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A B S T R A C T

The proliferation of electric vehicle (EV) adoption strains low-voltage distribution networks, particularly in
aggregated charging scenarios, prompting utility companies to incentivize charging aggregators for optimizing
load balancing within thermal limits. These aggregators utilize machine learning algorithms to understand
electricity price signals and orchestrate the optimization of the EV charging process. However, conventional
machine learning approaches fall short when dealing with the dynamic and volatile nature of electricity
prices, emphasizing the necessity for advanced ensemble models. This paper introduces a novel Deep-Weighted
Ensemble Model (DWEM) rooted in standard and stacked Long Short-Term Memory (LSTM) networks designed
for wholesale electricity price forecasting, to manage the EV charging at the aggregator level. The ensemble
development process involves developing an architecture that highlights the significance of the DWEM
model in supporting aggregators for the charging optimization of EVs. The charging optimization problem
of aggregated EVs is formulated, and the heuristic mechanism is systematically presented, evaluating various
weight configurations, and selecting those characterized by the highest levels of accuracy to comprise the
ensemble model. Moreover, we incorporated a standard deviation mechanism to evaluate the impact of
the proposed DWEM on forecasting accuracy, mean squared error, and mean absolute error across various
standard deviation levels. We leveraged a publicly available Houston electricity dataset and performed a
detailed data engineering mechanism, accounting for data both with and without outliers. Subsequently,
we applied the proposed DWEM to this dataset and conducting three types of comparative analysis: (a)
evaluating model performance in terms of accuracy, mean square error, and mean absolute error; (b) assessing
aggregator charging analysis focusing on charging load and cost; and (c) analyzing computational complexity
and execution time. The simulation results demonstrated a improvement in accuracy and reduction in charging
load and cost compared to state-of-the-art methods, while maintaining competitive computational complexity.
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1. Introduction

1.1. Background study

The current transportation sector, primarily reliant on fossil fuels
and responsible for approximately 15.00% of global energy-related
emissions, where electric vehicles (EVs) are poised to play a pivotal
role in enabling the decarbonization of road transport [1]. In contrast to
conventional fossil-fueled internal combustion engine vehicles (ICEVs),
EVs offer various advantages, including but not limited to zero tailpipe
emissions, independence from petroleum reliance, enhanced fuel effi-
ciency, reduced maintenance requirements, and an enhanced driving
experience characterized by improved acceleration, noise reduction,
and the convenience of home and opportunity for recharging [2].
Furthermore, considering the constrained availability of alternative
options for liquid fossil fuels, EVs emerge as a viable avenue for
mitigating overall greenhouse gas (GHG) emissions and facilitating the
decarbonization of on-road transportation, particularly when charged
with electricity from clean sources [3]. Consequently, the transporta-
tion landscape is rapidly evolving, witnessing a growing acceptance
of both plug-in hybrid electric vehicles (PHEVs) and battery electric
vehicles (BEVs), heralding an anticipated widespread integration of EVs
on roadways in the foreseeable future [4]. For instance, the global EV
market has witnessed remarkable growth, surging from 0.72 million
units in 2015 to 4.79 million units by 2019 [5]. Projections indicate
a substantial future expansion, with the number of EVs on the road
expected to surge by an impressive 36%, reaching an estimated 245
million by the year 2030 [6].

This trend underscores the accelerating adoption and promising tra-
jectory of EVs worldwide, which is a pivotal shift towards sustainability
and addressing various environmental concerns [7]. The trajectory
of growing EV numbers directly contributes to mitigating challenges
associated with traditional vehicles, notably reducing emissions that
contribute to air pollution and climate change [8]. Furthermore, the
quiet operation of EVs compared to traditional vehicles addresses the
issue of noise pollution, particularly in urban environments [9]. The
lower operational costs associated with EVs, including reduced fuel ex-
penses and maintenance requirements, contribute to economic sustain-
ability [10]. Moreover, recognized for their environmental friendliness,
low fuel costs, safety, reliability, compact design, and lightweight con-
struction, EVs also serve as distributed storage, supporting power grids
and microgrids, particularly during peak demand, through innovative
Vehicle-to-Grid (V2G) technology.

1.2. Motivation

However, the rapid increase in EV numbers, coupled with their
large-scale penetration, imposes a significant burden on the power
grid due to additional power demand [11]. This influx may lead to
transformer overloads, feeder congestion, circuit faults, and overall grid
instability, posing challenges to the power supply infrastructure [12].
The rise in EV charging poses substantial challenges to electricity
power infrastructure, exerting influence on overall power demand and
altering its shape, particularly during peak demand periods [13]. Given
the unanticipated increase in electric demand has profound impacts
on electricity generation, transmission, and distribution infrastructures
and there is a pressing need for coordinated control of EV charging
loads at the distribution level to effectively manage and mitigate these
impacts [14]. The power grid incentivizes energy aggregators to en-
gage in demand response, enabling them to manage and shift their
charging loads from on-peak to off-peak periods, leveraging electricity
prices and the dwell time of EVs while adhering to grid operational
constraints [15]. In most cases, the utility companies offer diverse
tariff structures, including peak, mid-peak, and off-peak rates within
a time-of-use (TOU) tariff system, providing fixed prices for specific

time intervals [16]. However, while TOU fixed rates and timing-based
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tariff systems are effective for controlling individual EV charging at
residential premises, they pose challenges. The awareness of individual
customers about low-peak timings can lead to a herding problem, as
they may rush to charge their EVs during those periods, making TOU
fixed rates and timing-based tariff systems less suitable for aggrega-
tors [17]. In the pursuit of optimizing the aggregated charging of EVs,
aggregators find it imperative to possess advanced insights into pricing
dynamics. Consequently, they employ machine learning algorithms to
understand electricity price signals, enabling them to coordinate and
optimize the EV charging process [18]. Given the inherent dynamic
and volatile nature of electricity prices, there is an imperative for the
development of advanced ensemble models [19]. Motivated by the ex-
igencies of optimization and the deficiencies observed in conventional
ML methodologies, we identify a knowledge gap within existing ML
models.

1.3. The importance of ML and knowledge gap

The efficiency of charging control by aggregators is highly depen-
dent on advanced knowledge of electricity prices [20]. Price forecasting
serves as an essential tool, enabling aggregators to optimize their
participation in demand response programs. This, in turn, allows them
to effectively manage charging loads while meeting the requirements of
EV users and maximizing overall benefits [21]. Considering the fluctu-
ating nature of electricity prices, traditional statistical methods, which
often rely on average cases, prove unsuitable for accurately forecasting
the dynamic electricity price variations [22]. As a result, these methods
may not provide the precise price knowledge essential for aggrega-
tors [23]. In contrast, ML algorithms excel at discerning intricate price
patterns, offering energy aggregators nuanced pricing information [24].
This capability plays a pivotal role in efficiently managing charging
loads at the aggregator level, contributing to enhanced system effi-
ciency and adaptability [25]. Electricity prices are characterized as time
series data and present challenges for accurate forecasting due to their
intricate and fluctuating nature based on temporal dependencies [26].
Ensemble Long Short-Term Memory (LSTM) models emerge as critical
tools in managing the complexities of such price variations and exhibit
superior performance in accurately forecasting price patterns compared
to simplified LSTMs, ML-based regression, and other deep learning
models [27]. Ensemble LSTM models represent a specialized form of en-
semble learning, utilizing multiple LSTM networks to collectively make
predictions [28] where the LSTM is a recurrent neural network (RNN)
architecture designed to capture and learn long-term dependencies in
sequential data [29]. The ensemble strategy involves training diverse
LSTM models with varied initializations or architectures and then
combining their predictions to enhance overall performance [30].

The challenge in constructing ensemble LSTM models lies in de-
termining optimal weights for each individual model within the en-
semble, where the weights dictate the contribution of each model
to the final prediction [31]. The process of finding optimal weights
entails minimizing a loss function that quantifies the disparity be-
tween the ensemble’s predictions and the actual outcomes. However,
achieving precise and accurate optimal weights in ensemble LSTM
models is challenging as it involves maintaining effective contribution
factors from each model within the ensemble, striking a delicate
balance for accurate predictions [32]. The problem can be addressed
through the utilization of metaheuristic algorithms such as Genetic
Algorithms (GA) [33], Particle Swarm Optimization (PSO) [34], Ant
Colony Optimization (ACO) [35], and Simulated Annealing (SA) [36].
However, these metaheuristic algorithms rely on population-based
search strategies that leverage mechanisms of exploration and ex-
ploitation [37]. They are designed for general optimization purposes
and require adaptation to address domain-specific problems effec-
tively [38]. Consequently, they are capable of extensively exploring
the search space rather than converging on a single domain-specific

solution [39]. In contrast, heuristic algorithms are tailored to provide
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solutions specific to a given domain, making them simpler and less
complex by design [40].

Moreover, EV optimization is carried out using day-ahead load and
price profiles [17,41], based on the assumption that the current day’s
patterns will closely resemble those of the previous day. Given the
electricity consumption and prices are typically influenced by weather
conditions, this assumption holds true only when there is consistency
in weather patterns [42]. However, it fails to provide accurate results
for optimal consumption in the event of sudden and drastic changes in
weather. For instance, while the previous day may have been sunny,
a sudden heavy rain the next day can significantly impact consump-
tion patterns [43]. To bridge the existing knowledge gap this paper
introduces a Deep-Weighted Ensemble Model (DWEM) for wholesale
electricity price forecasting and establishes a heuristic mechanism for
determining optimal weights within the ensemble model. Moreover,
the developed DWEM is utilized to schedule the aggregated EVs for
reducing the charging load and cost.

1.4. Objectives and contribution

The primary goal of this study is to empower EV charging aggre-
gators by providing them with an advanced knowledge framework.
The aim is to optimize their revenue generation while effectively
meeting the specific requirements of EV charging. To address this, the
research formulates the EV charging problem from the aggregator’s
perspective and introduces a comprehensive Deep-Weighted Ensemble
Model tailored for accurate forecasting of Wholesale Electricity Prices.
This model leverages advanced techniques to enhance the precision and
reliability of electricity price predictions, thereby assisting aggregators
in making informed and strategic decisions for EV charging operations.
Our contributions can be summarized in three key aspects.

• We presented a novel Deep-Weighted Ensemble Model for whole-
sale electricity price forecasting, with the aim of optimizing EV
charging at the aggregator level. A detailed charging architec-
ture, emphasizing the significance of the proposed DWEM, is
presented, and the problem of aggregated charging for EVs is
formulated. Leveraging a carefully formulated representation of
wholesale electricity prices, our approach employed both stan-
dard and stacked Long Short-Term Memory networks as build-
ing blocks of the proposed deep-weighted ensemble model. The
ensemble paradigm was strategically used to harness the com-
plementary strengths of diverse models, and the deep-weighting
mechanism ensured an adaptive aggregation of predictions.

• In our ensemble construction process, we introduced a mecha-
nism for determining optimal weights, utilizing a heuristic ap-
proach, which evaluated a diverse range of weight configurations,
assessing each configuration’s accuracy. The heuristic method
employed a systematic exploration of the weight space, consid-
ering various combinations to identify those characterized by
the highest levels of accuracy. This selection process employed
ensures that only the most precise configurations are incorporated
into the ultimate ensemble model. Through the implementation
of this heuristic mechanism, our contribution not only bolsters
the resilience of the ensemble but also establishes a systematic
approach to determining weights and is pivotal for the precision
and dependability of the wholesale electricity price forecasting
model, especially in the context of optimizing electric vehicle
charging at the aggregator level.

• We implemented the proposed DWEM on a publicly available
dataset sourced from the Electric Reliability Council of Texas
market for the Houston region. To enhance the suitability of the
dataset, we conducted a detailed data engineering process, incor-
porating a correlation matrix for feature selection and employing
one-hot encoding to handle various label features. Subsequently,

our developed model was applied to this refined dataset, and we
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conducted three types of analysis: (a) evaluating model perfor-
mance in terms of accuracy, mean square error, and mean abso-
lute error; (b) assessing aggregator charging analysis focusing on
charging load and cost; and (c) analyzing computational complex-
ity and execution time. The results are benchmark against com-
paring with those obtained from state-of-the-art models (i.e., XG-
Boost, Light Gradient Boosting, Linear Regression, multivariate,
standard LSTM, and stack LSTM. Moreover, the charging load
and cost analysis are evaluated against the cutting-edge UCC, SR,
STOU, MTOU, TLDCA, CCM, and HCS followed by statistical and
computational complexity analysis.

1.5. Paper organization

This paper is structured into five sections. Section 2 reviews related
work, emphasizing the state-of-the-art in charging optimization of EVs.
In Section 3, we elaborate on the methodology employed for the
Deep-Weighted Ensemble Model for wholesale electricity price, en-
compassing different models, the architecture of the proposed DWEM,
problem formulation, developed algorithms, and the heuristic method
for obtaining optimal weights. Section 4 delves into a comprehensive
exploration of the experimental analysis, covering dataset exploration,
performance criteria, and comparative studies of results in various sce-
narios. Finally, Section 5 concludes the study and delineates potential
future directions for this research.

2. Related work

With the proliferation of EVs and their consequential impact on
the electric power generation, transmission, and distribution systems,
researchers have increasingly directed their attention to the challenges
posed by the substantial load induced by EV charging [44]. This
has prompted a surge in scholarly exploration, leading to a compre-
hensive examination of the electric charging load predicament across
private, semi-public, and public charging infrastructures in recent lit-
erature [45].

In addressing the divergent needs of the power grid, which seeks
to minimize charging load, and EV users, who prioritize reducing
both charging and waiting times, the authors in [46] devised a fuzzy
inference-based mechanism. This approach is designed to optimize
the charging and waiting times for a collective group of EVs within
a parking lot while concurrently accommodating the constraints set
by the power grid. The authors proposed a two-stage bi-layer game
charging optimization model in [47] to address the non-coordination
among a network operator, a distributed generation operator, and
a charging agent. The first stage utilized a dynamic virtual price-
based demand response model for pre-optimizing charging loads, lead-
ing to a significant reduction in energy abandonment and net load
fluctuation. In the second stage, a bi-layer Stackelberg game model
was introduced, allowing participants independent decision-making
and achieving optimal comprehensive benefits in a multi-participant
charging system. In our earlier study [48], we addressed challenges
related to fixed-timing EV charging by developing a Charging Cost
Optimization Algorithm (CCOA). This heuristic algorithm learns real-
time price patterns and EV information to optimize charging loads and
costs in residential settings. Simulation experiments were conducted
to compare various charging scenarios, including both individual and
aggregated charging models. These scenarios were contrasted against
uncoordinated charging, fixed-rate charging, and coordinated time-
of-use charging methodologies. The evaluation criteria centered on
assessing the impact on the power grid in terms of potential overloading
and analyzing the associated charging costs. The study [49] introduced
a cooperative energy management strategy that facilitates the sharing
of energy among end-users, particularly focusing on intelligent charg-
ing and discharging of Electric Vehicles (EVs) for Vehicle-to-Anything

(V2X) and Anything-to-Vehicle (X2V) modes. The proposed method
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employed a Mixed-Integer Programming (MIP) approach and utilized
a robust Gurobi optimizer within a generic framework for Cooperative
Power Management (CPM). The CPM ensured a target state of charge
(SoC) at departure for all vehicles without causing a rebound peak in
total grid power, even in the absence of photovoltaic power. The model
includes two methods: the first involving one-way power flow and the
second introducing two-way power flow, enabling vehicle-to-vehicle
or vehicle-to-loads modes. Their analysis demonstrated the model’s
effectiveness in creating a robust and efficient charging and discharging
schedule for multiple EVs, aligning with the sharing economy concept,
reducing peak power demands, and enhancing user comfort.

In an other study [41], we introduced a Two-Layer Decentralized
Charging Approach (TLDCA) using fuzzy data fusion to optimize the
charging cost of residential EVs. The TLDCA addressed a fuzzy objective
function through fuzzy integer linear programming. This approach con-
sidered multiple day-ahead price patterns and state-of-charge inputs,
determining the optimal charging schedule to reduce costs and peak-
to-average ratio. Simulations demonstrated the TLDCA’s effectiveness
in comparison to uncoordinated charging, standard-rate charging, and
time-of-use charging schemes. The Two-Layer Decentralized Charging
Approach (TLDCA) was improved with the development of a hybrid co-
ordination scheme (HCS) [17] for EV charging in residential areas. This
improvement addressed challenges associated with herding and user
satisfaction in both centralized and decentralized charging approaches.
The HCS incorporated a fuzzy inference mechanism to optimize peak
load, mitigate herding issues, and reduce charging costs. Utilizing
the IEEE 34 bus system for two case studies, the proposed hybrid
coordination scheme demonstrated superior performance compared
to alternative charging strategies, including uncoordinated charging,
standard-rate charging, time-of-use charging, and two-layer decentral-
ized approaches. Considering the impact of aggregated charging loads
on the distribution network, the optimization of charging loads in a
smart parking lot becomes crucial and the implementation of efficient
charging strategies in smart parking lots is essential for maintaining
grid stability and ensuring user satisfaction. It plays a significant role
in reducing overall aggregated charging loads while satisfying the
charging demands of EV users at the time of their departure. Con-
sidering the impact of aggregated charging loads on the distribution
network, optimizing charging loads in a smart parking lot is crucial.
Numerous studies have implemented effective charging strategies [50]
that take into account uncertain user behavior, including arrival and
departure patterns, battery capacities, and required energy for the next
trip based on distance [51], as well as grid power availability [52].
These approaches ensured grid stability and user satisfaction by sig-
nificantly contributing to reducing overall aggregated charging loads
while meeting the charging demands of EV users upon departure.

In both residential and aggregated parking lots, these studies [17,
41,44–52] have primarily considered day-ahead price patterns by as-
suming that the current day’s prices follow the same pattern as the
previous day. However, in real-world scenarios, prices are dependent
on the electric load pattern and may differ from the previous day [53].
Consequently, these studies may lack robustness in optimizing charging
costs and loads and necessities for predictive machine learning-based
models that can adapt to dynamic price patterns and provide more ac-
curate and responsive optimization in response to real-time variations
in electricity prices and load patterns [54].

To fill-up the gap, in a recent study [55], a multi-bi-forecasting
system is presented, incorporating multivariable and multi-input multi-
output structures. The developed system adeptly manages high-
frequency electricity price and load data, employing a multivariable
arrangement for forecasting and a multi-input multi-output structure
featuring three member models. The achieved results, obtained through
a unified strategy leveraging the multi-objective Salp swarm algorithm,
showcase superior forecasting capabilities for both point and interval
forecasting. This is substantiated by quantitative assessments conducted

in the Australian electricity market. The study in [25] introduced a
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data-driven demand-side management approach for a solar-powered EV
charging station (CS) connected to a microgrid. Their approach lever-
aged the station to address peak demand by compensating for energy
requirements, reducing reliance on conventional sources. Real-time
data from PV power stations, commercial and residential loads, and
EVCSs were used for simulations. A deep learning approach was devel-
oped for energy supply control and off-peak hour charging, while two
machine learning methods were compared for energy storage system
state of charge estimation. The 24-hour case study demonstrated that
the EVCS effectively compensated for peak demand. Amid the growing
adoption of EVs, the research outlined in [56] addresses the need
for effective charge management systems to anticipate peak loads in
charging infrastructure. The study evaluates multiple machine learning
models, emphasizing the superior performance of LSTM in optimizing
peak voltage, reducing power losses, and improving voltage stability by
compressing the load curve. These outcomes contribute to minimizing
billing costs, showcasing the effectiveness of the proposed machine-
learning-based approach. In response to the challenges posed by global
economic trends and sharp fluctuations, the study [57] focused on pre-
dicting energy futures prices. The proposed multiscale model integrates
a decomposition-ensemble approach with a subcomponents clustering
method, allowing the derivation of subseries with different frequencies
from the decomposed energy futures price series. This integration aims
to enhance the feasibility of energy futures prediction. The ensemble
model incorporates both linear model forecasts for linear component
trends and machine learning methods for predicting nonlinearity. The
study conducted in [58] introduced a hybrid model combining Con-
volutional Neural Network (CNN) and LSTM for daily electricity price
forecasting in the Iranian electricity market. The primary objective was
to provide an accurate estimation of energy prices during peak hours,
enabling precise planning and revenue maximization for hydropower
generation. The model underwent testing using hourly data spanning
the period from 2020 to 2021 and was compared against a multivariate
linear regression model. The results indicated that the proposed hybrid
model exhibited superior accuracy in electricity price forecasting com-
pared to the multivariate linear regression model. The research [59]
centered on utilizing the XG Boost (XGb) and Light Gradient Boosting
Model (LGBM) models to predict electricity prices in the Integrated
Single Electricity Market (ISEM) for energy market trading in Ireland.
Eight novel technical indicators were derived from hourly electricity
price data collected between February 2019 and November 2019.
The study sought to evaluate whether incorporating these technical
indicators as inputs could improve the performance of the XG Boost
model. The outcomes demonstrated that the proposed technical in-
dicators effectively contribute to accurate predictions of electricity
prices, highlighting their efficacy in forecasting. The study in [60]
investigated the efficacy of Multivariate (MRV)-LSTM in forecasting
electricity prices, underscoring the significance of considering season-
ality. The research challenges the belief that intricate architectures
like MRV-LSTM are indispensable for incorporating seasonal behavior,
demonstrating competitive performance with simpler models. In a
multi-year examination of the German electricity market, the proposed
neural networks with an embedding layer surpassed MRV-LSTM and
time-series benchmark models in short-term price forecasting, show-
casing their practical utility and offering potential economic insights.
The study in [61] introduced a Multiple Linear Regression (MLR)
method for electricity price forecasting, emphasizing the consideration
of various predictors to minimize the mean absolute percentage error.
Conducted on training data from September 2018 to September 2019
in the day-ahead electricity market in Turkey, the research highlighted
the crucial role of lagged electricity prices (previous day, one week, and
lagged moving average prices) in achieving precise price estimation.
Additionally, the inclusion of natural gas, oil, and coal prices, among
other coefficients, contributed to enhanced result accuracy. The study

emphasized the importance of training data length in reducing error
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proportions and noted comparable error rates to regular regression
methods and dynamic regression models in electricity price forecasting.

All these studies employ either single models [25,55,56] or hy-
brid models [57–61]. The single models often struggle to capture the
temporal fluctuations in electricity prices, while the hybrid models
lack exploration of coupling mechanisms, rendering them unsuitable
for aggregator-level price prediction. Given the broad and complicated
nature of ensemble learning, and considering the weight determi-
nation problem as a higher-level issue, the weights can be deter-
mined through metaheuristic algorithms such as GA [33], PSO) [34],
ACO [35], and SA [36]. However, metaheuristic algorithms, with their
complex processes of initialization, evaluation, suboptimal selection,
local search, replacement, iteration, and improvement, tend to explore
the search space broadly [37]. This often results in generalized solu-
tions rather than those tailored to specific domains [38]. Consequently,
these complexities can render metaheuristic algorithms inadequate for
domain-specific tasks [39] like price forecasting. Their performance is
questionable, exposing a notable research gap in providing adequate
foresight into electricity prices for effective management and control
of EVs at both low-voltage and aggregator levels. On the other hand,
heuristic algorithms are simpler in design and more focused on provid-
ing domain-specific solutions [40]. This simplicity makes them more
feasible for determining the optimal weights in the specific context
of electricity price forecasting. This, in turn, supports aggregators in
effectively coordinating the charging load and costs of electric vehicles.

3. Methodology of the proposed approach

In this section, we introduce the DWEM based on both standard
and stacked LSTM models. To underscore the significance and contri-
bution of the proposed DWEM, we commence by scrutinizing various
individual models, such as XGBoost, Light Gradient Boosting, Lin-
ear Regression, Facebook Prophet Model, and Multivariate LSTM. We
elucidate their key characteristics and applications in energy fore-
casting, discussing both strengths and limitations. Subsequently, we
delve into the DWEM system models, offering detailed representations
of the DWEM architecture. The discussion encompasses the heuristic
mechanism for determining optimal weights, which is instrumental in
integrating the standard and stacked LSTMs within the DWEM.

3.1. Machine learning algorithms for energy sector

First, we examine the single-based classifiers and then evaluate
the obtained results with ensemble techniques, which give random
outcomes compared to the single classifiers. To improve the accuracy
and performance of these ML classifiers, we use ensemble methods
in which multiple models called base models are used effectively to
produce the optimal model.

3.1.1. Extreme gradient boosting model
Extreme Gradient Boosting (XGBoost) is a powerful and widely used

machine learning algorithm known for its efficiency, scalability, and
high performance [62]. It falls under the category of ensemble learning,
combining the outputs of multiple weak learners to create a robust
predictive model various tasks in the energy sector including energy
consumption prediction, load forecasting, and anomaly detection [63].
The objective function in XGBoost consists of a loss function and a
regularization term as represented in Eqs. (1)–(2) [64].

Obj =
𝑛
∑

𝑖=1
𝐿(𝑦𝑖, 𝑦̂𝑖) +

𝐾
∑

𝑘=1
𝛺(𝑓𝑘) (1)

𝛺(𝑓𝑘) = 𝛾𝑇 + 1
2
𝜆

𝑇
∑

𝑗=1
‖𝑤𝑗‖

2 (2)

where 𝑛 denotes the number of training instances, 𝐿 represents the
loss function that gauges the disparity between the predicted 𝑦 and the
 a
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actual target, 𝐾 signifies the number of weak learners (trees), and 𝛺(𝑓𝑘)
orresponds to the regularization term. In Eq. (2) 𝛾 is the regularization
arameter, 𝑇 is the number of trees, 𝜆 is the regularization term, 𝑤𝑗
epresents the weights of the individual trees.

In the energy sector, XGBoost finds applications in predicting en-
rgy consumption, electric load forecasting, and anomaly detection.
ts versatility, speed, and capability to handle their relationships make
t a valuable tool for these applications. However, for efficient iden-
ification of optimal split points using a weighted quantile sketch,
he algorithm must explore a diverse set of potential splits across the
umulative distribution of features [65]. This poses challenges when
ealing with complicated temporal fluctuations in price relationships.

.1.2. Light gradient boosting model
Light Gradient Boosting Model (LightGBM) is a machine learning

ramework widely applied in the energy sector for tasks such as pre-
icting energy consumption, electric load forecasting, and anomaly
etection [66]. Its notable merits include exceptional efficiency and
peed, making it well-suited for handling large datasets and real-
ime processing, common challenges in energy-related applications.
ightGBM’s effectiveness lies in its histogram-based learning approach,
acilitating efficient selection of optimal split points, coupled with
obust support for parallel and distributed computing, rendering it
scalable solution for handling extensive datasets in various energy

ector applications [67]. Despite its strengths, LightGBM displays sen-
itivity to hyperparameter tuning, underscoring the importance of at-
entive parameter selection, and its intricate nature may pose chal-
enges to interpretability, a crucial factor in energy applications where
omprehending predictive factors is essential [68].

.1.3. Linear regression model
Linear regression (LR) is a statistical technique employed to model

he relationship between a dependent variable (target) and one or more
ndependent variables (multiple features) by fitting a linear equation
o the observed data with the objective function of minimizing the
um of squared differences between the observed (𝑌𝑖) and the predicted
alues (𝑌𝑖), as expressed by Eqs. (3) and (4) [69].

= 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 +⋯ + 𝛽𝑛𝑋𝑛 + 𝜖 (3)

inimize
𝑚
∑

𝑖=1
(𝑌𝑖 − 𝑌𝑖)2 (4)

here, 𝑌 denotes the dependent or target output variable, while
1, 𝑋2,… , 𝑋𝑛 represent the independent input variables (features). The

erm 𝛽0 corresponds to the intercept, and 𝛽1, 𝛽2,… , 𝛽𝑛 are the coeffi-
ient parameters associated with the respective independent variables.
oreover, 𝑖 = {1, 2,… , 𝑚} are the data points, and 𝜖 signifies the error

erm.
The LR stands out for its simplicity, and its interpretability is a key

sset. The model’s coefficients provide clear and meaningful insights,
epresenting the specific change in the dependent variable for a one-
nit change in the associated independent variable, while keeping other
ariables constant [70]. Nonetheless, the non-linear relationship arising
rom the dependency of electricity prices on temporal fluctuations in
lectricity load poses challenges in accurate parameter estimation due
o the model’s sensitivity to outliers [71]. Consequently, the limitation
o linear relationships hinders its capacity to capture intricate, non-
inear associations in the energy sector, prompting the need for more
dvanced models.

.1.4. Facebook’s prophet model
The Prophet model is a forecasting tool developed by Facebook for

ime series data which is designed to handle daily observations that dis-
lay patterns on different time scales [72]. The model formulates time
eries data as the sum of three main components: trend, seasonality,

nd holidays as articulated in Eq. (5) [73]. This uses an additive model,
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and each component is modeled independently, making it effective for
capturing various patterns in time series data.

𝑦(𝑡) = 𝑔(𝑡) + 𝑠(𝑡) + ℎ(𝑡) + 𝜀𝑡 (5)

here 𝑔(𝑡) represent the trend component, 𝑠(𝑡) capture the seasonality,
(𝑡) is the holiday effect, and 𝜀𝑡 is the error term.

This model excels in automatically handling diverse seasonality
atterns, robustly managing missing data and outliers, and features
user-friendly interface with minimal parameter tuning, along with

he ability to include impactful holiday information, contributing to its
ccessibility and versatility in efficiently handling large datasets [74].
owever, the Prophet model, while powerful for specific time series
ata, has limited flexibility, making it less adept at capturing intricate,
on-linear relationships within the dataset [75]. Consequently, it may
ot be the optimal choice for short-term energy price predictions.

.1.5. Multivariate long short-term memory network
A Multivariate Long Short-Term Memory Network (LSTM) is a

ubtype of recurrent neural network (RNN) specifically designed for
rocessing multivariate time series data, enabling it to model and
redict sequences with multiple input features [76]. This distinguishes
t from traditional LSTMs, which are univariate and operate on sin-
le sequences. This architecture is particularly useful for time series
ata where each timestamp has several associated variables, allowing
he network to capture complex temporal dependencies and relation-
hips across the multivariate input data [77]. The key advantage of
ultivariate LSTMs lies in their ability to simultaneously consider
ultiple features, making them well-suited for tasks such as time

eries forecasting, where predictions depend on various interrelated
ariables [78]. However, the shortcomings of Multivariate LSTMs in in-
erpreting learned patterns and understanding the contributions of each
nput feature become intricate when applied to temporal fluctuated
ime series electricity prices, posing challenges in gaining meaning-
ul insights into the factors influencing the temporal fluctuations in
lectricity prices [79].

.2. Proposed deep-weighted ensemble model

In this section, we explore the development of the proposed DWEM,
everaging the concept of weights to integrate standard and stacked
STMs, aiming to enhance the accuracy of predicting temporal fluc-
uated prices. The DWEM is crafted to capture intricate temporal
rice patterns within the input time series data, effectively leveraging
he strengths of both standardized and stacked LSTM architectures
o mitigate individual model biases and improve overall forecasting
ccuracy. We begin by elucidating the problem formulation and the
rchitecture of the proposed model, emphasizing the application of
WEM in managing EVs at the LV-aggregator level. Subsequently, we
elve into the details of the standardized and stacked LSTM models,
ollowed by an exploration of the DWEM formation, elucidating the
euristic mechanism for determining optimal weights.

.2.1. Architecture of the DWEM and problem formulation
The power system network primarily comprises three major func-

ional entities: power generation companies, utility companies acting
s both buyers and sellers of energy, and consumers who are the
nd-user customers purchasing energy, as shown in Fig. 1. The net-
ork spans three sub-transmission systems, each operating at different

tandard voltage levels: high voltage (HV) transmission at 110 kV,
edium voltage (MV) transmission at 38 kV, and low voltage (LV)
etwork at 230 V [80]. The LV distribution system connects energy
ggregators and end-users, with aggregators mainly procuring energy
rom utility companies and providing it to end-users to facilitate their
eeds. Transmission System Operators (TSOs) oversee the operations
f both the HV and MV transmission systems. Meanwhile, Distribution
ystem Operators (DSOs), in collaboration with utility companies, bear
6 
he responsibility for ensuring the seamless operations of the MV
ransmission together with the LV network system [81].

Aggregators play a crucial role in optimizing the aggregated load
f EVs, prompting utility companies in collaboration with the indepen-
ent system operators (ISO)/TSO to provide incentives for aggregator
articipation in Demand Response (DR) for the power supply–demand
alance [82]. This support aids the power grid in managing aggre-
ated charging loads, as illustrated in the architecture of the proposed
WEM in Fig. 1. Each 𝑖th EV is characterized by its specific arrival
nd departure sequence denoted as (𝑡𝑎𝑟𝑟𝑖 , 𝑡𝑑𝑒𝑝𝑖 ), battery capacity (𝐵𝐶𝑖),
urrent state-of-charge (𝑆𝑜𝐶𝑖), and departure state-of-charge (𝑆𝑜𝐶𝑑𝑒𝑝

𝑖 ).
iven the arrival and departure sequence at time 𝑡, we define the dwell

ime (𝐷𝑇𝑖) and the required state-of-charge (𝑆𝑜𝐶𝑟
𝑖 ) for the 𝑖th EV, as

utlined in Eqs. (6) and (7).

𝑇𝑖 = 𝑡𝑑𝑖 − 𝑡𝑎𝑖 for 𝑡𝑑𝑒𝑝𝑖 > 𝑡𝑎𝑟𝑟𝑖 (6)

𝑆𝑜𝐶𝑟
𝑖 (𝑡) =

{

1 − 𝑆𝑜𝐶𝑖(𝑡) if 𝑆𝑜𝐶𝑟
𝑖 = 1

𝑆𝑜𝐶𝑑𝑒𝑝
𝑖 − 𝑆𝑜𝐶𝑖(𝑡) if 𝑆𝑜𝐶𝑖 < 𝑆𝑜𝐶𝑟

𝑖 < 1
(7)

In the current time step (𝑡), the required charging time (𝑇 𝑟
𝑖 ) and the

nergy (𝐸𝑖) delivered to the 𝑖th EV battery can be computed by accumu-
ating charging rate (𝐶𝑟) and the 𝑆𝑜𝐶𝑖 in the previous time step (𝑡−1),
onsidering the 𝐵𝐶𝑖 and charging efficiency 𝜂, as presented in Eqs. (8)
nd (9). The total energy (𝐸𝑡𝑜𝑡𝑎𝑙) consumption at the aggregator level
t time step 𝑡 is computed by summing the overall energies times the
rice (𝑃 ) of the connected EVs, as presented in Eq. (10).

𝑟
𝑖 =

𝑆𝑜𝐶𝑟
𝑖 × 𝐵𝐶𝑖

𝐶𝑟 × 𝜂
(8)

𝐸𝑖(𝑡) =
(

𝑆𝑜𝐶𝑖(𝑡 − 1) × 𝐵𝐶𝑖
)

+
(

𝜂 × 𝐶𝑟
)

(9)

𝐸𝑇 𝑜𝑡𝑎𝑙(𝑡) =
𝑁
∑

𝑖=1

(

𝐸𝑖(𝑡) × 𝑃𝑖(𝑡)
)

(10)

The aggregator garners revenue from EV customers through the
provision of charging services for their electric vehicles. The charging
price (𝑃𝑖) discussed in Eq. (10) for the 𝑖th customer is determined by
considering the markup price and the wholesale price, as elucidated
in Eq. (11). While, in the DR program (Fig. 1), the utility company
provides the regulation capacity(𝐸𝑟), representing the amount of load
reduction in kilowatts to the aggregators and the incentive (𝑃𝑢𝑡𝑖𝑙𝑖𝑡𝑦)
from the utility grid based on the regulation capacities offered. This
dual revenue model implies that, on one hand, an aggregator generates
income from customers through the price difference between retail and
wholesale rates, while, on the other hand, it receives revenue [83] from
the utility company for providing regulation services and we compute
the overall revenue (𝑅) of the aggregator as presented in Eq. (12).

𝑃𝑖(𝑡) = 𝑀(𝑡) + 𝐺(𝑡) (11)

𝑅 =
𝑇
∑

𝑡=1

𝑁
∑

𝑖=1
𝑃𝑖(𝑡) +

(

𝑃𝑢𝑡𝑖𝑙𝑖𝑡𝑦(𝑡) ×
𝛥𝐸𝑟(𝑡)
𝐸𝑟

)

for 𝛥𝐸𝑟(𝑡) ≤ 𝐸𝑟 (12)

In Eq. (11), 𝑀 represents the markup price, defined as an additional
margin over the wholesale price 𝐺 and is a function of the TOU (i.e, a
varies according to the TOU) contributing to the aggregator’s revenue.
In Eq. (12), 𝑃𝑢𝑡𝑖𝑙𝑖𝑡𝑦 signifies the incentive from the utility company,
𝐸𝑟 denotes the total amount of regulated energy, and 𝛥𝐸𝑟 represents
the amount of regulated energy reduced by the aggregator in the time
horizon 𝑇 such that 𝑡 = {1, 2, 3,… , 𝑇 }.

Considering the fixed amount the EV customer pays for their con-
sumed energy, which remains constant in nature, the aggregator’s
revenue exhibits a linear dependency on their regulation services.
Therefore, to maximize revenue, the aggregator must optimize energy

consumption within the DR program, providing increased regulation
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Fig. 1. System model of the proposed deep-weighted ensemble model for wholesale electricity price forecasting to manage the charging EVs at the aggregator level.
services. As a result, the aggregator needs to manage charging EVs’ fol-
lowing the wholesale price pattern, thus Eq. (10) can be reformulated
as an objective function, incorporating wholesale prices, to minimize
total energy consumption, as defined in Eq. (13).

min
(

𝐸𝑡𝑜𝑡𝑎𝑙
)

=
𝑁
∑

𝑖=1

(

𝐸𝑖(𝑡) × 𝐺𝑖(𝑡)
)

(13)

The effective management of charging EVs relies heavily on the ac-
curacy of wholesale energy price forecasting. A more precise forecast
of wholesale prices has the potential to significantly enhance the ag-
gregator’s efficiency, thereby contributing to increased revenue. In
the following sections, we delve into the discussion of the proposed
weighted-ensemble model for wholesale energy price forecasting. This
model aims to assist energy aggregators in efficiently managing the
charging of EVs, thereby supporting both the utility company and the
power grid with energy regulation services.

3.2.2. Standard long-short memory network
The energy prices follow a time series sequential data format,

recording observations at half-hourly or hourly intervals, which poses
challenges during training with deep neural networks. In such cases,
gradients can become very small, impeding the model’s learning pro-
cess [84]. The LSTM, a specialized type of recurrent neural network
(RNN), is well-suited for mitigating these issues. Specifically designed
to address the vanishing gradient problem, LSTMs excel at capturing
long-term dependencies in sequential data, making them particularly
effective for modeling and forecasting energy prices over time [85].
The LSTM architecture incorporates distinct functional elements, each
designed for specific purposes in capturing and handling sequential
dependencies. These components are associated with the two primary
layers: the input layer and the LSTM layer [86], and are outlined below.

The input layer : The input layer in an LSTM architecture serves as
the initial stage for introducing external information into the network.
Its primary responsibility is to process and prepare the input data before
engaging with the LSTM cell. The key components of the input layer
include [87]:
7 
1. The input gate: The determination of the relevance of input data
for updating the cell state is a crucial function performed by the
input gate (𝑖𝑡) in an LSTM architecture. It plays a pivotal role
in regulating the flow of information by selectively allowing the
passage of information, supporting the making of decisions on
which elements of the input should contribute to the cell state
and ultimately influencing the overall cell state. This process is
essential for the LSTM to effectively capture and retain impor-
tant information, enabling it to learn and adapt to sequential
patterns in the input data and is presented in Eq. (14).

𝑖𝑡 = 𝜎(𝑊𝑖𝑖𝑥𝑡 + 𝑏𝑖𝑖 +𝑊ℎ𝑖ℎ𝑡−1 + 𝑏ℎ𝑖) (14)

where the input gate activation 𝑖𝑡 is computed using the sigmoid
activation function (𝜎), 𝑊𝑖𝑖 represents the weight matrix for the
input-to-input connections, 𝑥𝑡 is the input at time 𝑡, 𝑏𝑖𝑖 is the bias
for the input-to-input connections, 𝑊ℎ𝑖 s the weight matrix for
the hidden-to-input connections, ℎ𝑡−1 is the hidden state at time
𝑡 − 1, and 𝑏ℎ𝑖 is the bias for the hidden-to-input connections.

2. The forget gate: The forget gate (𝑓𝑡) functions as a selective mech-
anism within an LSTM architecture, regulating the retention or
removal of information from the cell state (𝐶𝑡−1) and deciding
whether the information from the previous cell state should be
retained or discarded. Employing a sigmoid activation function,
the forget gate takes into account the input at time 𝑡 (𝑥𝑡),
the previous hidden state (ℎ𝑡−1), and the corresponding weight
matrices (𝑊𝑖𝑓 and 𝑊ℎ𝑓 ), along with biases (𝑏𝑖𝑓 and 𝑏ℎ𝑓 ), as
presented in Eq. (15). This computation determines the extent to
which information from the previous cell state will be preserved,
exerting a significant influence on the overall evolution of the
cell state within the LSTM network.

𝑓𝑡 = 𝜎
(

𝑊𝑖𝑓 × (𝑥𝑡 + 𝑏𝑖𝑓 +𝑊ℎ𝑓 ) × (ℎ𝑡−1 + 𝑏ℎ𝑓 )
)

(15)

3. Cell state update: The cell state update is a crucial step involving
the strategic integration of information from the previous cell
state and the new candidate cell state, guided by decisions made
by the input and forget gates and is presented in Eq. (16).

𝐶 = 𝑓 ⊙ 𝐶 + 𝑖 ⊙ 𝐶̃ (16)
𝑡 𝑡 𝑡−1 𝑡 𝑡
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This equation highlights the dynamic nature of the cell state
update, where the forget gate influences the retention of histor-
ical information, and the input gate, through the tangent (tanh)
activation function, determines how much of the candidate cell
state (𝐶̃𝑡 = tanh(𝑊𝑖𝑐𝑥𝑡 + 𝑏𝑖𝑐 +𝑊ℎ𝑐ℎ𝑡−1 + 𝑏ℎ𝑐 )) should be incorpo-
rated into the new cell state.

The LSTM layer : The LSTM layer is a crucial component of the
STM architecture, explicitly crafted to overcome challenges linked
o lengthy sequences in neural networks. It effectively addresses the
anishing gradient issue frequently encountered in traditional RNNs.
he key constituents associated with the LSTM layer [88] are discussed
elow.

1. Hidden state: Operating as short-term memory, the hidden state
integrates input data and the cell state, providing a concise
summary of pertinent information for the current time step.

2. Output gate: This gate dictates which information from the cell
state contributes to the output. It regulates the flow of infor-
mation from the cell state to the hidden state, subsequently
influencing the model’s output.

hese linked components collectively form the foundation of the LSTM
rchitecture, where the input layer manages the flow of information,
nd the LSTM layer orchestrates the cell state and hidden state dy-
amics [89]. To enhance the standard LSTM model, we replaced the
anh activation function in the LSTM layer with the Rectified Linear
nit (ReLU) activation. This modification aims to reduce the model’s

esource consumption while maintaining higher accuracy. The ReLU
unction introduces non-linearity, which can mitigate the vanishing
radient problem and enable the model to learn more intricate repre-
entations of the data, resulting in improved performance. Furthermore,
he model was initially developed with default input units of 256 and
utput units of 224. However, recognizing the crucial role of hyper-
arameter tuning in optimizing the model’s architecture, we utilized
he Random Search technique. This approach yielded optimal values
f 128 units for the input layer and 64 units for the LSTM layer.
hese optimized hyperparameters strike a balance between capturing
omplex patterns in the temporal fluctuated energy price data and
voiding overfitting as shown in Algorithm 1 (Appendix).

.2.3. Stacked long-short memory network
The Stacked LSTM model is an advanced variant of RNNs de-

igned to address the challenges of capturing long-term dependencies
n sequential data. The stacked LSTM architecture proves especially
ffective in tasks related to time series prediction. The hierarchical
tructure of stacked LSTMs enables them to adeptly learn and leverage
omplex representations, making these models a powerful choice for
ffectively modeling sequential data with inherent temporal dependen-
ies. The pseudocode for the Stacked LSTM is presented in Algorithm
(Appendix), with a detailed explanation of the functional components
f the model provided as follows:

1. The input layer: The input layer serves as the entry point for
processing the temporal patterns inherent in the time series data
within the stacked LSTM architecture. In the case of a time series
electricity prediction model, the Input Layer plays a crucial
role by transforming energy price data into a three-dimensional
format. This adaptation is essential since LSTM requires input
data in a three-dimensional structure for effective computation
and ensures that the subsequent LSTM layers can appropriately
process the temporal dynamics and patterns inherent in the
energy price data.

2. The stacked layer: Stacked LSTMs are comprised of several
LSTM layers organized sequentially. As the input sequence tra-
verses through each LSTM layer, it undergoes processing, and
the resulting hidden state is transmitted to the subsequent layer.

This processing stage includes the transformation of the 3D-data t

8 
back to 2D-data using the Flatten method. Subsequently, the
flattened data is forwarded to the convolutional neural network
(CNN) layers through the Dense layer to seamlessly integrate of
CNN components, facilitating the extraction of spatial features
from the transformed data. This stacking mechanism is pivotal,
as it empowers the model to discern and encapsulate hierarchical
features and temporal dependencies present within the data. The
sequential arrangement of LSTM layers facilitates the extraction
of intricate patterns at varying levels of abstraction, contribut-
ing to the model’s capability to understand the complexities
embedded in the input data.

3. The parameters and configuration layer: The tuning of hyperpa-
rameters, including the quantity of LSTM units in each layer and
the total number of layers in the stack, is a critical aspect that
can be adjusted based on the intricacy of the task. In our model,
the initial LSTM layer comprises 128 hidden units, receiving
the historical energy prices data as input. The subsequent LSTM
layer is configured with 256 hidden units, and both layers em-
ploy the ReLU activation function. The hierarchical stacking of
LSTM layers builds upon the representation learned by the pre-
ceding layer, progressively refining the model’s understanding of
temporal patterns within the data.

4. The output layer: To prepare the output from the LSTM layers
for the final prediction step, we utilize the ‘Flatten()’ opera-
tion. This operation reshapes the 3D tensor into a 2D format,
enhancing the model’s ability to capture correlations between
temporal features and the target variable. Following the flat-
tening process, we introduce two fully connected Dense layers,
featuring 128 and 64 neurons, respectively, both activated by
the ReLU activation function. These dense layers play a crucial
role in learning complex feature interactions derived from the
LSTM layers, allowing the model to develop a more profound
understanding of the input sequences. To mitigate overfitting
and enhance generalization, we incorporate dropout regular-
ization with a rate of 0.1 after the first Dense layer. Dropout
randomly deactivates a proportion of neurons during training,
promoting reliance on multiple paths for information flow and
reducing dependence on specific features. The subsequent Dense
layer with 32 neurons continues to extract relevant features
from the learned representation. Another dropout layer with
a rate of 0.1 follows, further enhancing robustness and pre-
venting overfitting. This comprehensive architecture ensures the
model’s capacity to capture intricate patterns while promoting
generalization and preventing overfitting.

.2.4. The mechanism of developing the weighted-ensemble model and
etermining of optimal weights

After training and testing both the standard LSTM and stacked LSTM
odels on energy price data, we proceeded to develop a Deep Ensemble
odel. This ensemble leverages the weighted ensemble mechanism,

ombining predictions from the base models by assigning weights to
ach model’s output. The process involves training individual models
nd aggregating their predictions in a weighted manner, as presented
n Eq. (17).

(𝑥) =
(

𝑤standard × 𝑃standard(𝑥)
)

+
(

𝑤stacked × 𝑃stacked(𝑥)
)

(17)

here 𝐸(𝑥) represents the ensemble prediction, while 𝑃𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 , 𝑃𝑠𝑡𝑎𝑐𝑘𝑒𝑑 ,
enote the predictions of the standard and stacked LSTM models,
espectively. Moreover, 𝑤𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 , and 𝑤𝑠𝑡𝑎𝑐𝑘𝑒𝑑 refer to the respective
eights assigned to these models. These weights play a crucial role

n determining the influence of each model on the final ensemble pre-
iction, contributing to a more robust and accurate overall prediction.
owever, determining the optimal weights for an ensemble model is
hallenging due to the non-convex nature of the weight space, intro-
ucing complexities with multiple minima and maxima. To ascertain

he optimal weights and enhance the forecasting performance of the
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proposed DWEM, we introduce a heuristic algorithm. This algorithm
systematically tracks the weights, predictions, and their corresponding
results, adaptively updating these weights to iteratively seek the most
optimal configuration, thereby enhancing forecasting performance. The
flowchart of the algorithm is presented in Figs. 2 and 3, while the main
steps are outlined below:

Step 1. Run Algorithm 3 (refer to Fig. 2) and set the flag to 0 to
monitor the weights of the standard LSTM model, as discussed
in Algorithm 1.

Step 2. Examine the flag value to dynamically adjust the weight of the
standard LSTM model. If the flag is set to 0, indicating a specific
condition, set the weight 𝑊1 to 1.0. Conversely, if the flag is
set to 1, implying an alternative scenario, decrement 𝑊1 by 0.1.
Simultaneously, establish the weight 𝑊2 at 0.1 and proceed to
execute the DWEM to acquire the updated forecasting results
with these updated weights.

Step 3. Call Algorithm 4 (refer to Fig. 3) and assess the accuracy of
the DWEM. If the accuracy is non-zero, compare it with the
previous accuracy. If the newly obtained accuracy surpasses
the previous one, update it with the newly obtained accuracy
and save the corresponding weights. However, if there is no
improvement in the accuracy, retain the previous accuracy and
its corresponding weights. Subsequently, return the results to
the calling algorithm (Fig. 2).

Step 3. Check if the weight 𝑊2 of stacked LSTM is less than or equal
to the predefined criteria value of 1.0. If this condition is
met, increment 𝑊2 by 0.1 and return to step 1 to once again
collect the ensemble model results with the updated value
of the weight obtained from the stacked LSTM. Invoke the
function (refer to Fig. 3) to update the corresponding weights
and results iteratively. Continue this process until the inner
loop criterion is satisfied. This iterative approach ensures a
thorough exploration of weight adjustments until the specified
criteria are met.

Step 4. Update the flag value by setting it to 1. Examine the weight
𝑊1 against the predefined value of 0.1. If 𝑊1 is greater than or
equal to 0.1, proceed to step 2. In this iteration, decrement the
𝑊1 to 0.1 while resetting 𝑊2 to 0.1. Pass the updated 𝑊1 and
𝑊2 values to the DWEM to record the updated results. Adjust
the weights of 𝑊2 by calling the function (refer to Fig. 3) for
the second iteration of the outer loop, handling the standard
LSTM weight 𝑊1. Repeat the overall process from step 2 to
step 4. However, if the value of 𝑊1 fails to meet the prede-
fined criteria, print out the optimal results and conclude the
algorithm (refer to Fig. 2). This approach ensures a systematic
exploration of weight adjustments, maximizing the adaptability
and performance of the algorithm until the optimal weights are
identified with highest accuracy.

The foundational mechanism for attaining optimal weights through
heuristic algorithms is elucidated in Fig. 4. In this figure, the horizontal
axis (𝑥-axis) signifies the 𝑊1 of the standard LSTM, while the vertical
axis (𝑦-axis) denotes the 𝑊2 of the stacked LSTM model. The output
of their combined contribution in the DWEM is gauged by accuracies
(𝐴𝑐𝑐1, 𝐴𝑐𝑐2,… , 𝐴𝑐𝑐10). In the initial iteration, these weights are set to
their respective initial values, and the results are stored in the variable
𝐴𝑐𝑐1. Following these results, the weights are updated by decrementing
the standard LSTM weight (𝑊1) by 0.1 while incrementing the stacked
LSTM weight (𝑊2). This process iteratively unfolds while maintaining
𝑊1 constant and updating 𝑊2, thereby collecting corresponding results.
Once all 𝑊2 values are tested against the initial 𝑊1 initial value, 𝑊1 is
decremented by 0.1, and 𝑊2 is reset to its initial value. This iterative
updating continues, and the results are recorded. Consequently, after
testing all weights (𝑊1 and 𝑊2) and their corresponding performance

(accuracy), the algorithm selects the weights resulting in the highest
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Fig. 2. Flowchart (Algorithm 3) of the proposed DWEM for determining the optimal
weights through the heuristic approach.

accuracy. This heuristic approach significantly enhances the perfor-
mance of the proposed DWEM by determining optimal weights for both
the standard and stacked LSTMs, contributing to a substantial boost in
model performance.

4. Data engineering and results discussion

In this section, we demonstrate the effectiveness of the proposed
DWEM through experimental validation and a comparative analysis of
results. We commence with data engineering, emphasizing the dataset’s
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Fig. 3. Flowchart (Algorithm 4) of the subroutine of updating the weights for each of
the iteration in the heuristic approach.

characteristics and preprocessing steps, including the criteria for fea-
ture selection. Subsequently, we delve into the discussion of perfor-
mance metrics. Finally, we conduct a comparative study, considering
these performance metrics to thoroughly evaluate and compare the
effectiveness of the proposed DWEM.

4.1. Parameters setting of the developed DWEM

The DWEM model architecture blends standard and stacked LSTMs
by employing an optimal weighting algorithm detailed in Figs. 2 and
3. Given that the developed DWEM addresses the price forecasting
problem as a regression problem, therefore, the training utilizes the
Mean Squared Error (MSE) loss function, chosen for its effectiveness
in regression tasks. The model configuration includes 5 LSTM layers
per stack, with each layer consisting of 128 units. Optimization is
performed with the Adam optimizer, configured with a learning rate
set to 0.001, aimed at efficient gradient-based updates. To prevent
overfitting, dropout regularization at a rate of 0.2 is applied. A batch
size of 32 samples is used, and training progresses over 2000 epochs,
with early stopping criteria triggered if validation loss stagnates for
10 consecutive epochs. This setup is tailored to capitalize on LSTM
strengths in capturing temporal patterns while ensuring robust per-
formance and efficiency through regularization and optimal training
practices.

4.2. Data engineering

To simulate the proposed DWEM for forecasting energy prices to
manage EVs at the aggregator level, we employ a dataset sourced from
the Texas electricity market, specifically the ERCOT (Electric Reliability
Council of Texas)1 market [90]. ERCOT divides the Texas region into
four congestion management zones (CMZs), namely West, North, South,
and Houston [91]. This study focuses on the dataset representing
wholesale electricity prices in the Houston zone. The original data was
collected at 15-minute intervals; however, for this study, we computed
hourly averages by aggregating prices over four consecutive 15-minute
periods. The detailed presentation of this processed data is provided in
the subsequent sub-sections.

1 https://fred.stlouisfed.org/series/APUS37B72610.
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4.2.1. Dataset description and simulation setup
The experimental dataset spans from January 2015 to December

2018, encompassing a total of 34,542 samples and featuring nine
distinct attributes: Delivery Date, Delivery Hour, Repeated Hour Flag,
Settlement Point Name, Settlement Point Type, DayStatus, Temperature
in F, Load in Houston, and Settlement Point Price. To facilitate model
training and evaluation, we partitioned the dataset into two subsets:
90% (31,087 samples) for training and 10% (3455 samples) for valida-
tion. Throughout the training process, we initialized the learning rate
at 0.01 and implemented a dynamic learning rate schedule, adjusting
the rate as necessary to facilitate model convergence. This adjustment
involved incorporating a factor of 0.1 to decrease the learning rate, and
we set the patience value to 10 epochs, determining the duration the
model waits for improvement before further adjusting the learning rate.

4.2.2. Data preprocessing
Taking into account the original dataset, we leverage the Deliv-

ery date to extract sub-features like year, month, and day. During
preprocessing, we exclude the Settlement Point Name and Settlement
Point Type, resulting in eight variables, including the target variable
Settlement Point Price. The chosen input variables – dayofweek, month,
delivery hour, temperature in F, Load in Houston, and IsDayTime –
demonstrate a significant correlation with the target variable, as de-
picted in the correlation matrix Fig. 5. The figure additionally illustrates
a strong correlation between the temperature and the load such that
temperature significantly influences the load, with a higher count ob-
served in the 70◦F to 80◦F range. The load count peaks around 10,000
MW to 12,000 MW, as depicted in Fig. 6. Leveraging this information
and considering the correlation matrix, we establish a linear relation-
ship between temperature and load, as well as between load and energy
prices, as illustrated in Figs. 7 and 8. Fig. 8 indicates a peak load
occurring around 15:00 h, which significantly influences the energy
price, resulting in a peak energy price at the same 15:00 h. Having
identified the key input and output variables and their relationships,
we proceed to performance evaluation, considering various important
criteria discussed in the subsequent subsection.

4.2.3. Performance evaluation criteria
To assess the performance of the proposed DWEM, we examined

several crucial performance metrics and conducted case studies that in-
volved scenarios both with and without outliers. Before delving into the
evaluation, we defined these performance metrics as outlined below.

Accuracy: The accuracy evaluates the performance of a predictive
model by defining the ratio of correctly predicted instances to the total
number of instances in the dataset. In the case of an energy price
forecasting model, it is thus the ratio of correctly predicted energy
prices out of the total number of predictions the model has made, and
thereby can be calculated according to Eq. (18).

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃 𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
𝑇 𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃 𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

× 100 (18)

where the Number of Correct Prediction count of energy price where
the model’s prediction matches the actual energy prices and the Total
Number of Predictions is the sum of correct predictions and incorrect
predictions for all the energy prices in the dataset. A higher accu-
racy score signifies efficient model performance, while a lower score
indicates model inefficiency and difficulty comprehending patterns in
the dataset. Although accuracy can measure regression problems, it
is a metric more suitable for classification tasks. Given that we are
dealing with energy price forecasting, which is a regression problem, in
addition to accuracy, we discuss Mean Absolute Error (MAE) and Mean
Squared Error (MSE) to comprehensively assess the performance of our
proposed DWEM regression models.

Mean squared error: The Mean Squared Error (MSE) serves as a
crucial metric for assessing the performance of regression models and
it quantifies the average squared difference between the actual values

https://fred.stlouisfed.org/series/APUS37B72610
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Fig. 4. An illustration of determining the optimal weights for enhancing the efficiency of the proposed DWEM through the heuristic approach.
Fig. 5. Correlation matrix highlighting a relationship between the target variable and
the input variables.

(ground truth) and the corresponding predicted values as expressed in
Eq. (19).

𝑀𝑆𝐸 = 1
𝑛

𝑛
∑

𝑖=1
(𝑌𝑖 − 𝑌𝑖)2 (19)

where 𝑛 represents the total number of energy price data points, 𝑌𝑖
denotes the actual value for the 𝑖th energy price data point, and 𝑌𝑖
signifies the predicted value for the 𝑖th energy price data point. A
preference is given to a lower MSE. The rationale behind this preference
lies in MSE’s tendency to magnify larger errors due to the squaring
operation. Therefore, a lower MSE indicates a more accurate and
precise forecasting model, where the predictions align closely with the
actual energy prices.

Mean absolute error: The Mean Absolute Error (MAE) provides a
measure of the average magnitude of errors between predicted and
actual values and can be calculated by taking the average of the
absolute differences between the predicted values (𝑌𝑖) and the actual
values (𝑦𝑖) for all the observations as given in Eq. (20).

𝑀𝐴𝐸 = 1
𝑛

𝑛
∑

𝑖=1

|

|

𝑌𝑖 − 𝑦𝑖|| (20)

Given that the MAE minimizes the average absolute difference between
the predicted and actual energy prices and thus a lower MAE indicates
that the model’s predictions are, on average, closer to the true values.
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Confidence interval: To extend the analysis we consider 95% con-
fidence interval (CI), as presented in Eq. (21) [92].

𝐶𝐼 = 𝜇 ±
(

𝑧 × 𝑆𝐷
√

𝑆𝑠𝑖𝑧𝑒

)

(21)

where 𝜇 is the mean, 𝑆𝐷 is the sample’s standard deviation, 𝑆𝑠𝑖𝑧𝑒 is the
sample size, 𝑧 is the critical value, and ± represents the error range.

4.3. Results discussion

4.3.1. Model’s performance
To assess the effectiveness of the proposed DWEM through various

performance metrics, we have considered different scenarios, including
those with and without outliers. Outliers can significantly impact model
performance, necessitating their consideration. Moreover, each model
in these scenarios is configured with user-defined hyperparameter tun-
ing (User-modified) and leveraged the model-based hyperparameter
tuning (Auto-modified) model to understand the influence of parameter
tuning on the model’s performance. Additionally, we have introduced
the concept of standard deviation (𝜎′) and specified various values for
standard deviations to conduct a comparative analysis at these different
levels and the various standard deviations are shown in Fig. 9. The
standard deviation defines price values within a specified range and
is used to analyze model performance by measuring the influence of
value deviations on error. This helps evaluate the model’s robustness
against different price ranges, enhancing its capabilities and facilitating
comparative analysis. By applying standard deviation as a relaxation
method, we can assess how the model performs under varying con-
ditions, ensuring a thorough and reliable comparative analysis. This
analysis aims to provide a detailed understanding of the DWEM’s
performance under different conditions, particularly in scenarios with
and without outliers. Following the varied standard deviation values
(Fig. 9), the visual representation of different model fittings, includ-
ing user-modified and auto-modified models, in scenarios with and
without outliers is presented in Fig. 10. The visualization illustrates
that the model fittings mature as the standard deviations increase,
particularly with auto-modified models. The accuracy evaluation for
various standard deviations in both with and without outlier scenarios
is presented in Table 1, revealing an average increase of approximately
8.00% in scenarios without outliers compared to those with outliers.
In scenarios without outliers, the results illustrate an approximately
36.46% increase in accuracy when the standard deviation is set to
5, compared to the accuracy achieved at a standard deviation of 1.
Similarly, accuracy experiences increments of about 9.08% and 45.54%
with a standard deviation of 10, in comparison to standard deviation
values of 5 and 1, respectively.

Considering both User and Auto-modified hyperparameters, we con-
ducted a comparative analysis among the proposed DWEM, the stan-
dard LSTM, and the Stack LSTM in both with and without outlier
scenarios, presenting the accuracy in Fig. 11. The figure shows that
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Fig. 6. A representation of the temperature and load count in Houston region.
Fig. 7. The relationship between load and the temperature highlighting the increasing
trend of load with the increasing temperature.

the proposed DWEM model with Auto-modified hyperparameters ex-
hibited higher accuracies in both without (Fig. 11(a)) and with outliers
(Fig. 11(b)). This is followed by the Stack LSTM model, while the stan-
dard LSTM struggles to comprehend the complexities of energy prices
and therefore does not perform as well when compared to these models.
Following the enhancements in scenarios without outliers and the
impact of parameter modifications (Users and auto-modified) in Fig. 11,
we have extended our accuracy analysis of the proposed DWEM (Users
and auto-modified) against standard LSTM (User-modified), Standard
LSTM (Auto-modified), Stack LSTM (User-modified), and Stack LSTM
(Auto-modified) models, as shown in Table 2. The results indicate
that for a standard deviation of 1, DWEM (Auto-modified) improves
accuracy by about 4.62% and 1.76% compared to Standard LSTM
(Auto-modified) and Stack LSTM (Auto-modified), respectively. Simi-
larly, for standard deviation values of 5, DWEM (Auto-modified) en-
hances accuracy by about 5.76% and 1.32% compared to Standard
LSTM (Auto-modified) and Stack LSTM (Auto-modified). For a standard
deviation of 10, DWEM (Auto-modified) improves accuracy by about
3.70% and 1.65% compared to Standard LSTM (Auto-modified) and
Stack LSTM (Auto-modified).

Following the different standard deviation values and the corre-
sponding accuracies of the different models considering the User and
12 
Auto-modified hyperparameters in both with and without outliers sce-
narios, we further investigated the MSE and MAE of these models
with the same parameter configurations and scenarios. The results are
presented in Fig. 12. Evidently, in both with and without outlier sce-
narios, the proposed DWEM, specifically the DWEM (Auto-modified),
outperformed with lower MSE and MAE, followed by the Stack LSTM
(Auto-modified) models. In contrast, the standard LSTM models (User
and Auto-modified) exhibited comparatively higher MSE and MAE,
indicating a degradation in performance with fluctuated energy prices.
It is evident that as the standard deviation increases, there is a cor-
responding enhancement in accuracy, concomitantly resulting in a
reduction in MSE and MAE values. A quantitative analysis of these
effects is presented in Tables 3 and 4. Table 3 highlights that, for a stan-
dard deviation of 1, DWEM (Auto-modified) decreases the MSE value
by approximately 3.28 and 1.00 compared to Standard LSTM (Auto-
modified) and Stack LSTM (Auto-modified), respectively. Furthermore,
for a standard deviation of 5, DWEM (Auto-modified) exhibits a re-
duction of about 2.47 and 1.48 in MSE values when contrasted with
Standard LSTM (Auto-modified) and Stack LSTM (Auto-modified). For
a standard deviation of 10, the proposed DWEM (Auto-modified) show-
cases a decrease of approximately 0.43 and 0.21 in MSE compared
to Standard LSTM (Auto-modified) and Stack LSTM (Auto-modified).
Following the decline in MSE, Table 4 demonstrates that the proposed
DWEM (Auto-modified) reduces MAE values by 0.38 and 0.12 for a
standard deviation of 1, when compared to Standard LSTM (Auto-
modified) and Stack LSTM (Auto-modified). Similarly, for a standard
deviation of 5, DWEM (Auto-modified) lowers MAE values by 0.24
and 0.07 relative to Standard LSTM (Auto-modified) and Stack LSTM
(Auto-modified). Additionally, for a standard deviation of 10, DWEM
(Auto-modified) decreases MAE values by 0.06 and 0.02 compared to
Standard LSTM (Auto-modified) and Stack LSTM (Auto-modified).

Considering the diverse standard deviation values, the analysis of
accuracy, MSE, and MAE for the proposed DWEM (Tables 1–4), and the
various model fittings, we conducted a comparative study of DWEM’s
accuracy, MSE, and MAE against state-of-the-art models, including XG-
Boost [59], LGBM [59], LR [69], and the MVR model [70]. Considering
that all models perform well with Auto-modified hyperparameters in
the absence of outliers, the study focuses on Auto-modified hyperpa-
rameter tuning and the scenario without outliers, presenting the results
for the standard deviations values of 1, 5 and 10 in Table 5.

For all three values of standard deviations, it is evident that the
proposed DWEM successfully captured the price pattern and signifi-
cantly enhanced overall performance. In more detail, at a standard
deviation value of 1, the proposed DWEM (Auto-modified) outper-
forms by reducing the accuracy by approximately 22.66%, 17.74%,
28.04%, and 23.08% compared to the XGBoost, LGBM, LR, and MVR
models. However, as the standard deviation increases, the accuracy
also improves; nevertheless, the DWEM still performs well by reducing
the accuracy by about 20.18%, 12.91%, 26.85%, and 21.15%. For a
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Fig. 8. The relationship between load and the settlement price highlighting the increasing trend of price pattern with the increasing load.
standard deviation value of 10, the DWEM decreases the accuracy by
about 18.06%, 10.14%, 16.69%, and 13.73% in comparison to the
XGBoost, LGBM, LR, and MVR models.

Following the observed improvements in accuracy, our analysis
extended to evaluate MSE and MAE for standard deviation values of
1, 5, and 10. For a standard deviation of 1, DWEM achieved notable
reductions in MSE by approximately 7.63, 2.93, 6.10, and 6.75, with
corresponding MAE reductions of 2.07, 2.47, 4.12, and 2.17 in com-
parison to the XGBoost, LGBM, LR, and MVR models, respectively.
At a standard deviation of 5, DWEM demonstrated MSE reductions
of about 5.27, 2.39, 6.22, and 5.18, along with MAE reductions of
5.27, 1.94, 3.07, and 5.55 compared to the XGBoost, LGBM, LR, and
MVR models. Similarly, for a standard deviation of 10, DWEM achieved
MSE reductions of approximately 5.20, 3.88, 7.51, and 4.18, with
corresponding MAE reductions of about 4.34, 1.83, 3.33, and 3.25
when compared to the XGBoost, LGBM, LR, and MVR models. These
consistent reductions in both MSE and MAE across different standard
deviation scenarios highlight the effectiveness of DWEM in enhancing
model performance compared to the considered models.

The analysis reveals that, across all standard deviation values in
scenarios without outliers, DWEM (Auto-modified) showcased an aver-
age accuracy improvement of 4.90%, 1.39%, 22.66%, 13.60%, 23.86%,
and 19.32% compared to Standard LSTM (Auto-modified), Stack-LSTM
(Auto-modified), XGBoost model, LGBM model, LR model, and MVR
models, respectively. Additionally, on average, DWEM (Auto-modified)
achieved a reduction in Mean Squared Error (MSE) by 2.06, 0.98,
6.03, 3.07, 6.61, and 5.37 when compared to Standard LSTM (Auto-
modified), Stack-LSTM (Auto-modified), XGBoost model, LGBM model,
LR model, and MVR models. The average decrease in Mean Absolute
Error (MAE) with DWEM (Auto-modified) was approximately 0.23,
0.07, 3.89, 2.08, 3.51, and 3.66 concerning Standard LSTM (Auto-
modified), Stack-LSTM (Auto-modified), XGBoost model, LGBM model,
LR model, and MVR models.

4.3.2. Evaluation of aggregated EVs
Following the actual and predicted price patterns presented in

Fig. 13, we coordinated the charging of aggregated EVs. To evaluate
their performance using the forecasted price profile, we considered
a charging rate of 6.6 kW [93], a charging efficiency of 95% (𝜂 =
95%) [94], and a time step of 15 min. The EVs have varying battery
capacities, specifically 40 kWh [95], 53 kWh [96], 80.5 kWh [97],
and 100 kWh [98]. They feature random arrival-departure sequences
13 
Table 1
Evaluation of DWEM model accuracy with and without outliers for different standard
deviations.

Standard deviation ($/MWh) Accuracy (%)

With outliers Without outliers

1 43.39 52.01
2 59.38 68.25
3 69.43 77.81
4 75.09 84.10
5 79.07 88.47
6 82.59 91.49
7 84.79 93.55
8 86.84 95.20
9 88.57 96.30
10 89.55 97.55

and state-of-charge (SoC) distributions, as illustrated in Figs. 14 and
15 [17]. The charging load is evaluated against the uncoordinated
charging (UCC) [99], standard rate (SR) [100], single & multiple
(i.e., STOU [101], MTOU [102]), two-layer-decentralized charging al-
gorithm (TLDCA) [41], centralized charging management (CCM) [103],
and hybrid coordination scheme [17]. For a detailed understanding of
these methods, readers are encouraged to visit [17,48]. These various
charging methods coordinate the charging in different manners and,
consequently, impose different loads, as shown in Fig. 16. Given a
peak load of 390.92 kW, the proposed ensemble DWEM reduces the
peak load by 79.98%, 79.98%, 36.93%, 36.93%, 6.23%, 12.09%, and
6.05% compared to the UCC, SR, STOU, MTOU, TLDCA, CCM, and
HCS methods, respectively. This implies that, depending on the price
forecasting accuracy, the aggregators can capture the price signals in
near real-time, thereby managing the charging of EVs with adequate
accuracy. The different charging loads resulting from these methods
lead to varying charging costs (i.e., normalized cost), as illustrated
in Fig. 17. The proposed ensemble DWEM significantly reduces the
charging cost by 36.63%, 35.00%, 23.84%, 16.25%, 8.45%, 8.42%,
and 3.45% compared to the UCC, SR, STOU, MTOU, TLDCA, CCM,
and HCS methods, respectively. Furthermore, we expand the study
with a statistical analysis to compute the 95% CI (Eq. (21)) for these
different methods, as presented the results in Table 6. It is evident that
the proposed ensemble DWEM reduces the load by (35.10%, 33.30%),
(21.00%, 15.60%), (19.70%, 16.00%), (13.90%, 12.00%), (13.20%,
13.5%), (11.10%, 12.70%), and (9.90%, 4.40%) compared to the UCC,
SR, STOU, MTOU, TLDCA, CCM, and HCS, respectively.
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Fig. 9. Representation of standard deviation with different models, including user-modified and auto-modified parameter tuning, in scenarios with and without outliers.
Fig. 10. Fitting of different models corresponding to various standard deviation values.
4.3.3. Computational complexity and execution time
Given that the proposed DWEM utilizes both standard and stacked

LSTMs, we begin by computing the computational complexity of each
individually. Afterwards, we will compute the overall complexity of the
proposed DWEM.

The complexity of the LSTM is based on the time step 𝑡, where
the input 𝑥𝑡 with dimension 𝐵 × 𝑑 is processed alongside the previous
hidden state ℎ𝑡−1 and cell state 𝑐𝑡−1, both of dimension 𝐵 × 𝑛. These
inputs are used to compute the forget gate 𝑓𝑡, input gate 𝑖𝑡, and the
output gate 𝑜 , each requiring a matrix multiplications and activation
𝑡
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functions. The candidate cell state 𝐶̃ is then calculated using tanh
activation, and subsequently, the actual cell state 𝑐𝑡 and hidden state
ℎ𝑡 are updated based on these gates and the candidate cell state. This
entire process for each time step 𝑡 is characterized by a computational
complexity of 𝑂(𝐵 × 𝑛 × (𝑑 + 𝑛)), encompassing operation requires for
gating mechanisms, state updates, and activation functions for capture
the temporal dependencies in the sequential price data.

In the case of stacked LSTM the input transformation for the input
data 𝑥 at time step 𝑡 has a dimension 𝐵 × 𝑑, with each previous layer’s
𝑡
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Fig. 11. A comparison of the accuracy of the different models considering the User and Auto-modified hyperparameters in both without and with outliers scenarios.

Fig. 12. A compression of the MSE and MAE of the different models considering the User and Auto-modified hyperparameters in both without and with outliers scenarios.
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Table 2
A comparative analysis of Accuracy without outliers for different models.

Standard Accuracy (%)

deviation
($/MWh)

Standard LSTM
(User-modified)

Standard LSTM
(Auto-modified)

Stack LSTM
(User-modified)

Stack LSTM
(Auto-modified)

DWEM
(User-modified)

DWEM
(Auto-modified)

1 42.73 47.39 49.16 50.25 49.31 52.01
2 55.68 63.26 64.90 67.33 64.51 68.25
3 63.59 72.02 73.25 76.63 74.10 77.81
4 69.59 78.73 79.41 82.64 80.56 84.10
5 75.05 82.71 83.80 87.15 84.55 88.47
6 79.00 85.73 87.09 89.89 87.99 91.49
7 82.95 88.61 89.43 92.35 90.62 93.55
8 85.68 90.81 91.50 93.71 92.43 95.20
9 87.59 92.61 93.56 94.94 93.55 96.30
10 89.91 93.85 95.08 95.90 94.94 97.55
Table 3
A comparative analysis of Mean Squared Error without outliers for different models.

Standard Mean Squared Error

deviation
($/MWh)

Standard LSTM
User-modified)

Standard LSTM
(Auto-modified)

Stack LSTM
(User-modified)

Stack LSTM
(Auto-modified)

DWEM
(User-modified)

DWEM
(Auto-modified)

1 11.00 9.52 8.23 7.24 7.24 6.24
2 9.55 8.21 7.78 6.77 6.28 5.73
3 8.22 7.40 6.54 5.63 7.27 4.46
4 6.62 5.85 5.46 4.62 4.25 3.28
5 5.30 4.66 4.43 3.67 3.29 2.19
6 3.84 3.43 3.52 2.89 2.34 2.01
7 2.79 2.44 2.48 2.22 1.72 1.51
8 2.42 1.72 1.48 1.41 1.22 1.02
9 1.31 1.19 0.77 0.70 0.63 0.50
10 0.83 0.54 0.43 0.32 0.23 0.11
Table 4
A comparative analysis of Mean Absolute Error without outliers for different models.

Standard Mean Absolute Error

deviation
($/MWh)

Standard LSTM
(User-modified)

Standard LSTM
(Auto-modified)

Stack LSTM
(User-modified)

Stack LSTM
(Auto-modified)

DWEM
(User-modified)

DWEM
(Auto-modified)

1 2.30 2.20 2.00 1.94 1.92 1.82
2 2.15 2.08 1.89 1.84 1.81 1.71
3 2.02 1.95 1.78 1.75 1.69 1.63
4 1.83 1.79 1.64 1.60 1.57 1.51
5 1.64 1.64 1.51 1.47 1.49 1.40
6 1.43 1.43 1.34 1.31 1.32 1.28
7 1.23 1.23 1.16 1.13 1.17 1.11
8 0.99 0.98 0.94 0.94 0.94 0.91
9 0.71 0.72 0.69 0.69 0.70 0.67
10 0.48 0.44 0.42 0.40 0.41 0.38
Table 5
A comparative analysis of the accuracy, MSE, and MAE of the proposed DWEM (Auto-modified) with various state-of-the-art models (Auto-modified) concerning to the various
values of the standard deviations in the without outliers scenarios.

Standard Performance metrics Methods

deviation ($/MWh) XGboost model [59] LGBM model [59] LR model [69] MVR model [70] DWEM

1
Accuracy (%)

29.35 34.27 23.97 28.93 52.01
5 68.29 75.56 61.62 67.32 88.47
10 79.49 87.41 80.86 83.82 97.55

1
Mean Squared Error

13.87 9.17 12.34 12.99 7.79
5 8.46 5.58 9.41 8.37 3.19
10 5.31 3.99 7.62 4.29 0.21

1
Mean Absolute Error

3.89 4.29 5.94 3.99 1.82
5 6.67 3.34 4.47 6.95 0.36
10 4.72 2.21 3.71 3.63 0.36
hidden state ℎ𝑙𝑡−1 and cell state 𝑐𝑙𝑡−1 having dimension of 𝐵 × 𝑛𝑙. The
LSTM operation for each layer (𝑙) the previous hidden state ℎ𝑙𝑡−1, previ-
ous cell state 𝑐𝑙𝑡−1, and current input 𝑥𝑡, with weight matrices 𝑊 𝑙

𝑖 , 𝑈
𝑙
𝑖 , 𝑏

𝑙
𝑖

or input gate and likewise for the forget and output gates. The worst
ase complexity of these steps is 𝑂(𝐵 × 𝑛𝑙 × (𝑑 + 𝑛𝑙)). Subsequently, the

worst case complexity of each 𝑡𝑎𝑛ℎ is 𝑂(𝐵 × 𝑛𝑙) for the candidate cell

state, and for the current cell and hidden states update it is 𝑂(𝐵 × 𝑛𝑙).

16 
Consequently, the overall worst case complexity of the stack LSTM is
computed as 𝑂(𝐿 × 𝐵 × 𝑛𝑙 × (𝑑 + 𝑛𝑙)).

Considering 𝑀 number of LSTM models in the development of the
ensemble DWEM, with the computational complexity of 𝑂(𝐵×𝑛×(𝑑+𝑛))
for each model, having the cell and hidden states update complexities
of 𝑂(𝐵 × 𝑛), the overall worst case complexity is 𝑂(𝑀 × 𝐵 × 𝑛 ×

(𝑑 + 𝑛)). A details of the best, average, and worst case complexities
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Fig. 13. An illustration of the price pattern, highlighting the actual and predicted prices with a standard deviation (𝜎 = 10) and without outliers for the proposed DWEM approach.
Table 6
A statistical analysis of the charging load for the different charging methods with 95% confidence interval.

Models Mean SD Sample size Critical value Error range 95% CI

UCC [99] 122.54 62.46

60.00 2.00

17.74 (50.80%, 56.50%)
SR [100] 76.11 50.45 14.54 (36.70%, 38.80%)
STOU [101] 208.77 50.80 14.78 (35.40%, 39.20%)
MTOU [102] 128.03 52.70 15.24 (29.60%, 35.20%)
TLDCA [41] 209.58 38.38 11.05 (28.90%, 36.70%)
CCM [103] 143.22 33.93 9.78 (26.80%, 35.90%)
HCS [17] 145.78 25.42 7.36 (25.60%, 27.60%)
Ensemble DWEM 104.14 13.69 3.96 (15.70%, 23.20%)
Fig. 14. Arrival and departure sequence of electric vehicles.

Fig. 15. Arrival time store energy (SoC) against each type of battery capacities.

of the standard LSTM, stack LSTM, and ensemble DWEM is presented
in Table 6. It is evident that the proposed DWEM shares the same
best-case time complexity as the standard and stacked LSTM models.
17 
However, in the average and worst cases, the DWEM exhibits 𝑀 times
higher time-complexities, where 𝑀 represents the number of models
contributing to the ensemble. Consequently, in our case 𝑀 = 2, as the
ensemble consists of both the standard and stacked LSTMs. Therefore,
ignoring the constant term 𝑀 = 2, the DWEM achieves comparable
time complexities to those of the individual standard and stacked LSTM
models.

The execution time depends on the system configuration and can
vary across different systems. For our experiments, we used a 2 GHz
Quad-Core Intel Core i5 CPU with Intel Iris Plus Graphics 1536 MB
GPU and 16 GB of RAM. The recorded execution times with this system
configuration are presented in Table 7. The standard LSTM had the
shortest execution time at 52.20 min, followed by the proposed DWEM
at 78.60 min, and the stacked LSTM at 157.30 min. This indicates that
the standard LSTM takes approximately 26.40 min less than the pro-
posed DWEM. However, since execution times are machine-dependent
and can vary, our primary focus should be on computational complexity
rather than execution time.

5. Conclusion

In this paper, we introduced a novel DWEM that integrates both
standard and stacked Long Short-Term Memory networks. The model
is tailored for the forecasting of wholesale electricity prices, with a
specific focus on its applicability to charging aggregators optimizing
the aggregated charging load of electric vehicles at the LV distribu-
tion grid. A detailed architecture for the aggregated charging EVs is
presented and their charging optimization problem is formulated. To
enhance the efficiency of the proposed DWEM a heuristic mechanism
is introduced that evaluated various weight configurations and selected
those with the highest accuracy. Moreover, we incorporated a standard
deviation mechanism to assess the impact of DWEM on forecasting
accuracy, MSE, and MAE across different standard deviation levels. The
publicly available Houston electricity dataset was leveraged for exper-
imentation, and a detailed data engineering process was performed,
accounting for both outlier and non-outlier scenarios.

The proposed DWEM was applied to the refined dataset, and com-
parative case studies were conducted against standard and stacked
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Fig. 16. A comparison of the charging loads with different methods for the aggregated charging scenarios of electric vehicles.
Fig. 17. A comparison of the normalized charging cost with different methods for the aggregated charging scenarios of electric vehicles.
Table 7
Computational complexities (best, average, and worst cases) of the different models.

Models Computational complexities Execution time

Best-case Average-case Worst-case

Standard LSTM 𝛺(𝐵 × 𝑛 × 𝑑) 𝛩(𝐵 × 𝑛 × (𝑑 + 𝑛)) 𝑂(𝐵 × 𝑛 × (𝑑 + 𝑛)) 52.20 min
Stack LSTM 𝛺(𝐵 × 𝑛𝑙 × 𝑑) 𝛩(𝐿 × 𝐵 × 𝑛𝑙 × (𝑑 + 𝑛𝑙)) 𝑂(𝐿 × 𝐵 × 𝑛𝑙 × (𝑑 + 𝑛𝑙)) 157.30 min
Ensemble DWEM 𝛺(𝐵 × 𝑛 × 𝑑) 𝛩(𝑀 × 𝐵 × 𝑛 × (𝑑 + 𝑛)) 𝑂(𝑀 × 𝐵 × 𝑛 × (𝑑 + 𝑛)) 78.60 min

Note*: In our case 𝑀 = 2, ignoring constant term results in 𝛩(𝐵 × 𝑛 × (𝑑 + 𝑛)) and 𝑂(𝐵 × 𝑛 × (𝑑 + 𝑛)).
18 
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Algorithm 1 Standard LSTM Model with Random Search for Wholesale Energy Price Forecast
1: Input: Energy price sequential data
2: Output: Forecasting results
3: Initialize Parameters:
4: forget_activation ← sigmoid, output_activation ← relu
5: input_units[a, b] ← RandomSearch(224, 256) ⊳ Random search for input units between 224 and 256
6: Build the LSTM model:
7: ℎ𝑡 = 0, 𝑐𝑡 = 0 ⊳ Initialize hidden state and cell state
8: for each time step 𝑡 in 𝑋train do
9: input_data = 𝑋train[𝑡, ∶, ∶]
0: concat_input = [input_data, ℎ𝑡−1] ⊳ Concatenate input and previous hidden state

11: forget_gate ← 𝜎(𝑊𝑓 ⋅ concat_input + 𝑏𝑓 )
12: input_gate ← 𝜎(𝑊𝑖 ⋅ concat_input + 𝑏𝑖)
13: candidate_cell ← tanh(𝑊𝑐 ⋅ concat_input + 𝑏𝑐 )
14: output_gate ← 𝜎(𝑊𝑜 ⋅ concat_input + 𝑏𝑜)
15: 𝑐𝑡 ← (forget_gate ⊙ 𝑐𝑡−1) + (input_gate ⊙ candidate_cell) ⊳ Update cell state
16: ℎ𝑡 ← output_gate ⊙ tanh(𝑐𝑡) ⊳ Update hidden state
17: end for
18: Build the Sequential Model:
19: LSTM(input_units, forget_activation, output_activation) ⊳ Add the first LSTM layer
20: LSTM(output_units, forget_activation, output_activation) ⊳ Add the second LSTM layer
21: Flatten ⊳ Add the Flatten layer
22: Dense(𝑖𝑛𝑝𝑢𝑡_𝑢𝑛𝑖𝑡𝑠, activation ← sigmoid) ⊳ Add the first Dense layer
23: Dense(64, activation ← relu) ⊳ Add the second Dense layer
24: Dropout(0.1) ⊳ Add the Dropout layer with dropout rate of 0.1
5: Dense(32, activation ← relu) ⊳ Add the third Dense layer
6: Dropout(0.1) ⊳ Add another Dropout layer with dropout rate of 0.1
7: Dense(𝑛𝑒𝑥𝑡_𝑠𝑡𝑒𝑝𝑠, activation ← linear) ⊳ Add the final Dense layer
8: Compile the Model:
9: Compile(optimizer ← adam, loss ← mse)
0: return Forecasting results
LSTMs, as well as state-of-the-art models such as XGBoost, LGBM,
LR, and MVR models. The results demonstrated the effectiveness of
the proposed DWEM in both with and without outliers, especially in
scenarios with increased standard deviation values. In more detail,
the simulation results demonstrate that, for all values of standard
deviations in scenarios without outliers, DWEM (Auto-modified) exhib-
ited an average improvement in accuracy by 4.90%, 1.39%, 22.66%,
13.60%, 23.86%, and 19.32% when compared to Standard LSTM (Auto-
modified), Stack-LSTM (Auto-modified), XGBoost model, LGBM model,
LR model, and MVR models, respectively. Similarly, on average, the
proposed DWEM (Auto-modified) reduced the Mean Squared Error
(MSE) by 2.06, 0.98, 6.03, 3.07, 6.61, 5.37 when compared to Standard
LSTM (Auto-modified), Stack-LSTM (Auto-modified), XGBoost model,
LGBM model, LR model, and MVR models. The average reduction in
the Mean Absolute Error (MAE) with DWEM (Auto-modified) was about
0.23, 0.07, 3.89, 2.08, 3.51, and 3.66 when compared to Standard
LSTM (Auto-modified), Stack-LSTM (Auto-modified), XGBoost model,
LGBM model, LR model, and MVR models. The evaluation of MSE
and MAE confirmed the superior performance of DWEM, specifically
the DWEM (Auto-modified), over state-of-the-art prediction models,
indicating its efficacy in handling fluctuating energy prices. Moreover,
the proposed ensemble DWEM successfully reduced both charging load
and cost, followed by detailed statistical and computational complexity
analyses.
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Algorithm 2 Stacked LSTM with Random Search Hyperparameter Tuning
1: Input: Historical data sequences, Target variable, nextSteps, num_trials
2: Output: Stacked LSTM model with tuned hyperparameters
3: function Stacked_LSTM_Random_Search(historical_data, target_variable, nextSteps, num_trials)
4: Initialize hyperparameter search space:
5: 𝑙𝑠𝑡𝑚_𝑢𝑛𝑖𝑡𝑠_𝑙𝑎𝑦𝑒𝑟1 ← [64, 128, 256]
6: 𝑙𝑠𝑡𝑚_𝑢𝑛𝑖𝑡𝑠_𝑙𝑎𝑦𝑒𝑟2 ← [128, 256, 512]
7: 𝑑𝑒𝑛𝑠𝑒_𝑢𝑛𝑖𝑡𝑠_𝑙𝑎𝑦𝑒𝑟1 ← [64, 128, 256]
8: 𝑑𝑒𝑛𝑠𝑒_𝑢𝑛𝑖𝑡𝑠_𝑙𝑎𝑦𝑒𝑟2 ← [32, 64, 128]
9: 𝑑𝑟𝑜𝑝𝑜𝑢𝑡_𝑟𝑎𝑡𝑒 ← [0.1, 0.2, 0.3]
0: Initialize best_mse and best_model:
1: 𝑏𝑒𝑠𝑡_𝑚𝑠𝑒 ← ∞
2: 𝑏𝑒𝑠𝑡_𝑚𝑜𝑑𝑒𝑙 ← None
3: for 𝑖 = 1 to 𝑛𝑢𝑚_𝑡𝑟𝑖𝑎𝑙𝑠 do
4: Sample hyperparameters randomly:
5: 𝑙𝑠𝑡𝑚_𝑢𝑛𝑖𝑡𝑠1 ← random_choice(𝑙𝑠𝑡𝑚_𝑢𝑛𝑖𝑡𝑠_𝑙𝑎𝑦𝑒𝑟1)
6: 𝑙𝑠𝑡𝑚_𝑢𝑛𝑖𝑡𝑠2 ← random_choice(𝑙𝑠𝑡𝑚_𝑢𝑛𝑖𝑡𝑠_𝑙𝑎𝑦𝑒𝑟2)
7: 𝑑𝑒𝑛𝑠𝑒_𝑢𝑛𝑖𝑡𝑠1 ← random_choice(𝑑𝑒𝑛𝑠𝑒_𝑢𝑛𝑖𝑡𝑠_𝑙𝑎𝑦𝑒𝑟1)
8: 𝑑𝑒𝑛𝑠𝑒_𝑢𝑛𝑖𝑡𝑠2 ← random_choice(𝑑𝑒𝑛𝑠𝑒_𝑢𝑛𝑖𝑡𝑠_𝑙𝑎𝑦𝑒𝑟2)
9: 𝑑𝑟𝑜𝑝𝑜𝑢𝑡_𝑟𝑎𝑡𝑒 ← random_choice(𝑑𝑟𝑜𝑝𝑜𝑢𝑡_𝑟𝑎𝑡𝑒)
0: Build the Stacked LSTM model with current hyperparameters:
1: 𝑚𝑜𝑑𝑒𝑙 ← Sequential()
2: 𝑚𝑜𝑑𝑒𝑙.add(LSTM(𝑙𝑠𝑡𝑚_𝑢𝑛𝑖𝑡𝑠1, activation ← 𝑟𝑒𝑙𝑢, input_shape ← (𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠, 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠)))
3: 𝑚𝑜𝑑𝑒𝑙.add(LSTM(𝑙𝑠𝑡𝑚_𝑢𝑛𝑖𝑡𝑠2, activation ← 𝑟𝑒𝑙𝑢, return_sequences ←True))
4: 𝑚𝑜𝑑𝑒𝑙.add(Flatten())
5: 𝑚𝑜𝑑𝑒𝑙.add(Dense(𝑑𝑒𝑛𝑠𝑒_𝑢𝑛𝑖𝑡𝑠1, activation ← 𝑟𝑒𝑙𝑢))
6: 𝑚𝑜𝑑𝑒𝑙.add(Dropout(𝑑𝑟𝑜𝑝𝑜𝑢𝑡_𝑟𝑎𝑡𝑒))
7: 𝑚𝑜𝑑𝑒𝑙.add(Dense(𝑑𝑒𝑛𝑠𝑒_𝑢𝑛𝑖𝑡𝑠2, activation ← 𝑟𝑒𝑙𝑢))
8: 𝑚𝑜𝑑𝑒𝑙.add(Dropout(𝑑𝑟𝑜𝑝𝑜𝑢𝑡_𝑟𝑎𝑡𝑒))
9: 𝑚𝑜𝑑𝑒𝑙.add(Dense(𝑛𝑒𝑥𝑡𝑆𝑡𝑒𝑝𝑠, activation ← 𝑙𝑖𝑛𝑒𝑎𝑟))
0: Compile the model:
1: 𝑚𝑜𝑑𝑒𝑙.compile(optimizer ← 𝑎𝑑𝑎𝑚, loss ← 𝑚𝑠𝑒)
2: Train the model on historical_data:
3: 𝑚𝑜𝑑𝑒𝑙.fit(ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙_𝑑𝑎𝑡𝑎, 𝑡𝑎𝑟𝑔𝑒𝑡_𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒, epochs ← 100, batch_size ← 32, verbose ← 0)
4: Evaluate the model on validation data:
5: 𝑣𝑎𝑙_𝑚𝑠𝑒 ← 𝑚𝑜𝑑𝑒𝑙.evaluate(𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛_𝑑𝑎𝑡𝑎, 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛_𝑡𝑎𝑟𝑔𝑒𝑡, verbose ← 0)
6: if 𝑣𝑎𝑙_𝑚𝑠𝑒 < 𝑏𝑒𝑠𝑡_𝑚𝑠𝑒 then
7: 𝑏𝑒𝑠𝑡_𝑚𝑠𝑒 ← 𝑣𝑎𝑙_𝑚𝑠𝑒
8: 𝑏𝑒𝑠𝑡_𝑚𝑜𝑑𝑒𝑙 ← 𝑚𝑜𝑑𝑒𝑙
9: end if
0: end for
1: return 𝑏𝑒𝑠𝑡_𝑚𝑜𝑑𝑒𝑙
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ppendix

The pseudocode for the Stacked and Stacked LSTMs is presented in
lgorithms 1 and 2.
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