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Abstract 

Background: Safe drug treatment requires an understanding of the potential side 
effects. Identifying the frequency of drug side effects can reduce the risks associated 
with drug use. However, existing computational methods for predicting drug side 
effect frequencies heavily depend on known drug side effect frequency information. 
Consequently, these methods face challenges when predicting the side effect frequen-
cies of new drugs. Although a few methods can predict the side effect frequencies 
of new drugs, they exhibit unreliable performance owing to the exclusion of drug-side 
effect relationships.

Results: This study proposed CrossFeat, a model based on convolutional neural net-
work-transformer architecture with cross-feature learning that can predict the occur-
rence and frequency of drug side effects for new drugs, even in the absence of infor-
mation regarding drug-side effect relationships. CrossFeat facilitates the concurrent 
learning of drugs and side effect information within its transformer architecture. This 
simultaneous exchange of information enables drugs to learn about their associated 
side effects, while side effects concurrently acquire information about the respective 
drugs. Such bidirectional learning allows for the comprehensive integration of drug 
and side effect knowledge. Our five-fold cross-validation experiments demonstrated 
that CrossFeat outperforms existing studies in predicting side effect frequencies 
for new drugs without prior knowledge.

Conclusions: Our model offers a promising approach for predicting the drug side 
effect frequencies, particularly for new drugs where prior information is limited. 
CrossFeat’s superior performance in cross-validation experiments, along with evidence 
from case studies and ablation experiments, highlights its effectiveness.

Keywords: Drug adverse event frequency prediction, Drug side effect frequency, 
Deep learning prediction model, Transformer

Background
Most drugs interact with several molecular targets in an organism, thereby showing 
the complex profiles of human biological activity [1]. Drug side effects, also known as 
adverse drug reactions (ADRs), are defined as harmful, undesirable, and unintended 
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secondary effects related to pharmacological properties at normal doses [2]. They have 
caused notable morbidity and mortality over the centuries [3, 4]. In recent years, signifi-
cant attention was paid to drug safety concerns arising from side effects [5–7]. The con-
ventional approach for identifying ADRs often encounters issues such as high costs and 
time consumption owing to the need for rigorous monitoring of side effects in hospital-
ized patients [8, 9]. Therefore, computational methods and bioinformatics for alternative 
drug prediction have emerged as prime innovations to ensure safe and reasonable drug 
use.

Many researchers have proposed machine-learning approaches to predict the occur-
rence of drug side effects and ensure safe drug use and treatment [10–14]. Although 
predicting the presence or absence of drug side effects is important, the prediction of 
side effect frequencies holds greater importance for patient care in clinical practice and 
pharmaceutical companies. This represents a crucial step towards ensuring safe drug 
use. The frequency of drug side effects refers to the number of patients who experience 
side effects caused by the drug. Galeano et al. [15] categorized the occurrence of drug 
side effects into five frequency classes, ranging from one to five, and then utilized this 
benchmark dataset to predict the frequency of drug-related adverse effects. MGPred 
[16], employing a graph attention model, while DSGAT [17], which is a graph atten-
tion network that utilizes a new loss function for predicting side effect frequencies, were 
employed for this prediction. Despite these efforts, current studies have significant limi-
tations. Many models directly utilize known side effect frequency values as input fea-
tures or construct features based on these known values, rendering them highly reliant 
on existing data and unsuitable for predicting side effects for new drugs that lack his-
torical side effect information. Methods like SDPred [18] attempt to predict side effect 
frequencies for new drugs but exhibit low performance metrics, such as the area under 
the precision-recall curve (AUPRC), indicating their limited ability to generalize to new 
drugs. This limitation arises from the fact that these methods still rely on derived fea-
tures from existing side effect data. Additionally, models that heavily depend on pre-
existing frequency data can struggle with robustness, as any inaccuracies or biases in the 
historical data can carry over into the predictions, leading to less reliable results for new 
drugs.

In contrast, our proposed CrossFeat model addresses these limitations by not relying 
on pre-existing side effect frequency data for feature construction. Instead, it leverages a 
cross-feature learning approach that integrates features from drug and side effect encod-
ers through a transformer-based architecture. This method allows the model to capture 
and fuse information from heterogeneous feature spaces, making it more robust and 
accurate in predicting side effect frequencies for new drugs. By eliminating the depend-
ency on prior frequency information, CrossFeat significantly enhances the model’s abil-
ity to predict side effects for drugs with no historical data, thereby improving patient 
safety and clinical outcomes. This study aimed to predict the occurrence and frequency 
of side effects for new drugs, even in the absence of any prior knowledge, including side 
effect frequency information. This goal was achieved through the proposal of CrossFeat, 
a convolutional neural network (CNN)-transformer-connected model that incorpo-
rates cross-feature learning. Specifically, a transformer encoder was designed to provide 
cross-attention between drugs and their side effects. This design facilitated the exchange 
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of information between the drugs and their associated side effects. The model not only 
learns about each drug and its individual side effects but also captures their interde-
pendencies concurrently. In the general transformer architecture, the attention mecha-
nism primarily focuses on self-attention within a single sequence. The queries, keys, and 
values all originate from the same source, allowing the model to attend to different posi-
tions within the same input sequence to capture dependencies and relationships [19]. 
In contrast, the feature-wise cross-attention mechanism in the CrossFeat architecture is 
designed to handle and fuse features from two different sources: the drug encoder and 
the side effect encoder. This approach enables the model to filter and integrate infor-
mation across heterogeneous feature spaces, resulting in more accurate and robust 
predictions.

Our approach employs a comprehensive set of inputs, including molecular structure 
and compound description of drugs, and word embedding and semantic similarity infor-
mation of side effects. The five-fold cross-validation results demonstrated the perfor-
mance of CrossFeat in predicting the occurrence and frequency of side effects exceeding 
that of state-of-the-art models on a benchmark dataset for new drugs. The prediction 
results were validated using the published literature and drug side effect databases 
SIDER [20] (http:// sidee ffects. embl. de/) and OFFSIDES [21] (https:// nsides. io/). Addi-
tionally, an independent evaluation using the FAERS_SI dataset confirmed the robust-
ness of our model. This novel approach combining dual similarity matrices and vectors 
with cross-feature learning presents a more effective predictive modeling paradigm in 
the pharmaceutical domain, particularly noteworthy for its ability to predict side effects 
of new drugs even in the absence of any prior drug-related information. Moreover, we 
aimed to demonstrate that our model, by effectively capturing the necessary chemical 
and side effect information, outperformed existing models in predicting the frequency of 
side effects for new drugs.

Methods
Benchmark dataset

We downloaded the drug side effect frequencies and unique names of drugs and side 
effects from Supplementary Data 1 in Galeano et al.’s study [15]. This dataset contains 
37,441 frequency-class associations for 759 drugs and 994 side effects. The occurrence of 
side effects was quantified into side effect frequency classes coded with integers between 
1 and 5 (very rare; frequency = 1, rare; frequency = 2, infrequent; frequency = 3, fre-
quent; frequency = 4, very frequent; frequency = 5). A dataset of drug side effect fre-
quencies was used as the target values in this study.

Construction of input features

CrossFeat utilizes two types of drug information and two types of side effect informa-
tion to generate similarity-embedding matrices and embedding vectors for drugs and 
side effects. Drug information comprises mol2vec [22] and fingerprint vectors. Mol2vec 
is a 100- or 300-dimensional vector representing the molecular structure of a drug that 
is obtained by inputting the drug SMILES into Mol2vec. Drug SMILES sequences were 
collected from the STITCH [23] database. Meanwhile, the fingerprint is a 2048-dimen-
sional vector obtained by inputting the drug SMILES into RDkit [24], providing 

http://sideeffects.embl.de/
https://nsides.io/
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descriptors of the compound. These mol2vec and fingerprint vectors were subsequently 
employed to create mol2vec and fingerprint similarity vectors representing the similar-
ity between drugs based on cosine similarity [25] and Jaccard similarity [26], respec-
tively. For side effect information, semantic similarities and side effect word vectors were 
employed. We calculated semantic similarity using the Adverse Drug Reaction Classifi-
cation System IDs to draw Directed Acyclic Graphs (DAGs). These DAGs represent the 
hierarchical relationships between side effects [16]. In addition, GloVe [27] was used to 
generate 300-dimensional side effect word vectors with side effect names, and the word 
vector similarities between the side effects were calculated using cosine similarity. All 
drug and side effect information were regenerated using the methods proposed by Zhao 
et al. [18].

In total, 36,850 frequencies for 736 drugs were obtained after removing 23 drugs with 
no matching information in the SDPred to ensure consistency in our dataset. This step 
was necessary to maintain the integrity of our comparisons and to avoid potential ambi-
guities in the data. Additionally, 994 side effects matched the benchmark dataset. Let n 
and m be the number of drugs and side effects, respectively. A dataset of drugs can be 
represented as D =

{

d1, d2, · · · , dn
}

 , where n = 736 , and a dataset of side effects can 
be represented as S = {s1, s2, · · · , sm} , where m = 994 . All possible drug-side effect pairs 
can be D × S and the number of pairs is n×m = 731, 584 . As shown in Table 1, we par-
titioned the samples of drug-side effect pairs into three distinct subsets: PS1 containing 
36,850 drug-side effect pairs with frequency information, PS2 with 36,850 pairs ran-
domly selected from 694,734 pairs with unknown frequencies, and PS3 for the remain-
ing 657,884 pairs with unknown frequencies. It was essential to include samples without 
drug side effect frequency information in the training set to calculate the probability of 
occurrence of drug side effects. Therefore, we randomly sampled a set of pairs equivalent 
to the size of PS1 to form PS2 , assuming a frequency of zero for PS2 . All samples from PS1 
and PS2 were used for model training and testing in a five-fold cross-validation to pre-
dict the probability of drug side effect occurrence and frequency of side effects. PS3 was 
used for literature validation to assess the performance of the model.

A transformer‑based cross‑feature learning model for drug side effect frequency prediction 

(CrossFeat)

This study introduces the CrossFeat, designed to predict the occurrence probability 
and frequency of side effects for new drugs based on the molecular structure and 
compound description information of drugs, along with word embedding and seman-
tic similarity information of side effects. The architecture of the proposed model is 

Table 1 Three subsets of drug-side effect pair samples

Dataset # Of samples

Pairs w/ frequency (PS1) 36,850

Pairs w/o frequency 694,734

       Randomly selected pairs w/o frequency (PS2)        36,850

       Remaining pairs w/o frequency (PS3)        657,884

Total 731,584
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illustrated in Fig. 1. Two critical challenges were addressed during the development of 
CrossFeat. The first involves creating representations that effectively represent each 
drug and its side effects, thereby ensuring accurate predictions for new drugs. The 
second challenge was to integrate the drug and side effect input features into a uni-
fied dimension. Samples comprised of pairs of drugs and their side effects; therefore, 
it was crucial to train features concurrently to enhance their interdependence as the 
model learned.

The CrossFeat model was trained using the following workflow: (i) Drug and 
side effect similarities were dimensionally reduced to the same size of vectors. The 
reduced drug vectors were computed through outer product operations [28] to con-
struct the drug embedding matrix, and the side effect vectors were similarly sub-
jected to outer product operations to generate the side effect embedding matrix; (ii) 
these embedding matrices were subsequently input to the CNN for feature extrac-
tion; (iii) the transformer module was utilized to emphasize crucial information from 
the drug and side effect features themselves and simultaneously acquire information 
about each other by facilitating cross-feature learning; (iv) the multi-layer perceptron 
(MLP) projects the drug mol2vec vector and side effect word vector into the same 
size of embeddings; and finally, (v) the classifiers predict the occurrence probabilities 
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Fig. 1 Workflow of CrossFeat. Drug and side effect similarities are dimensionally reduced and multiplied 
through outer product operations to generate the drug and side effect embedding matrix (left side of the 
figure). Subsequently, the CNN architecture extracts features from the drug and side effect embedding matrix 
(center of the figure). The transformer module learns the representations from individual drug and side effect 
features and concurrently undergoes cross-learning to acquire the representations of each other (upper 
and lower right of the figure). Simultaneously, the Multi-Layer Perceptron (MLP) module projects the drug 
mol2vec vector and side effect word vector into a same-dimensional embedding (right middle of the figure). 
All output embeddings from MLPs and transformers are concatenated and inputted into two classifiers to 
predict the occurrence probabilities and frequencies of side effects for the drugs
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and frequencies of side effects for the drugs by concatenating all the embeddings 
from the transformer and MLP. The detailed steps are elaborated in the subsequent 
subsections.

Generation of the input embedding matrix

The drug similarity vectors of drug di , V i
mol ∈ R

n and V i
fin ∈ R

n , represent the cosine sim-
ilarities of drug molecular substructures with mol2vec and Jaccard scores of chemical 
substructures by fingerprint, respectively. The side effect similarity vectors of side effect 
sj , V

j
sem ∈ R

m and V j
word ∈ R

m , represent the side effect semantic similarity and word 
vector cosine similarity, respectively. The dimensionality of all feature vectors n and m 
was reduced to l (in this study, l = 128 ); that is, 

{

V ′i
mol ,V

′i
fin,V

′j
sem,V

′j
word

}

∈ R
l . Each vec-

tor was subsequently multiplied by the others using the outer product operation, 
denoted by 

⊗

 . We used the outer product operation expecting that its use between sim-
ilarity matrices would result in a synergistic effect on the similarity values. Thus, the 
drug embedding matrix Mdi ∈ R

l×l = V ′i
mol

⊗

V ′i
fin = V ′i

mol(V
′i
fin)

⊺ and side effect embed-

ding matrix Msj ∈ R
l×l = V

′j
sem

⊗

V
′j
word = V

′j
sem(V

′j
word)

⊺ with a size of l × l were gener-
ated and subsequently used as the input to the CNNs. The similarity information for test 
drugs in V i

mol ,V
i
fin,V

j
sem, and V j

word was uniformly filled to zero to consider the drugs in 
the test set of each fold in the five-fold cross-validation experiment as new drugs with-
out prior information.

Feature extraction with CNN

A CNN is a type of artificial neural network commonly applied to visual image analysis 
[29, 30]. It consists of multiple layers, each capable of detecting different features in an 
image. Our study used two separate CNNs to extract features from the drug and side 
effect embedding matrices. The structures of both CNNs were identical and comprised 
four convolutional layers, each consisting of a 2D convolution, batch normalization [31], 
and a ReLU [32] activation function (see Fig. 2A). Each layer had a channel size of 32, a 
stride of 2, and a kernel size of 2. In the CNN module, the input is a tensor of the follow-
ing shape: batch ×1× l × l . After passing through four convolutional layers, the input 
was abstracted into a feature map with a size of batch x 32× 8× 8 . Subsequently, mean 
pooling was applied to each feature map.

Cross‑feature learning with transformer encoder through cross‑attention

The original transformer [19] is a neural machine translation model consisting of 
encoder and decoder architectures. The encoder extracts features from an input sen-
tence and the decoder utilizes these features to produce an output sentence for trans-
lation. The transformer module in CrossFeat is a variation of the original transformer 
encoder. The encoders for cross-feature learning are composed of a stack of two iden-
tical blocks (or layers), each containing three sub-layers (whereas the original encoder 
has two sub-layers): two multi-head attention mechanisms and a position-wise fully 
connected feedforward network. The output embeddings of a sublayer are carried for-
ward to the subsequent layers through residual connections, and layer normalization is 
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applied after each residual connection. The input of the attention function consists of 
queries and keys with dimensions Dk , and values with dimensions Dv , where the queries, 
keys, and values are packed together into matrices Q, K, and V, and the output matrix is 
calculated using the following equation:

Refer to Fig. 2b for a detailed illustration of the attention mechanism.
In addition to the two sublayers in the original transformer encoder, CrossFeat’s 

encoder includes an additional multi-head attention layer inserted as a second sublayer, 
which performs cross-feature learning. Cross-feature learning (feature-wise cross-atten-
tion) is a module for semantic segmentation used in the CrossFeat architecture. It is 
employed to fuse features between the drug and side effect encoders. This module guides 
the filtration of transformer features and eliminates ambiguities in interactions between 
drugs and side effects. Let us denote the drug’s encoder as Edi and the side effect’s 
encoder as Esj . The second sublayer of the Edi performs cross-attention over the output 
of the first sublayers of Edi and Esj . Specifically, the queries are derived from the previous 
sublayer of Edi , and the keys and values are obtained from the first sublayer of Esj as 
shown in Fig. 2B. Similarly, the second sublayer of Esj performs cross-attention over the 
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Fig. 2 Schematic of the CNN and the cross-feature learning (feature-wise cross-attention) mechanism in the 
CrossFeat architecture. A An l × l dimension embedding matrix is passed through four convolutional layers, 
each consisting of a Conv2D, batch normalization, and ReLU activation function, followed by mean pooling 
to extract feature matrices. These feature matrices are then input into the transformer encoder. B Queries 
(Q) from the drug encoder and keys (K) from the side effect encoder are used to form the attention scores. 
Specifically, the queries are derived from the previous sublayer of the drug encoder, while the keys and values 
(V) are obtained from the first sublayer of the side effect encoder. Attention scores are calculated as the dot 
product of the queries and keys, which are then passed through a softmax function to generate the attention 
weights. These weights are subsequently multiplied by the values to produce the output. This cross-attention 
process enables the effective fusion of features between the drug and side effects. It enhances the ability of 
the model to capture the complex relationships between drugs and their side effects
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output of the first sublayers of Esj and Edi . Here, the queries come from the previous sub-
layer of Esj and the keys and values come from the first sublayer of Edi . All sublayers of 
Edi and Esj produce outputs with dimensions DEdi

 and DEsj
= p.

CrossFeat’s multi‑layer perceptron (MLP)

In the previous steps, we trained CNNs and transformers to generate embedding vec-
tors that described each drug, denoted by di , and each side effect, denoted by sj based on 
their similarities to other drugs and side effects. In this step, our objective was to learn 
latent representations for each drug and side effect by directly capturing vectors repre-
senting di and sj without relying on similarity information. Mol2vec vectors represent 
drugs and are projected onto q-dimensional representations for each drug using a two-
layer MLP and batch normalization. Similarly, word vectors represent each side effect 
and are projected onto q-dimensional space using a two-layer MLP and batch normali-
zation to create the corresponding latent representations.

Classifiers

The classifiers consist of a binary classifier to determine whether the side effect sj occurs 
owing to the drug di and a regression classifier to predict the frequency of sj occurring. 
The outputs from steps 3 and 4 were concatenated to create a classifier input vector with 
2p+ 2q dimensions. The binary classifier employs a sigmoid function. The output of 
the binary classifier was set to one if sj occurs and zero otherwise. The binary occur-
rence was determined based on the following thresholds when a predicted score x was 
obtained:

The output of the regression classifier is a continuous value between zero and five or 
higher if the output of the binary classifier is one.

Experimental design

We employed a five-fold cross-validation procedure on 73,700 samples (drug-side effect 
pairs) comprising the PS1 and PS2 datasets. We divided the folds by drug rather than by 
sample to ensure that the drugs in the held-out test fold were not detected in the held-
out train folds. Consequently, the folds did not contain the same number of samples. 
The average numbers of samples in the training and test folds were 58,960, and 14,740, 
representing approximately 80% and 20% of the total, respectively. The samples in the 
training fold were further split at a 4:1 ratio based on the samples. This division allocated 
80% of the training fold samples (referred to as the training set) for model training and 
the remaining 20%, referred to as the validation set to set the model hyperparameters 
and choose the best model per fold.

A grid search was performed to determine optimal hyperparameters for each fold of 
CrossFeat. The hyperparameter search space for CrossFeat is provided in Supplementary 
Table S1. We randomly selected 10 hyperparameter combinations and compared their 
performances on the validation set. During training, early stop endurance was counted if 
the performance on the validation set deteriorated compared to the previous state. The 

(2)Predictedbinaryoccurrence(x) =
{

1 if x > 0
0 if x = 0 .
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training process was concluded when early stop endurance reached 10. Subsequently, 
the performance of the test fold was evaluated using the best-performing hyperparam-
eter combination determined in the validation set.

We adopted the binary cross-entropy (BCE) loss function for the binary classification 
of side effects and we applied the L2 in Eq. 4 to our loss function for side effect frequency 
prediction. CrossFeat utilizes two Adam optimizers [33] to learn the predicted side effect 
occurrence probabilities ˆyi1 and predicted side effect frequency value ˆyi2 by minimizing 
the following two loss functions:

where N and N ′ represent the number of training samples in the PS1 and PS2 datasets 
and training samples in the PS1 dataset, yik and ˆyik represent the true and predicted val-
ues of sample i, respectively. Four metrics were employed to evaluate the performance of 
the model: area under the receiver operating characteristic curve (AUROC), AUPRC for 
binary classification, root mean squared error (RMSE) and mean absolute error (MAE) 
for regression classification.

Independent FAERS_SI dataset

We conducted additional experiments using the FAERS (FDA Adverse Event Report-
ing System) dataset, which includes reports of actual adverse events and medication 
errors submitted by patients to the Food and Drug Administration (FDA). The FAERS 
database relies on voluntary adverse event reports submitted by healthcare profession-
als, consumers, and manufacturers, including negative placebo effects. In contrast, the 
SIDER [20] database collects its information on drug side effects from the FAERS data-
set; however, it utilizes natural language processing to extract drug-side effect pairs from 
the drug package insert. For this case study, we collected FAERS reports from the fourth 
quarter of 2012 to the second quarter of 2023. The original data can be downloaded 
from  https:// fis. fda. gov/ exten sions/ FPD- QDE- FAERS/ FPD- QDE- FAERS. html. We 
included reports from healthcare professionals only, including physicians, pharmacists, 
nurses, dentists, and others. To enhance dataset reliability, we filtered the FAERS data-
set to include only the drugs, side effects, and drug-side effect pairs that had frequency 
information available in the SIDER database. Additionally, we excluded cases involving 
the simultaneous use of several drugs to ensure clarity in determining the cause of the 
side effects attributable to a specific drug.

The FAERS dataset we downloaded initially included 10,511,188 samples (drug-
side effect pairs), 34,486 drugs, 17,550 side effects, and 1,341,486 distinct drug-side 
effect pairs. After filtering by 2,962 SIDER side effects, we reduced the sample size to 
2,044,255. Further filtering by SIDER’s 932 drugs resulted in 808,783 samples. Finally, 
filtering by 59,333 SIDER drug-side effect pairs resulted in a dataset with 231,464 sam-
ples, encompassing 633 drugs, 1,395 side effects, and 19,319 distinct pairs. This dataset 

(3)BCE = − 1

N

N
∑

i=1

yi1 · log( ˆyi1)+ (1− yi1) · log(1− ˆyi1)

(4)L2 =
N ′
∑

i=1

(yi2 − ˆyi2)2,

https://fis.fda.gov/extensions/FPD-QDE-FAERS/FPD-QDE-FAERS.html
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will be referred to as FAERS_SI. Galeano’s study [15] used the SIDER 4.1 database, which 
was released in October 2015, to create frequency classes, covering an earlier period. 
FAERS_SI includes data from a later period, with additional drugs and side effects absent 
in the Galeano dataset, making it largely independent, though not completely. Specifi-
cally, 61.3% of side effects (855/1,395), 77.4% of drugs (490/633), and 3.6% of distinct 
pairs (690/19319) in FAERS_SI overlap with those in the Galeano dataset. For a detailed 
illustration of the process of generating FAERS_SI, see Fig. 3. The frequency of drug side 
effects was calculated by dividing the number of samples in which a specific side effect 
occurred with the use of a particular drug by the total number of samples using that spe-
cific drug. Finally, we quantified the calculated frequency of drug side effects on a scale 
of 1 to 5. The frequency value was determined based on the following criteria:

A frequency value of 0 was assigned to cases where there was no information or where 
no side effects were reported.

Results
Comparison of model performance

Most previously published methods utilize side effect frequency information [14–17, 34] 
or other drug-related prior knowledge, such as protein targets [18, 35], when creating 
input features (refer to Supplementary Table S2). However, our method aims to predict 
side effect frequencies for drugs without any prior information, including side effect 

(5)Frequency(x) =



















1 (Veryrare) if x < 0.0001
2 (Rare) if 0.0001 ≤ x < 0.001
3 (Infrequent) if 0.001 ≤ x < 0.01
4 (Frequent) if 0.01 ≤ x < 0.1
5 (Verycommon) if x ≥ 0.1.
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Fig. 3 FAERS_SI dataset creation process. The original FAERS dataset contains data from Q4 2012 to Q2 2023. 
First, the dataset was filtered to include only reports from healthcare professionals to enhance data reliability. 
Subsequently, it was further filtered to include only the drugs, side effects, and drug-side effect pairs present 
in the SIDER database. The SIDER database collects its information on drug side effects from FAERS up to 
2015 using natural language processing to extract data from drug package inserts. This resulted in the final 
FAERS_SI dataset
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frequency or other drug-related data. Therefore, the performance comparison focused 
on models capable of predicting side effect frequencies for new drugs with no prior 
information. In this comparison, SDPred [18], which utilizes only drug SMILES infor-
mation and side effect word and semantic information, excluding other features requir-
ing prior drug-related information, was considered as a base method. Additionally, ridge 
regression [36], XGBoost [37], and CrossFeat’s MLP module were compared with Cross-
Feat. For detailed comparisons between methods, please refer to the Discussion section. 
Furthermore, SDPred_loss was included as an additional comparison method. SDPred 
employs the total loss as the sum or product of two L2 losses, whereas SDPred_loss uti-
lizes two optimizations and two losses, BCE loss and L2 loss, similar to CrossFeat. The 
CrossFeat’s MLP specifically denotes the MLP component within the CrossFeat model. 
All comparing methods were trained using same input features and sample sizes per 
fold, except for CrossFeatMLP . CrossFeatMLP utilizes only drug mole2vec and side effect 
word vectors as input, as shown in Fig. 1 and section ‘CrossFeat’s Multi-Layer Percep-
tron (MLP)’. The comparison considered the exclusion of features related to unknown 
information on new drugs.

We performed a five-fold cross-validation on 73,700 samples from the PS1 and PS2 
datasets. The hyperparameter search space and selected best hyperparameters for each 
method are provided in Supplementary Table  S1 and Supplementary Tables S3-S10, 
respectively. Table  2 lists the predictive performance of each method. Lower RMSE 
and MAE values indicate a better prediction of side effect frequency, whereas higher 
AUROC and AUPRC values indicate a better prediction of side effect occurrence. 
CrossFeat outperformed all other methods in predicting the occurrence and frequency 
of the side effects of new drugs. It achieved a 0.06 improvement in AUROC and a 0.04 
improvement in AUPRC compared to SDPred in drug side effect occurrence prediction. 
The drug side effect frequency prediction demonstrates a 0.08 decrease in RMSE and a 
0.16 decrease in MAE compared to SDPred.

We also conducted an additional evaluation of our model using five-fold cross-vali-
dation with scaffold division. Scaffold division is a method to ensure that structurally 
similar compounds are grouped together during the training and testing phases, pro-
viding a more stringent test of the model’s ability to generalize to new chemical struc-
tures. For this evaluation, we identified 513 distinct scaffolds in our dataset and used 

Table 2 Performance comparison of experimented methods with five-fold cross-validation

Bold indicates the best result among all models listed in each metric

Method Binary classification Regression

AUROC AUPRC RMSE MAE

SDPred 0.76± 0.03 0.78± 0.02 0.94± 0.07 0.80± 0.06

SDPred_loss 0.80± 0.03 0.81± 0.02 0.91± 0.03 0.75± 0.02

Ridge regression 0.80± 0.01 0.81± 0.02 1.80± 0.08 1.52± 0.08

XGBoost 0.71± 0.02 0.79± 0.02 1.78± 0.09 1.52± 0.09

MLP 0.81± 0.01 0.81± 0.02 0.94± 0.03 0.77± 0.04

CrossFeatMLP 0.80± 0.01 0.81± 0.01 1.02± 0.03 0.74± 0.09

CrossFeat 0.82± 0.01 0.82± 0.01 0.86± 0.04 0.64± 0.03

CrossFeatScaffold 0.81± 0.02 0.81± 0.02 0.85± 0.03 0.63± 0.02



Page 12 of 23Baek and Lee  BMC Bioinformatics          (2024) 25:324 

them as the basis for the scaffold splitting. The results of this evaluation are summa-
rized in Table  2 as CrossFeatScaffold . Our findings indicate that CrossFeat maintains 
robust performance even under scaffold division, further validating its effectiveness 
in predicting drug side effect frequencies without prior frequency information.

Predictive performance across drug side effect frequencies

Frequency values for drug side effects were assigned on a scale of 1 to 5. Upon 
examining the distribution of these frequencies, we noted variations in sample sizes 
of the benchmark dataset across different frequency values. The sample sizes were 
3.2% for frequency=1 (1,190/36,850), 11.3% for frequency=2 (4,174/36,850), 27% for 
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frequency=3 (9,958/36,850), 47.3% for frequency=4 (17,434/36,850), and 11.1% for 
frequency=5 (4,094/36,850) (Fig. 4A).

We observed strong correlations (Pearson’s correlation coefficient [38] > 0.8) between 
prediction performance and frequency sample size using CrossFeat (see Fig. 4B and C). 
CrossFeat exhibited the highest prediction performance with RMSE values of 0.33 and 
0.52, and MAE values of 0.22 and 0.32, respectively when focusing on frequency=3 and 
frequency=4, which are characterized by relatively larger sample sizes. In contrast, the 
smallest sample size observed at frequency=1 resulted in the lowest prediction perfor-
mance, with an RMSE of 1.57 and MAE of 1.18. This highlights the sensitivity of the 
model to variations in sample size, particularly when dealing with infrequent side effects. 
In addition, the predicted frequency values vary across different actual frequency values 
for four randomly selected drugs (see Fig. 4D–G).

Ablation study

In this section, we performed an ablation study to understand the contributions of both 
structural components and individual features to the overall performance of our model. 
The ablation study examined the impact of removing structural components of the 
model and the effects of eliminating individual features.

First, we conducted experiments to evaluate the performance impact of removing 
different structural components of the CrossFeat model. By systematically removing 
components such as the CNN layers, transformer layers, and the MLP, we assessed the 
resulting changes in performance metrics. The results of these experiments are summa-
rized in Table 3.

The CrossFeatTransformer , CrossFeatCNN , and CrossFeatMLP models represent vari-
ations of the original CrossFeat model without the transformer encoder, CNN, and 
MLP architectures, respectively. Across all four metrics, CrossFeatTransformer exhibited 
the lowest performance with an RMSE of 0.89, an MAE of 0.75, AUROC of 0.79, and 
AUPRC of 0.79. The transformer module is expected to significantly contribute to Cross-
Feat, enabling the representation of drugs to learn the representation of side effects and 
vice versa, before concatenating the latent representations of drugs and side effects. 
In CrossFeatCNN , the CNN module showed the least influence on side effect occur-
rence prediction with AUROC of 0.80 and AUPRC of 0.81; however, it had the second-
highest influence on frequency prediction with RMSE of 0.89 and an MAE of 0.67. In 
CrossFeatMLP , the MLP module exhibited a more significant impact on the prediction 
of side effects, achieving the second-worst binary classification performance with an 
AUROC of 0.79 and AUPRC of 0.80. The absence of the MLP module resulted in the 

Table 3 Results of the structural components ablation study

Method Binary Classification Regression

AUROC AUPRC RMSE MAE

CrossFeatTransformer 0.79± 0.01 0.79± 0.01 0.89± 0.06 0.75± 0.01

CrossFeatCNN 0.80± 0.02 0.81± 0.02 0.89± 0.05 0.67± 0.03

CrossFeatMLP 0.79± 0.02 0.80± 0.01 0.87± 0.03 0.65± 0.03

CrossFeat 0.82± 0.01 0.82± 0.01 0.86± 0.04 0.64± 0.03
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unavailability of the mol2vec vector and the side effect word vector, both of which were 
used as inputs for the MLP. This likely led to a reduction in performance owing to infor-
mation loss. The optimal hyperparameters per fold, as determined by a grid search of the 
model are listed in Supplementary Tables S11-S13.

Second, we performed feature ablation experiments where each type of input feature 
was individually removed in the CrossFeat model. Specifically, if a drug feature was 
removed, the other drug feature was used twice to maintain the model’s structure. The 
same approach was applied to side effect features. The features examined included drug 
fingerprints, drug mol2vec embeddings, side effect semantic similarities, and side effect 
word vectors. The results of these experiments are presented in Table  4, where each 
value represents the mean performance metric ± the standard deviation.

When individual features were removed, the results showed a general decrease in 
AUROC across all feature ablations. For instance, the removal of drug fingerprints 
resulted in an AUROC of 0.802 and removing drug mol2vec embeddings resulted in 
an AUROC of 0.802. Similarly, removing side effect semantic similarity and side effect 
word vectors resulted in AUROC values of 0.797 and 0.804, respectively. This trend 
indicates that each feature plays a significant role in the side effect occurrence predic-
tion performance of the model. The AUPRC also decreased consistently when each fea-
ture was removed, further highlighting the importance of each feature in maintaining 
high precision-recall performance. The RMSE and MAE generally increased, indicating 
a drop in prediction accuracy for side effect frequencies when features were removed. 
For example, RMSE increased to 0.88 when drug fingerprints were removed and to 0.88 
when side effect semantic similarity was removed. The MAE increased to 0.65 when 
drug fingerprints were removed and to 0.67 when side effect semantic similarity was 
removed. However, removing the side effect word vectors slightly improved the RMSE 
to 0.85, although the corresponding MAE increased to 0.65. Removing drug mol2vec 
embeddings resulted in an RMSE of 0.86 and MAE of 0.64, indicating an overall nega-
tive impact. Overall, the ablation study underscores the importance of each feature in 
contributing to the model’s predictive performance and robustness. The optimal hyper-
parameters per fold are listed in Supplementary Tables S14-S17.

Variation of transformer encoder

CrossFeat’s transformer module, comprising the encoders Edi and Esj has an addi-
tional second sublayer added to the original transformer encoder. In the case of Edi , 
this second sublayer takes queries from its first sublayer, and keys and values from 
the first sublayer of Esj . This pattern is similarly applied to Esj , where the second 

Table 4 Results of the feature ablation study in CrossFeat

Method Binary classification Regression

AUROC AUPRC RMSE MAE

DrugFingerprint 0.802 ± 0.00 0.806 ± 0.01 0.88 ± 0.08 0.65 ± 0.04

DrugMol2vec 0.802 ± 0.00 0.812 ± 0.01 0.86 ± 0.02 0.64 ± 0.02

Side-EffectSemantic 0.797 ± 0.01 0.805 ± 0.02 0.88 ± 0.06 0.67 ± 0.02

Side-EffectWord 0.804 ± 0.01 0.811 ± 0.01 0.85 ± 0.05 0.65 ± 0.03
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sublayer receives queries from its first sublayer and obtains keys and values from 
the first sublayer of Edi . While the previous section ‘Predictive performance across 
drug side effect frequencies’ demonstrated the contribution of cross-feature learning 
to drugs and side effects, this section describes how the model’s performance varies 
when different features are crossed. Figure  4 illustrates the detailed architecture of 
encoders with diverse cross-feature learning. The cross-feature learning 1_1 (CL1_1) 
encoder has a second multi-head attention layer, taking queries and keys from its 
first sub-layer and the values from the input to the first sub-layer of another trans-
former encoder (Fig.  5A), whereas the CL1_2 encoder has a second sub-layer that 
takes queries from its first sub-layer and keys and values from the input for the other 
transformer encoder’s first sublayer (Fig. 5B). The CL2_1 encoder involves a second 
sublayer that takes queries and keys from its first sublayer and values from the output 
of the first sublayer of another transformer encoder (Fig. 5C). The configuration with 
no cross-feature learning is illustrated in Fig. 5D.

The performances of each encoder are listed in Table 5. The encoder with cross-fea-
ture learning exhibited superior performance when extracting information from the 
output of the first sublayer of another encoder compared to the information obtained 
from the input of the first sublayer. In addition, it performed better when taking keys 
and values from another encoder together, compared with taking values alone. The 
hyperparameters used in the model are listed in Supplementary Tables S18-S21.
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Additionally, to assess the impact of varying the number of heads in the transformer’s 
multi-head attention mechanism, we evaluated the performance of CrossFeat with dif-
ferent configurations. The results, shown in Supplementary Table S22, indicate the per-
formance metrics for binary classification (AUROC, AUPRC) and regression (RMSE, 
MAE) tasks. The results revealed that increasing the number of heads generally improves 
the RMSE and MAE, suggesting better performance in side effect frequency prediction. 
However, for side effect occurrence prediction metrics (AUROC and AUPRC), the per-
formance did not show a consistent improvement with an increasing number of heads. 
Thus, the optimal number of transformer heads appears to be a balance between these 
metrics. By incorporating multiple heads, the model can capture a richer set of features 
and relationships, although this does not linearly translate to better performance in all 
metrics, particularly for the side effect occurrence prediction metrics.

Case studies

To assess the efficacy of CrossFeat in predicting the side effects of new drugs without 
frequency information, we conducted experiments using the PS3 dataset. The model 
was trained on datasets PS1 and PS2 to predict the occurrence and frequency of the side 
effects in PS3 . Subsequently, three drugs were randomly selected: amiloride, nebivolol, 
and benazepril. We selected the top 10 side effects based on their predicted probabilities 
to verify the actual occurrence of side effects with high probability for these drugs. We 
subsequently investigated the evidence of side effects associated with these drugs, draw-
ing information from SIDER [20] (a database containing information on marketed drugs 
and their reported side effects), OFFSIDES [21] (a database containing the side effects of 
drugs not listed on the official FDA label but discovered subsequently), and published 
literature. Table 6 presents the top 10 most probable side effects of the three arbitrar-
ily chosen drugs, along with their predicted frequency values and supporting evidence. 
Most of the side effects exhibited evidence of their occurrence in the drug, indicating 
CrossFeat’s robust predictive ability for new drugs.

Evaluation with independent dataset

To assess the generalizability of CrossFeat across diverse datasets and evaluate its ability 
to predict drug side effect frequencies, we utilized the FAERS_SI dataset. The FAERS_SI 
dataset comprises 19,319 drug-side effect pairs, encompassing 633 drugs and 1395 side 
effects, as shown in Fig. 6A–C. The distribution of drug-side effect pairs based on fre-
quency values is presented in Fig. 6D. For a side effect to be categorized as “very rare” 
(frequency=1), it should occur at a frequency less than 0.0001 (Eq. 5). However, even the 

Table 5 Performance of cross-feature learning

Method Binary classification Regression

AUROC AUPRC RMSE MAE

CL1_1 0.80± 0.01 0.80± 0.01 0.95± 0.25 0.64± 0.03

CL1_2 0.80± 0.01 0.81± 0.02 0.91± 0.14 0.65± 0.03

CL2_1 0.80± 0.00 0.81± 0.02 0.84± 0.01 0.64± 0.01

No cross 0.80± 0.01 0.80± 0.02 0.94± 0.10 0.67± 0.02
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drug-side effect pair with the largest number of samples, 4735, did not meet the required 
10,000 samples for a frequency value of 0.0001. Consequently, none of the drug-side 
effect pairs had a frequency value of 1.

The results of the drug-side effect frequency prediction on the FAERS_SI dataset are 
presented in Table  7. The selected best hyperparameters for each method are provided 
in Supplementary Tables S23-S29. Across all methods, CrossFeat demonstrated superior 
performance compared to the other machine learning and deep learning models, as evi-
denced by lower RMSE and MAE values, as well as higher AUROC and AUPRC scores. 
CrossFeat achieved an AUROC of 0.86, an AUPRC of 0.87, an RMSE of 0.72, and an MAE 
of 0.57. In comparison, the MLP model achieved the highest AUROC of 0.87; however, 
it also had higher RMSE and MAE values (0.85 and 0.71, respectively) than CrossFeat. 
This indicates that while MLP had a slightly better AUROC, CrossFeat outperformed it 
in terms of AUPRC, RMSE, and MAE, highlighting its superior overall prediction accu-
racy and robustness. Additionally, the second-best model in terms of RMSE and MAE 

Table 6 Top 10 side effects for drugs

Drug Side effect Predicted
frequency

Occurrence
probability

Evidence

Amiloride Eye irritation 3.6819 0.9873 OFFSIDES

Mouth ulceration 4.0437 0.9799 OFFSIDES

Intracranial pressure increased 3.6772 0.9685 N/A

Torticollis 4.2679 0.9564 [39]

Hostility 4.3608 0.9537 OFFSIDES

Asthma 2.7385 0.9509 OFFSIDES

Hypomagnesaemia 3.7344 0.9327 OFFSIDES

Cerebral ischaemia 3.7624 0.9279 OFFSIDES

Renal tubular necrosis 2.6327 0.9236 OFFSIDES

peripheral ischaemia 3.7264 0.9227 OFFSIDES

Nebivolol Polyneuropathy 4.2915 0.9976 OFFSIDES

Hyperaemia 3.5683 0.9972 [40, 41]

Vaginal haemorrhage 4.0797 0.9961 OFFSIDES

Pruritus generalised 4.1951 0.9798 OFFSIDES

Eczema 4.3608 0.9569 OFFSIDES

Photopsia 3.0045 0.9505 OFFSIDES

Depressed level of consciousness 2.9673 0.9497 OFFSIDES

Hypersensitivity 4.2290 0.9479 SIDER/OFFSIDES

Pain of skin 2.9684 0.9472 OFFSIDES

basal cell carcinoma 2.6563 0.9411 OFFSIDES

Benazepril Application site burn 3.2536 0.9967 OFFSIDES

Impaired healing 3.9402 0.9852 OFFSIDES

Bradycardia 3.2199 0.9828 OFFSIDES

Neutropenia 4.8328 0.9817 SIDER/OFFSIDES

Fatigue 4.0944 0.9767 SIDER/OFFSIDES

Eythema multiforme 2.6895 0.9596 OFFSIDES

Aute respiratory distress syndrome 3.9755 0.9494 OFFSIDES

Hirsutism 3.6562 0.9328 N/A

Faecalith 3.1588 0.9299 OFFSIDES

Pyelonephritis 3.5185 0.9236 OFFSIDES
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was SDPred_loss, which achieved values of 0.74 and 0.61, respectively. CrossFeat out-
performed SDPred_loss by 0.05 in RMSE and 0.06 in MAE. The evaluation of our model 
on the FAERS_SI dataset demonstrated its superior performance compared to the base 
models.

Discussion
This study introduced CrossFeat, a novel model for predicting the occurrence and fre-
quency of drug side effects based on cross-feature learning. The integration of a CNN 
and transformer architecture coupled with a cross-feature learning mechanism enables 
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Table 7 Model performance in FAERS_SI dataset

Bold indicates the best result among all models listed in each metric

Method Binary classification Regression

AUROC AUPRC RMSE MAE

SDPred 0.83 ± 0.03 0.84 ± 0.02 0.81 ± 0.03 0.68 ± 0.02

SDPred_loss 0.85 ± 0.02 0.86 ± 0.01 0.77 ± 0.03 0.63 ± 0.04

Ridge regression 0.86 ± 0.01 0.85 ± 0.02 1.79 ± 0.04 1.49 ± 0.04

XGBoost 0.77 ± 0.01 0.84 ± 0.02 1.76 ± 0.04 1.42 ± 0.04

MLP 0.87 ± 0.01 0.87 ± 0.01 0.85 ± 0.05 0.71 ± 0.04

CrossFeatMLP 0.85 ± 0.01 0.86 ± 0.01 0.93 ± 0.06 0.86 ± 0.03

CrossFeat 0.86 ± 0.01 0.87 ± 0.01 0.72 ± 0.04 0.57 ± 0.02
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CrossFeat to effectively handle the challenging task of predicting drug side effects. The 
model demonstrates proficiency in predicting side effect occurrence and excels in esti-
mating the frequency of these occurrences, particularly for new drugs lacking prior fre-
quency information. The machine-learning paradigm adopted in CrossFeat presents a 
valuable alternative to traditional clinical trials. By leveraging the power of predictive 
modeling, CrossFeat offers a potential supplement to conventional approaches, pro-
viding insights into the occurrence and frequency of side effects without the need for 
extensive and time-consuming trials. This demonstrates the potential of the model for 
streamlining drug development processes.

A critical aspect of CrossFeat’s design lies in its emphasis on the efficient feature repre-
sentation of drugs and their side effects. The utilization of suitable drugs and side effects 
is critical to enhance the model efficacy and prediction precision [42, 43]. The model 
captures a more holistic understanding of their relationships by incorporating represen-
tations of individual drugs and side effects along with their interactions. The utilization 
of similarity matrices, mol2vec, and word vectors coupled with the CNN-transformer-
MLP architecture contributes to a comprehensive feature set that enhances the inter-
pretability and predictive capabilities of CrossFeat. In future work, we aim to explore 
methods to integrate the heterogeneous information of drugs and side effects into a 
unified space. Specifically, we are interested in leveraging network structures and atten-
tion mechanisms to learn from these relationships. Incorporating methods to effectively 
combine different types of data into a cohesive framework will provide a more nuanced 
understanding of drug side effects and improve the overall prediction accuracy. Tech-
niques that utilize network structures to capture complex interactions and dependencies 
have shown promise in other domains [42, 43], and we believe they can be effectively 
applied to our research. This integration will allow us to capitalize on the strengths of 
various data representations, resulting in a more robust and accurate predictive model.

In our study, we observed varying levels of prediction accuracy for different drugs and 
side effects. For example, the model performed well for drugs like Trovafloxacin (RMSE: 
0.72, Pearson correlation: 0.89, p-value < 0.05) and Ecallantide (RMSE: 0.66, Pearson cor-
relation: 0.71, p-value < 0.01), as well as side effects such as infarction (RMSE: 0.30, Pear-
son correlation: 0.81, p-value < 0.01), impaired glucose tolerance (RMSE: 0.47, Pearson 
correlation: 0.86, p-value < 0.05), and drug inefficacy (RMSE: 0.58, Pearson correlation: 
0.91, p-value < 0.05). These cases demonstrate the model’s robustness in accurately pre-
dicting the occurrence and frequency of side effects. However, the model showed poor 
performance for certain drugs and side effects. For instance, Epoprostenol (RMSE: 1.60, 
Pearson correlation: 0.13, p-value > 0.1) and Clobetasol (RMSE: 1.23, Pearson correla-
tion: 0.24, p-value > 0.1) were among the drugs with low prediction accuracy. Similarly, 
the side effects “oral pain” and “hepatic necrosis” exhibited high RMSE values (3.03 and 
2.47, respectively) and low Pearson correlation coefficients (0.28, p-value > 0.1 and 0.59, 
p-value < 0.1, respectively), indicating significant discrepancies between the predicted 
and actual values. Both successful and challenging prediction cases provide a clearer 
understanding of our model’s capabilities and limitations, guiding future improvements 
and refinements.
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Many studies have predicted drug side effect frequencies using known frequency 
information as input features. For example, Galeano’s model [15], MGPred [16], SDPred 
[14], DSGAT [17], and NRFSE [34] incorporated known side effect frequencies along 
with various drug properties, employing methods such as non-negative matrix factoriza-
tion, graph attention networks, and CNNs. In contrast, our study fundamentally differs 
from these approaches. The key distinction lies in the fact that our model, CrossFeat, 
does not incorporate known side effect frequency information as part of its feature con-
struction. Instead, CrossFeat is designed to predict side effect frequencies without rely-
ing on any prior frequency data, thus enabling a true cold-start scenario. This is achieved 
by leveraging a cross-feature learning approach that integrates features from drug and 
side effect encoders through a transformer-based architecture. Moreover, unlike previ-
ous methods, CrossFeat can predict side effect frequencies for new drugs without any 
prior knowledge of their interactions with specific side effects. This means that we not 
only lack information on the frequency of side effects but also have no data on whether 
the new drug causes any specific side effects. This level of prediction without pre-exist-
ing interaction data sets our model apart from existing approaches.

However, CrossFeat has some limitations. The uneven distribution of side effect fre-
quency values poses a challenge, particularly for less frequent occurrences. Of the 
36,850 samples with side effect frequency information, approximately 3% exhibited a fre-
quency of 1, 11% exhibited a frequency of 2, 27% exhibited a frequency of 3, 47% exhib-
ited a frequency of 4, and 11% exhibited a frequency of 5. The model’s performance is 
intricately tied to the sample size, with variations in prediction accuracy across different 
frequency levels. The RMSE for the smallest sample (frequency = 1) was 1.57 and the 
MAE was 1.18. For samples with frequencies 3 and 4, the RMSE is 0.33 and 0.52 and 
the MAE is 0.22 and 0.32, respectively. To address the imbalanced data issue, we applied 
the Synthetic Minority Over-sampling Technique (SMOTE) [44], which has been shown 
to improve performance in other studies [45, 46]. We oversampled samples with fre-
quency=1 to balance the dataset and improve prediction for the minor class. The appli-
cation of SMOTE resulted in the following performance metrics: AUROC: 0.79 ± 0.02, 
AUPRC: 0.79 ± 0.03, RMSE: 0.86 ± 0.03, and MAE: 0.66 ± 0.04. These results indicate 
that SMOTE did not enhance the performance of the model for AUROC and AUPRC, 
with both metrics slightly decreasing from 0.82 to 0.79. This suggests that while SMOTE 
balanced the dataset, it did not improve overall predictive performance in terms of rank-
ing positive cases (AUROC) and precision-recall balance (AUPRC). Additionally, RMSE 
remained consistent, while MAE slightly increased, indicating a higher average predic-
tion error for individual instances. These results highlight the complexity of addressing 
imbalanced data and show that SMOTE may not always lead to improved performance 
across all metrics.

Recently, computational methods to predict drug responses for cancer have been 
significantly advanced and used for drug repositioning [47–49]. As CrossFeat demon-
strated robustness in predicting side effect frequencies of drugs, the sequential applica-
tion of drug response prediction methods followed by CrossFeat can expedite the drug 
development process, improving both the efficiency and accuracy of discovering viable 
treatments.



Page 21 of 23Baek and Lee  BMC Bioinformatics          (2024) 25:324  

Conclusion
In this study, we introduced CrossFeat, a novel approach that uses cross-attention to 
predict the frequency of side effects for drugs without prior information. By integrat-
ing the knowledge of both drugs and side effects in the transformer module, CrossFeat 
achieves superior performance compared to existing prediction models.

The ability to accurately predict the incidence of adverse drug reactions has immense 
potential for improving drug safety practices for patients and pharmacists. By providing 
insight into the likelihood and severity of side effects, our model can facilitate informed 
decision-making during drug prescription and administration, ultimately minimizing 
the risks associated with drug use.
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