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Classification of Single-Photon Emitters in Confocal
Fluorescence Microscope Images by Deep Convolutional
Neural Networks

Dongbeom Kim, Seoyoung Paik, Jeongeun Park, Seung-Jae Hwang, Shinobu Onoda,
Takeshi Ohshima, Dong-Hee Kim,* and Sang-Yun Lee*

In the rapidly evolving field of quantum information technology, the accurate
and efficient classification of single-photon emitters is paramount. Traditional
methods, which rely on conducting time-intensive Hanbury Brown-Twiss
(HBT) experiments to acquire the 2nd-order correlation function of photon
statistics, are not efficient. This study presents a pioneering solution that
employs Deep Convolutional Neural Networks (CNNs) to classify
single-photon emitters in confocal fluorescence microscope images, thereby
bypassing the need for laborious HBT experiments. Focusing on the
nitrogen-vacancy centers in diamond, the model is trained using fluorescence
images of emitters that have been previously classified through HBT
experiments. Applied to unclassified fluorescence images, the model achieves
up to 98% accuracy in classification, substantially accelerating the
identification process. This advancement not only makes the classification
workflow more efficient but also promises wider applicability across various
color centers and isolated atomic systems that necessitate imaging for
isolation verification. This research signifies a substantial advancement in the
application of quantum technologies, leveraging the power of deep learning to
optimize the utilization of single-photon emitters.

1. Introduction

The study of solid-state single-photon emitters, such as color
centers in solids, is pivotal in quantum information technol-
ogy, especially for quantum communication. These emitters are
essential for spin-photon conversion, a critical component in
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quantum computing networks.[1–4] Creat-
ing these color centers within solids can be
achieved artificially through methods such
as ion implantation,[5,6] electron injection,[7]

and laser writing.[8,9] However, isolating
these color centers remains a challenge.[2,3]

Additionally, the large focal volume of con-
ventional optical microscopy compared to
the atomic-scale color centers makes distin-
guishing individual emitters difficult when
multiple emitters are present.[10–12]

The conventional method to identify
single-photon emitters involves analyzing
emitted photons’ physical properties us-
ing confocal fluorescence microscopy. To
confirm an emitter’s single photon emit-
ting characteristic, researchers measure
its second-order correlation function in
photon emission statistics g(2)(𝜏), through
the HBT experiment, analyzing the ar-
rival time intervals between photons 𝜏 and
verifying antibunching g(2) (0) = 0.[13,14]

Real experiments often encounter chal-
lenges due to stray photons, and detector

dark counts, making ideal antibunching hard to achieve.[13,15]

Also, noise in real experiments require significant time to
achieve a high signal-to-noise ratio (SNR) sufficient for the single
emitter classification.[16,17] Alternatively, when evaluating well-
characterized color centers, it becomes feasible to distinguish sin-
gle emitters through the measurement of the maximum photon
emission rate, commonly referred to as the saturated count rate.
Nevertheless, this endeavor also entails iterative measurements
while altering optical pumping rates.[13,16]

When numerous emitters exist within a sample, identifying
each emitter as a single entity is a time-consuming task. For these
reasons, recent research has explored usingmachine learning for
more efficient analyzing method of the g(2)(𝜏) data.[17,18] While
this research improved time efficiency, it has not simplified the
conventional process significantly, which still involves conduct-
ing HBT experiments. Thus, there is a need for methods that by-
pass HBT experiments for efficiency.
Ideal single photon emitters create a 3D image resembling a

point spread function (PSF) when viewed through imaging sys-
tems like confocal microscopy.[19] Therefore, analyzing whether
confocal microscopy images match the PSF may allow for the
classification of single photon emitters. However, due to the focal
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volume being significantly larger than that of single photon emit-
ters, accurately identifying them is challenging especially when
they are in close proximity. Furthermore, the judgment process
heavily relies on subjective factors influenced by visual percep-
tion, leading to significant variability in results and analysis time.
In this study, we utilize CNN, a model of deep learning, to per-

form single emitter classification efficiently. CNNs excel at image
classification[20] and have been used in a wide range of fields such
as gravitational waves in astrophysics,[19] quark/gluor discrimi-
nation in particle physics,[20] disease diagnosis in medicine,[21]

and determining the color of a single emitter.[22] For our study,
we used nitrogen-vacancy (NV) centers, a long-studied and well-
characterized diamond defect that has been prominent in the
fields of quantum network[4,23,24] and quantum sensing,[25,26] to
obtain image training data for single emitter classification. We
established two deep learning models using individual images of
NV centers that were determined to be single emitters or non-
single emitters by analyzing g(2)(𝜏) through HBT experiments.
The first model was trained using the individual NV center im-
ages acquired by confocal microscopy and the values of the laser
power used for each acquired images since the brightness of a
single emitter and the power of a laser are correlated.[13] For the
second model, the values of the laser power used for each ac-
quired images were not used to train the CNN model. The sec-
ond model was used to identify single emitters among the mul-
tiple spots in wide area images with the classification accuracy
of 91% while the first model was used to classify single emit-
ters for individually focused images and 98% accuracy was ob-
tained. This marks the first attempt to identify single photon
emitters using deep learning, bypassing the need for HBT ex-
periments and significantly improving efficiency. This method is
useful not only for the diamond NV centers, but also for the vari-
ous color centers in solids such as silicon carbide[16,27–33] and 2D
materials.[34,35] We also expect that this method could be applied
to other physical systems that require imaging of isolated atomic
or atom-like physical systems, such as phosphorous donors in sil-
icon observed by scanning tunneling microscopy,[36] and single
atoms on surface,[37] promising advancements in imaging iso-
lated atomic systems.

2. Methods

2.1. NV Center in Diamond as a Model Single-Photon Emitter

In our study, the NV center in diamond serves as the model
for single-photon emitter. It is a point defect comprising a
nitrogen impurity and a carbon vacancy in the diamond lat-
tice. This defect is notable for its photon emission probabil-
ity, which is highly dependent on the electron spin state lead-
ing to the high-fidelity spin-photon conversion.[3] This charac-
teristic facilitates the development of various quantum technolo-
gies, including quantum communication, sensing, and com-
puting, by employing the ground state electron spin as a
qubit.[2,3]

The NV center exists in two charge states: NV0 and NV−, with
our research focusing on NV−. The spectrum of photons emit-
ted from NV− displays a 200 nm wide phonon-side band cen-
tered around 700 nm at room temperature.[2] Since we only use
the NV center as a single-photon source, we do not need to con-

sider electron spin and spin-dependent photon emission. Thus,
we model the NV center as a three-level system, encompassing
the ground state, excited state, and metastable state, as depicted
in Figure 1a.[15] Thismodel illustrates that with increasing optical
pumping rates, the probability of photon emission rises before
reaching saturation.

2.2. Second-Order Correlation Function for Traditional
Classification

Identifying single-photon sources involves measuring the
second-order correlation via the HBT configuration.[38] The ex-
perimental method depicted in Figure 1b is used to record the
photon detection events at two output ports of a beam split-
ter over time, deriving the second-order correlation function as
below,[13]

g(2) (𝜏) =
⟨n (t) n (t + 𝜏)⟩
⟨n (t)⟩ ⟨n (t + 𝜏)⟩

(1)

where t is the time at which the photon is detected, 𝜏 is the time
interval between two photon measurement events, and n(t) is
the number of photons measured at t. This equation considers
the timing and interval between photon detections, highlight-
ing that ideal single emitters exhibit anti-bunching, where si-
multaneousmulti-photon detections are impossible, indicated by
g(2) (0) = 0. On the other hand, when N photons emitted simul-
taneously, g(2) (0) = 1 − 1∕N is given, which becomes g(2) (0) =
0.5 for N = 2. However, real-world conditions, including back-
ground noise from various sources and dark count of the de-
tector, complicate achieving ideal anti-bunching. Consequently,
when the measured g(2)(0) is <0.5, it is accepted as an exper-
imental evidence for a single photon emission.[13,15] Figure 1c
shows a typical g(2)(𝜏) function for the diamond single NV cen-
ter measured in the home-built experimental setup described
later. It typically takes 5–10 min to achieve sufficient SNR mak-
ing the identification of multiple emitters time-intensive. This
situation is depicted in Figure 1e that will be explained in more
detail later.

2.3. Point Spread Functions of Single Emitters

This study aims to train a neural network using optically ac-
quired images of single emitters, focusing on the PSF. The PSF
describes the distribution of light from a point source as cap-
tured by an optical microscopy system.[39] In an ideal setting, as
shown in Figure 1d, the 2D PSF appears as an Airy function on
the focal plane, extending three-dimensionally to depict light dis-
tribution depth. For confocal fluorescence microscopy, which is
diffraction-limited, the PSF’s boundary is where light intensity
falls to 1∕e of its peak, with its radius defined by the formula
r ≈ 0.51𝜆∕NAwhere 𝜆 is the light source’s wavelength, andNA is
the optical system’s numerical aperture.[39] With our setup using
a 𝜆 = 532 nm wavelength and an NA = 0.95 objective, the PSF
radius is r ≈ 300 nm as close to the experimental obtained PSF
radius of ≈400 nm as in Figure 1d. Given the NV center’s atomic
size, its image aligns closely with an ideal PSF. When multiple
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Figure 1. Diamond NV center as a model system. a) Energy levels of the NV centers and the typical photon emission rate as a function of optical
excitation power of a three-level single-photon emitter. The photon emission rate saturates as the excitation power increases. b) Diagram illustrating
the structure of the HBT experiment. TCSPC: time-correlated single photon counter. c) The measured second-order correlation function of a single NV
center in diamond. d) Numerically calculated 3D Point Spread Function by using PSFLab (I), brightness distribution in the focal plane (II), and the actual
image of single emitter in the focal plane (III). The image III is an example of the “focused emitter image”. The brightness is indicated at the right axis as
a unit of the detected photon counts per second (kcps). e) Timeline comparing the process of identification of a single emitter by using the traditional
HBT experiments and the use of deep learning method. See text for detail.

point sources are closely spaced, the acquired image resembles
the PSF of a single light source so that distinguishing them be-
comes challenging. This work demonstrates the effectiveness of
deep learning in image-based single emitter classification, out-
performing conventional approaches.

2.4. Sample Preparation and Experimental Methods

In this study, a diamond sample with an array of NV centers
formed by ion implantation was used. The ion implantation was
performed using a 10 MeV nitrogen micro ion beam.[40] Focus-
ing the ion beam at desired positions with a dose of ≈500 ions

per position created clusters involving many NV centers. We em-
ployed a home-built confocal fluorescence microscope to exam-
ine the single emitters. The sample wasmounted on a piezo scan-
ner capable of 1 nm precision movements in three dimensions.
For excitation, we used a 532 nm laser directed through an NA
= 0.95 objective, which also served to collect emitted photons.
These photons were then filtered using a 685 nm long-pass filter
before detection by single-photon detectors, employing an HBT
setup for g(2)(𝜏) measurements. Figure 2a depicts the schematic
of the used confocal fluorescence microscope. Using this setup,
an image for an array of NV centers was acquired, which is shown
in Figure 2b.

Figure 2. Experimental setup and confocal raster scan images. a) Home-built confocal fluorescence microscopy. The HBT setup is depicted in Figure 1b.
b) NV center array generated by micro ion beam. A 100 μm × 100μm image reveals 15 bright clusters. The numbers are put to label each cluster. The
several bright spots at the top left corner are due to the high dose implantation that was intentionally done to make a marker. Several bright spots not
at the lattice points of the array are due to the misalignment of the ion beam. c) A 10 μm × 10μm “large-scan image” with a resolution of 0.1 μm from
the cluster 12.
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Table 1. Number of single and non-single data and laser input power for each cluster. The table displays the number of collected single and non-single
data, as well as the input power, for each cluster.

Cluster # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Laser power (mW) 0.18 0.18 0.18 0.18 0.18 0.17 0.17 0.17 0.15 0.12 0.12 0.13 0.13 0.13 0.13

Single 10 3 8 12 16 13 13 14 12 11 14 17 15 11 15

Non-single 13 17 16 19 11 20 8 13 9 8 5 11 22 9 15

2.5. Data Collection and Preprocessing

We conducted a confocal raster scan across a 10 μm × 10μm
region at 0.1 μm pixel spacing, centered on the brightest pixel
in each cluster formed by ion implantation, across 15 clus-
ters. These scans produced “large-scan images,” exemplified in
Figure 2c. Within these regions, we could identify many pixels
showing the local maxima of the photon count rate, indicating
potential emitters. Subsequently, 1 μm × 1μm “focused emitter
images” were obtained under identical conditions for each poten-
tial emitter, with an example shown in Figure 1d. These images
of 11 × 11 pixels were instrumental for training, as detailed later.
Each potential emitter underwent g(2)(𝜏) function measure-

ment, classifying it as a single emitter if g(2)(0) was below 0.5. In
addition, we extracted the count rate of the background to remove
its contribution. Nine emitters whose g(2)(0) < 0.5 could not be
determined within the margin of error were excluded. Also, laser
power data for each emitter image were recorded for training pur-
poses. This process yielded datasets for 380 emitters in total. In
order to use both the brightness data and the laser power data as
training data, both data were preprocessed to normalize the data
to a normally distributed value.
The number of training data obtained from each cluster and

the data of laser input power are shown in Table 1. Among the
training data obtained by determining g(2)(0), there are 184 sin-
gle emitters and 196 non-single emitters, demonstrating a bal-
anced distribution for binary classification, mitigating bias to-
wards either category. This balance extends to laser input power
data, indicating no correlation between emitter type and laser
power, further validating the dataset’s suitability for unbiased
classification.
The process explained above includes a conventional single

emitter identification process using the g(2)(𝜏) data; obtaining
small size scanned image with high resolution to locate emitters
and performing theHBT experiment to test whether g(2)(0) < 0.5.
As explained above, our motivation is to find a way to classify sin-
gle emitters without performing this time-consuming process as
described in Figure 1e. For this purpose, once the training was
done, we tried to test the classification of single emitters only us-
ing the large-scan image (10 μm × 10μmsize). Since the ion im-
plantation results in the lateral distribution of the createdNV cen-
ters, in a large area confocal raster scanned image with an arbi-
trary emitter in focus, not all the emitters are in the focal plane. To
classify such emitters, we extracted 1 μm × 1μm “cropped emit-
ter images” from bright spots in the large-scan images. To avoid
judging background noise as a local maximum, we included only
the cases inwhich the localmaximumcount rate is different from
the minimum of the surrounding eight pixels by >4 kcps. These
images were then used in deep learning models to identify sin-

gle emitters, demonstrating a novel approach to emitter classifi-
cation without extensive traditional methods.

2.6. Deep Learning Model Development

We developed a deep learningmodel that combines CNN for pre-
processing of image data and a fully connected network for binary
classification as sketched in Figure 3. Using a labeled dataset of
experimental images prepared above, the model was trained to
predict whether a given input image is of a single emitter. The
model output P(x) for a given input data x is often interpreted as
a probability of x belonging to a target class in the sense of learn-
ing a binary distribution of labels with the cross entropy that we
employed here for our model. For our dataset with balanced pop-
ulations of the two classes, it is reasonable to set the prediction
criterion to be Pc = 0.5 so that it can predict a given image data
x to be a single emitter for P(x) ≥ Pc or a non-single emitter for
P(x) < Pc. The detailed description of the model and the super-
vised learning procedures are provided in Supporting Informa-
tion.
We considered two slightly different versions of the learning

model. “Model I” additionally uses a laser power value that com-
bines with the CNN-processed image data tomake an input to the
fully connected layer. On the other hand, “Model II” does not uti-
lize the laser power information. We generated four candidates
of themodels for each ofModel I and II and selected the one with
the best test accuracy.
The purpose of introducing Model II is to deal with the issue

of the large-scan images where the individual emitters are out of
focus. Model I is designed to take advantage of the apparent cor-
relation between the laser input power and the brightness of the
focused emitters, achieving higher classification performance for
small images where the laser power is likely to be proportional to
the brightness. However, the large-scan images that are out of fo-
cus on the emitters unlikely exhibit such correlation, and Model
II ignoring the laser power turned out to work better for the clas-
sification of the emitters in the cropped emitter images.

3. Results and Discussion

3.1. Classification Accuracy Using Focused Emitter Images

Now we present the results of the single emitter classification
using Model I trained using the focused emitter images and the
laser power data. Figure 4 presents the results for the focused
emitter image samples, comparing the exact manual classifica-
tions based on g(2)(0) with the automatic prediction results based
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Figure 3. Schematic diagram of the neural network model. The brightness data of a given image in 11 × 11 pixels is processed through the CNN layers.
The output from the CNN layers is optionally combined with the laser power data for Model I and then processed through the fully connected layers to
make an output value P for binary classification.

Figure 4. Examples of emitters images and predictions using Model I. The vertical color bars indicate the photon count rate in the unit of kcps. The
manual identification of a “single” or “non-single” emitter based on g(2)(0) and the value of the model output P for the deep learning prediction are
specified at the top and bottom of each image, respectively. The top and middle row present successful model predictions of single (top) and non-single
(middle) emitters, and the bottom row presents rare failures of model predictions.

Adv. Quantum Technol. 2024, 2400173 2400173 (5 of 9) © 2024 The Author(s). Advanced Quantum Technologies published by Wiley-VCH GmbH
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on the model output value P. The top row, from 1) to 5), shows
the correct identification of the single emitters. While there are
clear cases, such as 1) and 2), where the well-isolated single emit-
ters are perfectly identified by P ≈ 1, the predicting power of our
model can be better demonstrated in the nontrivial cases where
the emitters are not isolated. For such cases of 3), 4), and 5),
where the emitters are close to each other, our model still cor-
rectly identifies a single emitter at the center with P higher than
0.98. Excellent performance can also be seen in the middle row
from 6) to 10) as well, where the model prediction is successful
for various types of non-single emitters, including the cases of
non-isolated emitters and those similar to point sources. In par-
ticular, the non-single emitter of 8), which is correctly predicted
by our model, is highly nontrivial because its brightness is simi-
lar to that of a single emitter.
Unsuccessful model predictions are found in only about two

percent of the test data. The bottom row of Figure 4 shows such
cases where themodel prediction does not agree with the classifi-
cation using g(2)(0). The images that lead to invalid model predic-
tions have nontrivial features, such as in the single-emitter cases
of 11) and 12) where the point source shape is hardly identified
due to the surrounding emitters while the brightness is similar
to that of a single emitter. However, it is generally challenging to
decipher the mechanism of how a deep learning model selects
information to process for classification because of its black box
nature. In the following section, wewill provide a brief discussion
about the decision-making procedure of our CNN model and its
black box nature more in detail.
The prediction accuracy of Model I is 0.979, which is the frac-

tion of the cases giving correct predictions examined in the test
dataset of the focused emitter images. The images used for the
accuracy test were not included in the training and validation
dataset of the supervised learning. We generated four candidates
of the model that were trained with different selections of train-
ing and test data sets. While all results shown here are from the
onewith the best test accuracy that we finally selected forModel I,
the accuracy difference between the model candidates are within
just one percent (see Supporting Information for details). In ad-
dition, comparing with Model I, Model II exhibits a lower test
accuracy of 0.905 for focused emitter images. The superior ac-
curacy of Model I validates our idea of using the laser power as
another input, which additionally utilizes the information that
the brightness is related to the laser input power and their PSF.
A qualitative way of verifying the robustness of the model pre-

diction is to see how sharply the model prediction distinguishes
one class from the other. While our model prediction using the
criterion Pc = 0.5 shows a good overall accuracy for the test data,
an interesting question would be how well separated the value
of P for a single-emitter data is from P of a non-single emitter
data in the entire set of the images. For instance, one would not
have much confidence if one had to make a binary classification
based on the model output of 0.51 and 0.49. Figure 5 addresses
this question by showing the distribution ofP over the test dataset
and the dependence of the prediction accuracy on the values of P.
The histogram of the model predictions presents sharp bimodal
peaks near P = 1 and P = 0, demonstrating good distinguisha-
bility between themodel predictions of different classes. The pre-
diction accuracy measured for each histogram bin, namely the
fraction of valid predictions among the cases having a value of

P in the bin, indicates that the main loss of accuracy occurs for
much less populated cases with P near 0.5. The high population
of the predictions with P = 1 and P = 0 and their excellent
accuracy indicates the excellent quality of our model training.

3.2. Classification Accuracy Using Large-Scan Images

This section evaluates Model II’s performance on the cropped
emitter images derived from large-scan images, where laser
power is irrelevant because the image is out of focus and thus
not considered in the model for large-scan images. The model
was trained using the same labeled dataset of the focused emit-
ter images. Among the four candidates generated, we selected
the one with the best test accuracy of 0.905 for Model II. The
accuracy difference of unselected candidates was about six per-
cent. See Supporting Information for more details of the model
training. Figure 5c,d demonstrates reasonably good performance
of Model II in the test for the reliability of the prediction, where
Model II and Model I exhibit qualitatively the same features, but
Model II shows slightly reduced accuracy for the test data of fo-
cused images. Although, the genuine purpose of Model II is to
go beyond the classification of the focused images.
We applied Model II to the dataset of 105 emitter images

cropped from large-scan images. The cropped images belong to
the selected clusters shown in Figure 6 and are labeled as a sin-
gle or non-single emitter using g(2)(0) data. Figure 6 compares the
locations of single emitters manually identified using g(2)(0) with
the single emitters identified from the automatic model predic-
tions. The percentage of perfect matches is 89.5%, and this value
is comparable to the accuracy seen above in the test with the fo-
cused images. This demonstrates the performance of our deep
learning model as an automatic tool to identify single emitters
within broader image scans, affirming its utility in efficiently pin-
pointing real single-photon sources by analyzing extensive scan
data.

3.3. Black Box Nature of the Classification Process

In this section, we address the complexities surrounding how
our CNN model makes classification decisions. This investiga-
tion is particularly prompted by the non-trivial cases highlighted
in Figure 4 from Section 3.1. One of the tests involved comparing
the final outputs of the CNN between successful and unsuccess-
ful classifications. Although some differences were observed, we
were unable to discern any systematic patterns that could reveal
the decision-making process. This absence of interpretable pat-
terns indicates that the processes within the CNN, particularly
in the deeper layers, transform features into forms that are dif-
ficult to trace back to their original inputs. Given the complex-
ity in deeper layers, our next investigation focused on the first
layer, which would process the most direct features from the in-
put images. We conducted numerical experiments using an arti-
ficially created ideal 2D PSF image to observe how initial inputs
are transformed by this layer. We attempted to find a key image
feature contributing to the model decision by testing a possible
change in the model output against the deactivation of each filter
in the first layer. However, these efforts also failed to yield signif-
icant insights into the classification mechanism, underscoring
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Figure 5. Accuracy and reliability of the single and non-single emitter classification. The left panels count the cases giving a model output P examined
over the dataset of the focused emitter images using a) Model I and c) Model II. The bin size ΔP = 0.1 is used to construct the histograms. In the right
column, the accuracy of the prediction associated with a particular model output P of each bin is plotted for b) Model I and d) Model II. The bright blue
bar in (a,c) and diamond symbols in (b,d) are the data from the test dataset of all candidate models while the dark blue bar in (a,c) and star symbols in
(b,d) are from the test dataset of the best candidate.

the inherent challenges in interpreting CNNs. Details about the
conducted tests can be found in the Supporting Information.
The black box nature may also influence the transferability of

our CNN model, questioning whether a model trained on one
system can be applied to another. The PSF image characteristics,
including intensity and size, depend on experimental parame-
ters like laser power and photon collection efficiency, which vary
among different microscopes. Nonetheless, it is notable that our
second model, trained without laser power information, success-
fully classified single emitters in large-scan images with 89.5%
accuracy as discussed in the preceding sections. This success sug-
gests that factors like laser power and photon collection efficiency
might not be as crucial as the shape of the PSF for accurate clas-
sification.
Despite the successful application of the CNN model for

single-emitter classification, further improvements in under-
standing the underlying mechanisms are needed for extension
to broader applications. The “black box” nature of deep learn-
ing is a well-recognized challenge across various domains.[41,42]

We plan to continue our efforts to unravel these complexities.
A deeper understanding of the decision-making process could
reveal key features necessary for accurate classification and en-

hance the model’s robustness and adaptability across different
setups.

4. Conclusion

Our research marks a significant breakthrough in classifying
single-photon emitters by leveraging confocal fluorescence mi-
croscope imagery and laser input data, thus avoiding the time-
intensive HBT experiments. Traditionally, the process of identi-
fying and focusing on emitters has been time-consuming, but
our method significantly reduces this with reaching 97.9% clas-
sification accuracy for focused images and 89.5% for broader
scans. This efficiency, highlighted by a potential 90% time reduc-
tion, could revolutionize emitter studies in quantum technology.
It suggests that further automation may eliminate the need for
manual operation, dramatically enhancing both time and labor
efficiency in this vital research area. Furthermore, our findings
have profound implications for the development and deployment
of quantum sensors, particularly those based on color centers in
solids. The ability to accurately classify emitters within densely
populated sensor arrays may enable the creation of more sen-
sitive and specific sensors. In summary, our research not only

Adv. Quantum Technol. 2024, 2400173 2400173 (7 of 9) © 2024 The Author(s). Advanced Quantum Technologies published by Wiley-VCH GmbH
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Figure 6. Identified single emitters and model predictions in large-scan images. In the images of the clusters 12–15, the circles indicate the locations
of the single emitters that are manually determined using the g(2)(0) data, which is compared with the diamond symbols given to the prediction of the
single emitters by Model II pre-trained earlier with focused images.

establishes a new benchmark in emitter classification but also
lays the groundwork for significant advancements in quantum
technology applications.

5. Experimental Section
The Sample Preparation: The ion implantation into a commercially

available electronic grade diamond was performed using a microbeam
system connected to a 3 MV Tandem accelerator at QST in Japan.[40] The
15N3+ ions were accelerated to 10 MeV and focused into ≈2 μm in diam-
eter. The microbeam was scanned at ≈500 ions per site to form a square
grid of implantation sites spaced 25 μm apart in 200 × 200 μm2. After
implantation, the sample was treated with a hot mixed acid at elevated
temperatures to remove impurities and replace the sample surface termi-
nations with oxides. The temperature of the acid treatment was held at 200
°C for 30 min. After the acid treatment, ultrasonic treatment with acetone
and Milli-Q water was performed for 10 min each. After hot mixed acid
treatment, annealing was performed using an infrared heating furnace.
With this system, the furnace chamber reached 1000 °C within 1 min and
was held at 1000 °C for 2 h in vacuum. After annealing, the sample was
again treated with hot mixed acid, acetone, and Milli-Q water.

Confocal Microscope and g(2) Function: A home-built confocal fluores-
cence microscope was used to detect photons from single emitters in di-
amond samples. The sample was mounted on a piezo scanner (PI Instru-
ment P-562.3CD) that can be moved in three axes at 1 nm intervals. A
532 nm laser (CNI laser MGL-III-532) beam was reflected by a 600 nm
long pass dichroic mirror, incident on an NA = 0.95 objective, and finally
focused onto the sample. The light emitted by the single emitter was cap-

tured by the same objective and only photons that were filtered by the
600 nm long pass dichroic filter passed through the pinhole and reached
the single photon detectors (Excelitas SPCM-NIR). An additional 685 nm
long pass filter was installed in front of the photodetector for the further
reduce of the background photons. An HBT configuration was formed us-
ing a 50:50 beam splitter behind the pinhole for g(2)(𝜏) measurements as
in Figures 1b and 2a.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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