, USA).

4. Simulation environment and results

4.1. Simulation environment

The simulation parameters were set to the values shown in Table 3.
The V2G CS scheduling algorithm was developed for a 24-h period. Δt =
0.25 h, so |T | = 24/0.25 = 96 and {1, 2, 3, ⋯, 96} ∈ T . However,
Nvar = 24 since |T o| + |T m| + |T p| = 24. As such, the TOU rate
indices were imposed on the timeslots on an hourly basis. For instance,
timeslots {1,2, 3,4} have the same TOU rate, as they exist between 0:00
and 1:00. The number of daily EV arrivals was calculated to be 200,
which was also deemed equivalent to |I |. Loads other than EV are not

considered in order to clearly show how the TOU rate and EV departure/
arrival time affect the peak load due to EVs. However, even if the other
loads are not considered, it can be inferred that the effect of adding the
other load would be the same as changing EV departure/arrival time
distribution since both affect a load pattern.

The simulation ran two scenarios: one for residential use and the
other for the workplace. Each scenario had a completely different dis-
tribution of EV arrival and departure times based on the activities taking
place there. The random variable sets T a, T d, and S were retrieved
from the PDFs with the settings provided in Table 4. The settings were
chosen such that T d concentrated on the adjacent hours of 8:00 and
18:00 (32 and 72, in terms of timeslots), which correspond to residential
area and workplace, respectively. For T a, they were centered around
19:00 and 9:00 (76 and 36, respectively, in terms of timeslots) for the
residential area and workplace, respectively.

The number of EV arrival and departure timeslots at the workplace
and residential area are shown in Fig. 5(a) and (b), respectively. We set
|T a| =

⃒
⃒T d⃒⃒ = |I |, |T a| =

⃒
⃒T d⃒⃒ = 200. Since the majority of T d start

before T a in the case of the residential area, another 200 EVs were
assumed to have been plugged into the chargers since the previous day;
hence, they were not created as random variables and are not depicted in
Fig. 5(b). These EVs were assumed to be fully charged since ta = 1 and
left the residential area at T d, the distribution of which is shown in
Fig. 5(b). The random variable set T a is illustrated in Fig. 5(b). The
initial SOC random variable set was generated for both the EVs arriving
at the residential and workplace locations from the PDF, with the pa-
rameters shown in Table 4. The results are shown in Fig. 5(c).

4.2. Simulation results

For both the workplace and residential area, the current TOU elec-
tricity rate and rate received from the ERO layer were applied to the
EAO layer. It took 51 days and 19 h and 40 min for the workplace case

Fig. 4. Performance of the modified PSO, PSO, and GA. (a) Convergence rate.
(b) Computation time. (Average values from 1,000 demonstrations).

Table 2
Convergence rate of the modified PSO, PSO, and GA (From 1,000
demonstrations).

Modified PSO PSO GA

Optimum at the terminal iteration:
average/min/max/standard deviation

106/106/
106/0
(Global
optimum)

112.04/
107/
117/
2.13

106.02/
106/
107/
0.14

The largest iteration number that reaches
the global optimum

1,253 >2,000 >2,000

Table 3
Simulation parameters.

Parameters Values Units

Δt 0.25 hour
ηch, ηdi 90, 90 %
κdcom 200 KRW
γ1/2 3, 3 −

Ei 70 kWh
Pi 50 kW
SOC , SOC 0, 100 %
Niter, Npop, Nvar 2000, 100, 24 −

Ncnt 100 −

Table 4
PDF parameters.

Random variables Parameters Values

T d ∼ G(μ, σ, ξ)(Residential/Work) μ 32/72
σ –0.05
ξ 1

T a ∼ W(k, λ)(Residential/Work) k 7.67
λ 76/36

S ∼ N(μN, σN) μN 50
σN 10
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and 74 days and 40 min for the residential area case to get results. Fig. 6
shows the differences in electricity rates and demonstrates that the new
electricity rates had completely different patterns than the current TOU
rate. The electricity rates calculated for the workplace and residential
area also exhibited different patterns. It is noteworthy that the highest
TOU rate is allocated at 7 am in case of the workplace as shown in Fig. 6
despite the EVs are still arriving as shown in Fig. 5(a). Intuitively, one
might think that the TOU rate at 7 am should be switched to the one at 3
am where no EV has arrived yet. However, if the TOU rates of both
timeslots are switched, we observed that the peak load is increasing and
even the profit of the aggregator is decreasing. This observation supports
the necessity of the proposed method.

The net charging/discharging power of the V2G CS for the workplace
and residential area are shown in Fig. 7(a) and (b), respectively. When
the current TOU rate was applied to both locations, the ERO layer
consumed the maximum amount of power (200 × 50 = 10,000 kW).
This suggests that the current TOU rate is completely ineffective in
decreasing the capacity of power equipment. However, by applying the

new TOU rates to the workplace and residential area, the ERO layer only
consumed peak loads of 5,445 and 9,775 kW, respectively. This dem-
onstrates that applying the newly produced rate from the optimization
reduces the maximum power capacity for the V2G CS by around 54 % of
the overall power rating of the EV chargers. However, it also shows that
depending on the EV arrival/departure time distribution, the peak load
will barely be reduced.

Fig. 5. Number of random variables generated from PDFs. (a) Arrival and departure timeslots for the workplace. (b) Arrival and departure timeslots for residential
area. (c) Initial SOCs for EVs.

Fig. 6. TOU electricity rate index.

Fig. 7. Net charging/discharging power of V2G CS. (a) Workplace. (b) Resi-
dential area.
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The SOC results for the current and new TOU rates are shown in
Figs. 8 and 9, respectively. The lines on the figures appear when the EVs
are connected and disappear when the EVs are disconnected. Fig. 8(a)
and 9(a) show the results for the workplace, and Fig. 8(b) and 9(b) are
the results for the residential EVs that had been connected since the
previous day. In order to present the tendency of SOC of 200 EVs more
clearly, we added thick, dashed line to represent the average SOCs of all
connected EVs. The figures show that one of the EVs, which lasts even
after 41st timeslot, connected since the previous day remained con-
nected until the end of the day, which is plausible in the real world.
Fig. 8(c) and 9(c) show the results for the residential EVs that had newly
arrived in the intraday period.

Table 5 shows the discomfort costs, which illustrate the proportion of
the SOCs of the EVs that could not be fully charged before the EVs leave.
For the workplace, all 200 EVs were fully charged. For the residential
area, only one EV could not be fully charged, as it stayed at the CS for
only 30 min. Thus, about 26.18 % of the SOC, which is equivalent to
5,236 KRW in terms of the discomfort cost, could not be charged.

The maximum profit made by the EV aggregator, as calculated by the
EAO layer, is shown in Table 6. While calculating the EV aggregator’s
profit, we did not consider the profit share with EV owners since the
aggregators’ contract terms with their customers vary widely and
continuously change [41]. So, the profit shown here is the profit before

the aggregator share it with EV owners. One would expect the profit to
decrease when the maximum power usage is minimized. Especially in
case of the workplace, the profit is profoundly decreased down to only 1
% of that of the current TOU rate while using the new TOU rate. The
profit can be increased by adjusting the electricity selling price. How
much should the selling price be is left as a future work since it is out of
scope of the paper as mentioned in Section 2. On the other hand, it is
noteworthy that the profit is increased ten times in case of the residential
area with the new TOU rate compared to that of the current TOU rate.
So, in spite of negligible change of the peak load, the proposed optimi-
zation framework is still useful for a significant improvement of the EV
aggregator’s profit. In summary, the EV arrival/departure time distri-
bution profoundly affects both peak load reduction and the profit of EV
aggregator. Since the EV charging station peak load, EV arrival/depar-
ture time, TOU rate, and EV aggregator’s profit are interrelated
complicatedly, the regulator has to consider all of them to determine
TOU rates for EV charging station.

5. Discussion and conclusion

Exploding EV sales will have a substantial impact on the capacity
limit of distribution networks and necessitate the upgrading of trans-
mission infrastructure. However, expanding the capacity of the power

Fig. 8. SOC of EVs applying current TOU rate. (a) The workplace. (b) The residential area for the EVs connected since previous day. (c) The residential area for the
newly arrived EVs. (Thick dashed line denotes the average SOC of all connected EVs).
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system infrastructure is extremely expensive. Moreover, the social cost,

which is unquantifiable, must also be considered. To avoid upgrading
the power capacity, we emphasize that the TOU electricity rate for EVs
should be applied according to the EV arrival and departure time dis-
tributions of the V2G CS, as opposed to the peak demand of the whole
power system, as is currently the case for utilities. Additionally, our
results show that the installation power capacity can be reduced
considerably by reducing the peak load of the CS, whereas the reduction
in profit rate of the EV aggregator and the peak load of the CS vary
significantly, depending on the EV arrival/departure time distribution,
via the development and utilization of optimization framework.
Although the EV aggregator’s revenue is lowered, the maximum power
capacity is reduced significantly, resulting in a reduction in V2G CS
installation costs and an increase in social benefit owing to the deferral
of power system infrastructure extension. However, the reduction of the
profit of EV aggregator could be profound depending on the EV arrival/
departure time distribution. The profit reduction could be compensated
by adjusting the level of electricity selling price. The results from the
simulation give new insight into the V2G CS business model in terms of
the maximum installation capacity, TOU rate, and EV arrival/departure
time distribution.

The ERO layer is employed here to compute the new TOU electricity
rate; notably, some practical considerations for the EAO layer are
overlooked. For example, the EV arrival and departure time distribu-
tions are configured to be deterministic; however, in practice, the EV
arrival and departure timings always have a certain probability. The
stochastic approach must be researched to provide a new TOU rate for
future works.
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Appendix A

Since heuristic optimization algorithms such as PSO and GA are used, obtaining the global optimum is not guaranteed. As a result, the solution
derived from such methods cannot be confirmed to be the global optimum. To demonstrate the efficiency of the modified PSO algorithm, we created a
simple example problem with the following objective function:

min
r∈R

∑23

m=0
mr (A1)

Fig. 9. SOC of EVs applying new TOU rate. (a) The workplace. (b) The resi-
dential area for the EVs connected since previous day. (c) The residential area
for the newly arrived EVs. (Thick dashed line denotes the average SOC of all
connected EVs).

Table 5
Discomfort costs.

V2G CS Current TOU Rate New TOU Rate

Workplace 0 KRW 0 KRW
Residential area 5,236 KRW 5,236 KRW

Table 6
Profits of EV aggregator.

V2G CS Current TOU Rate New TOU Rate

Workplace 1,404,840 KRW 8,824 KRW
Residential area 221,852 KRW 2,237,390 KRW
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subject to (6). The global optimum for (A1) is 0× 2 + 1× 2 + ... + 5× 2 + 6× 1 + ...13× 1 + 14× 0 + ...23× 0 = 106. Since the total number of m
and number of control variables r equals to Nvar, and because the constraints are the same as for the ERO layer, the effectiveness of the heuristic
optimization for the ERO layer can be proven indirectly by applying them to (A1).
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