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Abstract

Single-cell RNA sequencing (scRNA-seq) is a powerful tool for elucidating cellular heterogeneity and tissue function in various biological
contexts. However, the sparsity in scRNA-seq data limits the accuracy of cell type annotation and transcriptomic analysis due to
information loss. To address this limitation, we present scRobust, a robust self-supervised learning strategy to tackle the inherent
sparsity of scRNA-seq data. Built upon the Transformer architecture, scRobust employs a novel self-supervised learning strategy
comprising contrastive learning and gene expression prediction tasks. We demonstrated the effectiveness of scRobust using nine
benchmarks, additional dropout scenarios, and combined datasets. scRobust outperformed recent methods in cell-type annotation
tasks and generated cell embeddings that capture multi-faceted clustering information (e.g. cell types and HbA1c levels). In addition, cell
embeddings of scRobust were useful for detecting specific marker genes related to drug tolerance stages. Furthermore, when we applied
scRobust to scATAC-seq data, high-quality cell embedding vectors were generated. These results demonstrate the representational
power of scRobust.
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Introduction
Single-cell RNA-sequencing (scRNA-seq) has gained prominence
for its ability to reveal the distinct features of tissues and
organisms. Although scRNA-seq allows high-resolution analysis
at the individual cell level, it does not inherently provide cell-type
labels, which limits transcriptomic analysis. Consequently, cell
type annotation is the first step in scRNA-seq, for which several
computational methods, like Seurat [1] and JAGLRR [2], have been
developed, but do not address the issue of sparsity in scRNA-seq
data. The depth of coverage in scRNA-seq is a trade-off between
the ability to detect a large number of cells simultaneously. For
example, platforms like 10X Genomics Chromium [3] can detect
many cells relatively inexpensively but suffer from significant
dropouts. In contrast, platforms such as Smart-seq2 [4] provide
high depth of coverage but tend to detect fewer cells at a high
cost. Therefore, addressing this issue is crucial for achieving more
robust analyses and accurate biological insights.

Several Transformer-based models tailored for scRNA-seq
[5–7] have been introduced. Because the Transformer was
originally designed for natural language processing (NLP) tasks,
genes and their expression values require transformation to fit
into NLP models. For instance, scGPT [8] transforms genes into
words and categorizes gene expression values into bins based on
their ranges. CIForm [7] divides lengthy cell-based gene expression
vectors into sub-vectors for projection into an embedding space
akin to ViT [9]. TOSICA [6] generates different gene expression
vectors by masking original vectors, and then projects them into

an embedding space. scFoundation [10] uses gene expression
embedding vectors and combines gene embedding vectors with
gene expression vectors.

Self-supervised learning (SSL) is required for initializing large
language models. Contrastive learning has been used in vari-
ous tasks and showed remarkable improvement in downstream
tasks [11–14]. In contrastive learning, data augmentation creates
pseudo-objects with local information derived from the origi-
nal object containing global information. Designing high-quality
data augmentation approaches for scRNA-seq is more challenging
than in computer vision, due to the extensive number of genes. In
computer vision, a given image contains all its information, allow-
ing images to be augmented from complete information. However,
in scRNA-seq, a subset, e.g. 2,000 highly variable genes (HVGs), is
more often employed than entire gene data because of the large
dimension. Therefore, data augmentation from the subset will
suffer from severe incomplete information, and it is challenging
to leverage global information of scRNA-seq effectively.

CLEAR [15], Concerto [14], and Cake [16] apply contrastive
learning to scRNA-seq data. Although CLEAR creates augmented
embeddings using various augmentation techniques across all
genes, the augmented scRNA-seq data exhibits even greater
sparsity than the original data. In contrast, Concerto and Cake
utilize 2,000 HVGs and generate two embedding vectors for each
target cell using two different encoders. Specifically, Cake employs
a K-nearest neighbor search algorithm [17] to create pseudo
labels and assigns the same positive label to cells with identical
pseudo labels. On the other hand, Concerto augments samples by
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applying different encoders to the same cell; the positive pair
consists of embedding vectors of the same cell generated from two
different encoders. As a result, these augmentation techniques
using contrastive learning are still limited to a subset of all genes
and are ineffective at learning global information and mitigating
data sparsity.

This study presents and validates scRobust, a robust self-
supervised learning strategy designed to address the inherent
sparsity of scRNA-seq data. scRobust pre-trains a Transformer
encoder through contrastive learning and gene expression pre-
diction. Unlike previous foundation models [8, 10], we introduce
a novel self-supervised learning strategy specifically tailored for
scRNA-seq data, incorporating a novel cell augmentation tech-
nique to capture information across all genes. After pre-training,
the encoder is fine-tuned for cell-type annotation tasks using
highly unique genes. We demonstrate that scRobust outperforms
benchmark methods across most datasets and generates cell
embeddings that contain both cell-type and sample-specific infor-
mation. Additionally, we showed that our approach is also appli-
cable to scATAC-seq data.

Results
Overview of scRobust
The framework of scRobust is divided into the pre-training
(Fig. 1a–c) and downstream phases (Fig. 1d and e). For contrastive
learning, we developed cell augmentation, which generates high-
quality data augmentation of scRNA-seq data (Fig. 1a). In cell
augmentation, scRobust generates diverse cell embeddings for
a target cell from random gene sets without dropout. The cell
augmentation encoder offers two primary benefits: firstly, it
generates varied and distinct cell-embedding vectors by utilizing
numerous combinations of partial local information (small
subsets of whole genes); secondly, the encoder can learn all genes
with non-zero expression values. Therefore, the encoder can
access global information (whole genes) and effectively address
scRNA-seq data sparsity.

In the contrastive learning stage (Fig. 1b), the encoder creates
various local cell embeddings for each sample via cell augmenta-
tion. A simple classifier identifies the correct pairs of embedding
vectors originating from the same cell. These embeddings attract
and repel those from the same and different cells, respectively,
and each cell establishes a unique territory within the cell embed-
ding space (see “Contrastive learning” in the Methods). There-
fore, scRobust can map any local cell embeddings into a distinct
area within the cell embedding space, effectively aligning local
with global cell embeddings. During gene expression prediction
(Fig. 1c), the encoder predicts the expression of certain genes
via the dot product between a given local cell embedding and
target gene embeddings. In Figs S1 and S2, we verified that the
losses of contrastive learning and gene expression prediction
tasks were decreased in the training and test sets. This indi-
cates that our model can effectively extract cell-specific informa-
tion representing a given cell using a small number of different
genes. The details are provided in the “Pre-training results” of the
supplementary file.

After pre-training, the gene embeddings and encoder were
fine-tuned for cell type annotation. In the downstream task
(Fig. 1d and e), we used a larger number of genes relative to
the random genes used in pre-training, and the input gene sets
consisted of highly unique genes, which differ between cells. In
this context, highly unique genes refer to genes rarely expressed
within the population of a given dataset. As we used highly

unique but non-zero read count genes as the input, each cell
embedding was generated with different non-zero genes. Thus,
this approach effectively mitigates scRNA-seq data sparsity (see
“Unique gene selection” in the Methods; the benefits of using
highly unique genes are elaborated on in “Impact of unique genes”
of the supplementary file and Fig. S3).

Datasets
To assess the performance of scRobust in cell type annotation
across different protocols and tissues, we utilized nine benchmark
datasets: Baron Human [18], Muraro [19], Segerstolpe [20], Xin
[21], TM [22], Zheng 68K [3], Zheng sorted [3], MacParland [23],
and Baron Mouse [18]. Additionally, to thoroughly test the per-
formance of scRobust against the inherent sparsity of scRNA-seq
data, we generated corrupted datasets with severe data dropout.
Specifically, we added artificial dropouts of 30% and 50%, con-
verting the read counts of the corresponding genes with non-
zero values to zero in each cell. In these corrupted scenarios, we
used the models pre-trained on these datasets with additional
dropouts. The results represent the averages from 5×5 cross-
validation in the Baron Human [18], Muraro [19], Segerstolpe [20],
Xin [21], MacParland [23], and Baron Mouse datasets [18]. For the
TM [22], Zheng 68K [3], and Zheng sorted datasets [3], five-fold
cross-validation was employed due to the larger number of cells.
The details are in “Description of datasets” of the supplementary
file and Table S1.

Cell type annotation in nine datasets
Figure 2a shows the macro F1 and accuracy scores for scRobust
and seven benchmark methods across all datasets and dropout
scenarios (detailed in the “Benchmark methods” section of the
supplementary file). scRobust achieved the highest F1 scores
in eight out of nine datasets, with the exception of the Xin
dataset [21]. Figure 2b presents heatmaps of class-wise accuracy
scores for the Zheng 68K, Muraro, Baron Mouse, and Segerstolpe
datasets, comparing scRobust to Concerto [14], CIForm [7], and
TOSICA [6]. Figure S4 shows the cell counts for each cell type
across the nine datasets, along with counts of rare cell types
within each dataset. From Figs 2b and S4, it was observed that
scRobust significantly outperformed the benchmark methods in
identifying rare cell types. For instance, in the Zheng 68K dataset,
scRobust achieved an accuracy of 0.28 for CD4+ T Helper 2
cells, while the other methods had accuracies below 0.10. In the
Muraro dataset, scRobust achieved an accuracy of 1.0 for epsilon
cells, while the other methods scored zero. Similar trends were
observed in the Baron Mouse dataset for T, B, and Schwann cells,
and in the Segerstolpe dataset for MHC class II and epsilon cells.
These results demonstrate that scRobust excels in classifying rare
cell types.

In the experiments involving additional dropout, scRobust con-
sistently achieved the highest performance across all cases and
datasets. With an additional 30% dropout, scRobust demonstrated
superior performance compared to the benchmark methods with-
out additional dropout in the TM, Zheng sorted, Segerstolpe, and
Baron Mouse datasets (Fig. 3a). Even in the same datasets, the
performance of the second-best methods was similar to that
of scRobust with 50% additional dropout. With the exception
of CLEAR [15], most methods showed notable declines in per-
formance with additional dropout. However, scRobust was sig-
nificantly less affected by additional dropout, underscoring its
performance against scRNA-seq data sparsity.
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Figure 1. Overview of pre-training and downstream tasks in scRobust. (a) Cell augmentation generates various cell embeddings using different
randomly selected gene sets from a given cell. For clarity, Transformer was drawn multiple times although a single Transformer was used. (b) Contrastive
learning, where local cell embeddings from the same and different cells attract and repel each other, respectively. (c) Gene expression prediction task,
where an arbitrary local cell embedding is used to predict the expression of randomly selected genes, which differ from the genes used to generate
the local cell embedding. (d) Gene selection for a downstream task, where exclusively expressed genes in a target cell (i.e. highly unique genes) are
preferentially selected. (e) Cell type annotation for the downstream task, using highly unique genes and the pre-trained encoder.
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Figure 2. Cell type annotation results in intra-dataset cross-validation. a Comparison of the F1 and accuracy scores at 0%, 30%, and 50% additional
dropout, illustrating the performance of scRobust under varying degrees of data sparsity. b Heatmaps based on confusion matrices for scRobust,
Concerto, CIForm, and TOSICA. These matrices display the accuracy of each cell type in the Zheng 68K, Muraro, Baron Mouse, and Segerstolpe datasets.
∗, ∗∗, and ∗∗∗ denote CD4+/CD45RA+/CD25-, CD4+/CD45RO+, and CD8+/CD45RA+, respectively, highlighting specific cell types within the datasets.
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Figure 3. Performance of scRobust in various environments. (a) Line charts depicting F1 scores under various additional dropout scenarios, with “AD”
signifying “additional dropout.” The chart illustrates how scRobust’s performance varies with increasing levels of dropout. (b) Box plot of scRobust’s
performance in predicting novel cell types, highlighting its ability to handle unseen cell types. (c) Box plot demonstrating the performance of scRobust
across different sequencing platforms, indicating its adaptability to various data sources. (d) Results from an ablation study conducted on scRobust,
illustrating the impact of different factors. Here, “R” refers to the use of random genes, “HVGs” indicates the use of highly variable genes, and “w/o-PT”
represents scenarios without pre-training.

Detection of novel cell types
As unknown cell types are frequently encountered in real-world
scenarios, the efficient identification of novel cell types is crucial
in practice. Accordingly, we assessed average model performance
when encountering novel cell types across five runs using the
MacParland dataset [23]. In this task, we used a frozen pre-trained
scRobust to avoid overfitting (details in “Discovery of novel cell
type” of the supplementary file).

Methods that perform well with known cell types often exhibit
poorer performance when encountering novel cell types. Conse-
quently, simpler methods are generally outperformed by more
complex methods for unknown (novel) cell types. Figure 3b illus-
trates this phenomenon, where the simpler methods sigGCN and
DNNs outperform the more complex models CIForm, TOSICA,
and Concerto. The F1 or accuracy scores of CIForm and Concerto
were 0.819 or 0.907 and 0.907 or 0.905, respectively, whereas
their accuracy scores for novel cell types were 0.202 and 0.265,
respectively. However, scRobust outperformed the other methods
for both known (F1 score = 0.870, accuracy = 0.888) and novel cell
types (accuracy = 0.619). Considering that a frozen pre-trained

scRobust was used in this task, our findings suggest that the
encoder was effectively trained to extract cell-type information
during the pre-training phase.

Cell type annotation across different sequencing
platforms
Cell type annotation across diverse datasets is an essential task
in real-world applications, as single-cell datasets often originate
from varied batches and platforms. To assess the performance
in annotation across different sequencing platforms, we created
a combined human pancreas dataset using the Baron Human
[18], Muraro [19], Segerstolpe [20], and Xin datasets [21]. Because
some cell types do not exist in a test dataset, the macro-F1 score
could not properly evaluate models when predicting cell types
not existing in a test dataset. Thus, we evaluated models using
accuracy, the macro-, and weighted-F1 scores.

Figure 3c and Table S2 show that scRobust outperformed
benchmark methods in weighted-F1 (0.968 ± 0.016) and accuracy
(0.967 ± 0.017), but not in macro-F1 (0.827 ± 0.097). Among
benchmarks, CIForm had the highest macro-F1 (0.843 ± 0.091)
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but ranked third in weighted-F1 (0.954 ± 0.025) and accuracy
(0.956 ± 0.023). scGPT was second in weighted-F1 (0.958 ± 0.029)
and accuracy (0.958 ± 0.028) but had a lower macro-F1 (0.803
± 0.137). The macro-F1 significantly decreases with incorrect
predictions of cell types not in the test set. For example, in the
Xin dataset with four cell types, some methods showed lower
macro-F1 than weighted-F1. scRobust’s narrow, high-positioned
box plots in Fig. 3c and its low standard deviations in weighted-
F1 and accuracy indicate its high and stable performance across
different datasets and sequencing platforms.

Performance in complex tissues
To verify whether scRobust can extract meaningful biological
information from complex tissues, we tested our model on
datasets from the cerebellum, multiple sclerosis (MS), cortex,
kidney, heart, and cross-tissue immune cells [24–29] (Detailed in
the “Complex tissue datasets” section of the supplementary file
and in Table S3). The cerebellum, MS, cortex, kidney, heart, and
immune datasets contain 59, 18, 19, 26, 60, and 45 cell types,
respectively. For the cortex dataset [26], we used 19 subclasses
that are matched with subtypes in [30].

As shown in Fig. S5, scRobust achieved the best performance
in the MS, kidney, heart, and cross-tissue immune cell datasets,
whereas CIForm outperformed scRobust in the cerebellum and
cortex. Although the performances between scRobust and CIForm
were similar in the cerebellum dataset, scRobust performed the
worst in the cortex dataset. Thus, to investigate the reason,
we generated t-SNE plots of GABAergic cell embeddings from
scRobust and principle component analysis (PCA). In Fig. S6,
GABAergic PAX6 cells were found to be mixed with some GABAer-
gic VIP cells only in the scRobust, whereas these cell types were
clearly distinguished in the PCA. However, PAX6 expression was
present only in a subset of GABAergic PAX6 cells, and GABAergic
VIP cell in the mixed area rarely had gene expression value of
VIP. Instead, the cells in the mixed region showed significant
expression levels of CRN1. To explore the biological states of
the isolated versus mixed GABAergic VIP cells, we conducted
an enrichment test (GSEA) [31]. The GABAergic VIP cells in the
mixed area had the low normalized enrichment scores (NES)
for GOBP_CENTRAL_NERVOUS_SYSTEM_NEURON_DEVELOPMENT and
GOBP_CENTRAL_NERVOUS_SYSTEM_NEURON_DIFFERENTIATION

and high NES for REACTOME_GABA_RECEPTOR_ACTIVATION

(Table S4). Considering the expression levels of marker genes
and the enrichment test results, it is possible to classify cells in
the mixed area as another sub-type. These results indicate that
brain cells with a variety of characteristics could be classified in
several different ways.

Ablation study
We designed three variations of scRobust for the ablation study:
scRobust-w/o-PT is scRobust without pre-training; scRobust-RGs
uses random genes instead of unique genes; scRobust-HVGs uses
HVGs instead of unique genes (details in “Ablation study design”
of the supplementary file). Figure 3d shows the results of the
ablation study. As expected, scRobust-w/o-PT performed worse
than other scRobust variations in most of the datasets. Interest-
ingly, the performance of scRobust-HVGs was similar to that of
scRobust-w/o-PT in some datasets. Despite using a pre-trained
model, employing the same genes for all cells seems to limit the
extraction of unique features from each cell. Conversely, using
individual random genes (scRobust-RGs) achieved the second-
highest performance across most datasets. This suggests that the
pre-trained model can extract global information from randomly

selected genes. Nevertheless, utilizing highly unique genes consis-
tently ensures more stable and superior performance compared
to random genes in cell type annotation tasks.

Pathways in the cell embedding space
Considering that pathways consist of specific gene sets, scRo-
bust can generate pathway-related embedding vectors using the
genes from a given pathway. For this process, we define two
types of vectors: pathway-informed cell embedding vectors and
pathway embedding vectors (see “pathway embedding vector” in
the Methods). The pathway-informed cell embedding vector is
generated using a pathway gene set and gene expression values
from an input cell. Similarly, the pathway embedding vector also
utilizes genes from the pathway, but not scaled by gene expression
values. In the cell embedding space, pathway embedding vectors
represent the pathways themselves, whereas pathway-informed
cell embedding vectors encapsulate information from the given
pathway for individual input cells.

Some cell types can be characterized by specific pathways;
e.g. Mauro et al. [19] identified pathways that define different
cell types in the pancreas, such as alpha, beta, and gamma cells
(Table S5). To visualize the relationship between pathways and cell
embedding vectors, we drew t-SNE plots of alpha, beta, gamma,
and delta cells, along with their corresponding pathway vectors
in Segerstolpe [20], Xin [21], Muraro [19], and Baron human [18].
As shown in Fig. 4a, the pathway vectors were clustered near the
cell embedding vectors of the same cell type. Additionally, we can
predict cell types by evaluating the closeness between pathway-
informed cell embedding vectors and their corresponding cell-
type pathways (see “pathway embedding vector” in the Methods).
This approach yielded reasonable results across four pancreas
datasets: Acc = 0.891, F1 = 0.806 for Xin; Acc = 0.806, F1 = 0.701 for
Baron human; Acc = 0.836, F1 = 0.805 for Segerstolpe; and Acc =
0.905, F1 = 0.840 for Muraro. Notably, this approach showed lower
performance only for ductal cells (Acc = 0.349 in Baron, Acc = 0.498
in Segerstolpe, and Acc = 0.473 in Muraro), suggesting the poten-
tial for improvement when utilizing other ductal cell pathways. It
is important to emphasize that this approach is unsupervised, and
can be applied if well-defined cell-type pathways exist, providing
a promising alternative for cell-type annotation.

Impact of the pre-training tasks
The fundamental principle of our pre-training strategy is to
assimilate global information from all genes. By considering
all genes and their interrelationships, scRobust may capture
both the shared features of various cell types and the unique
characteristics of individual cells. In this experiment, we used
the Segerstolpe dataset [20], which contains the transcriptomes
of human islet cells for analyzing diabetes characteristics at
the single-cell level. The dataset contains cell type information
for each cell and hemoglobin A1c (HbA1c) values, used to
assess glucose control. Given that diabetes is a complex disease
impacting various bodily systems, HbA1c serves as an effective
indicator for capturing the individual characteristics of cells.
In practice, it may be useful to simultaneously examine cell-
type and sample-specific information such as the HbA1c value.
Accordingly, we compared the cell embeddings of scRobust with
those generated by Concerto and 2,000 HVGs.

We examined the clustering of cells based on cell type and
HbA1c values using scRobust. The experiment focused on α, β, δ,
and γ cell types, which are directly linked to diabetes, and gen-
erated t-SNE plots. In Fig. 4b, the clusters in scRobust and HVGs
are well distinguished by cell type (dot lines), unlike in Concerto.
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Figure 4. t-SNE plots of cell-embedding vectors without fine-tuning. (a) t-SNE plots showing alpha, beta, gamma, and delta cells, along with their
corresponding pathway embedding vectors for the Segerstolpe, Xin, Muraro, and Baron human datasets. (b) Comparative analysis of scRobust, Concerto,
and 2000 HVGs in the Segerstolpe dataset, where the color of the points represents HbA1c levels. Dotted lines distinguish between cell type groups,
while solid lines separate clusters within those groups. (c) Cell embeddings generated by scRobust, labeled by (left) cluster numbers, (center) cell types,
and (right) HbA1c levels for all cells in the Segerstolpe dataset. The numbers in clusters are cluster numbers generated by the Leiden algorithm, and
clusters enriched with patient and normal samples are numbered with black and white colors, respectively. The colored line indicates the cell cluster,
and these colors are the same as the labels’ colors in the center.

Furthermore, several islands are observed within the same cell
type clusters for scRobust, in contrast to the more uniform clus-
tering seen with HVGs. The island formation in scRobust seemed
to be associated with the comparable HbA1c values between cells
in the small islands (solid lines). In contrast, the cells in the other
methods were mixed in terms of HbA1c values. To ensure that
the clusters generated by scRobust were influenced by HbA1c
(diabetes) levels rather than batch effects, we created t-SNE plots
labeled by sample IDs and cluster numbers assigned by Leiden
algorithm [32] (Fig. S7 and Table S6) and conducted a gene set
enrichment analysis (GSEA) comparing clusters with high and low
HbA1c values. The results showed that most clusters comprised
different sample IDs, and many pathways related to diabetes and
insulin were identified between normal and diabetic cell clusters
(Tables S7–13).

As such, scRobust tends to generate multiple clusters even
within the same cell types. Thus, we furthermore investigated

whether different clusters within the same cell type may reflect
distinct biological pathways. To explore this, we generated
t-SNE plots of the Segerstolpe dataset [20] for all cell types,
distinguishing the cells by cluster numbers identified by the
Leiden algorithm, their cell types, and HbA1c values (Fig. 4c).
Specifically, we observed that α, β, δ and ductal cells formed
five, three, two, and three clusters, respectively. Then, we
conducted GSEA [31] between target clusters and the remaining
clusters (Tables S14–20). In the GSEA of α cell clusters, the
MURARO_PANCREAS_ALPHA_CELL pathway was enriched in
both clusters #0 and #3, but normalized enrichment scores
(NES) of clusters #0 and #3 were -2.52 and 2.05, respec-
tively. It is remarkable that most cells in cluster #3 were
from diabetic patients, whereas cluster #0 primarily consisted
of normal cells. Additionally, the diabetes-related pathway,
GSE9006_HEALTHY_VS_TYPE_2_DIABETES_PBMC_AT_DX_UP, was
enriched in cluster #4, where most cells exhibited high HbA1c
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values. In β cell clusters, β cell-related pathways (MURARO_
PANCREAS_BETA_CELL and VANGURP_PANCREATIC_BETA_CELL)
were enriched in both clusters #11 (normal) and #8 (patient).
Like α cell clusters, their NESs were low in the normal cluster
and high in the patient cluster. Similarly, cluster #13, which
consists of gamma cells from patients, showed high NES for
the MURARO_PANCREAS_PANCREATIC_POLYPEPTIDE_CELL and
VANGURP_PANCREATIC_GAMMA_CELL pathways. We consistently
observed that patient-derived clusters had high NESs for the
MURARO and VANGURP pathways, while normal clusters had low
NESs for these pathways. Additionally, the ductal cell cluster
containing patient cells had low NESs for insulin secretion related
pathways. These results demonstrate that scRobust not only
identifies cell type information but also detects detailed biological
states by capturing functionally related gene sets (i.e. pathways)
even in sparse data.

Additionally, to verify how well scRobust classifies detailed
information, we generated t-SNE plots for the Baron Human
[18] and sorted Zheng datasets [3](Fig. S8a). Although the t-SNE
plots of scRobust showed various islands, the cell embeddings
effectively distinguished cell types. For instance, in the Baron
Human dataset, scRobust successfully separated activated and
quiescent stellate cells and formed a distinct cluster for Schwann
cells. In contrast, these cell types were not clearly distinguished
and were mixed in the plots for the other methods. In the sorted
Zheng dataset, the cell embeddings of scRobust were more clearly
arranged by cell type, whereas the cell embeddings of the other
methods were largely intermixed.

We hypothesized that cell embeddings generated from differ-
ent layers of the encoder may contain distinct types of informa-
tion. Accordingly, we used the combined pancreas dataset (Xin,
Muraro, Segerstolpe, and Baron Human), which contains cell-type
information and batch effects, and pre-trained scRobust with two
layers. Figure S8b shows the t-SNE plots of cell embeddings from
the first and second layers of scRobust, Concerto, and 2,000 HVGs.
The cell embeddings for Concerto and HVGs were poorly clustered
by cell type across datasets, indicating that cell-type information
is overshadowed by batch effects. In contrast, cell embeddings
from the first layer of scRobust were predominantly clustered
according to cell type, with distinct dataset information classified
within the larger clusters. Conversely, the cell embeddings of the
second layer were predominantly clustered by dataset, with cell
type-specific clusters manifesting within each dataset cluster.
Therefore, each layer of scRobust targets different information,
suggesting that cell embeddings from different layers may be
suitable for varied analytical purposes. Notably, no labels, such
as dataset platforms, were used during the pre-training stage.

Discovery of marker genes
The discovery of marker genes is an important topic in scRNA-
seq annotation. scRobust can recommend important genes as
marker genes using the attention scores of its encoder (details in
“Marker gene selection” of the supplementary file). Tables S21–
S29 show the 10 selected genes for each cell type in all datasets.
Among these selected genes, most are marker genes with litera-
ture evidence on their relationship between the gene and its cell
type. We generated heatmaps to visually verify the performance
of scRobust in recommending marker genes (Fig. 5a and Fig. S9).
scRobust generated distinct clusters for most cell types across all
datasets based on the selected genes.

Marker genes are often overexpressed in the target cell type;
therefore, marker gene information may influence classification
accuracy. We hypothesized that scRobust may identify more

marker genes for cell types where it performed well. In the
Zheng 68K dataset [3] (Fig. 2b), scRobust achieved 97% accuracy
for CD56+ NK cells, identifying nine out of 10 selected genes
as marker genes. For CD14+ monocytes and CD19+ B cells, it
achieved 89% and 91% accuracy, with eight and seven marker
genes, respectively. In the MacParland dataset [23] (Fig. S10),
accuracy scores for five cell types ranged from 98% to 100%,
with over 80% of selected genes being marker genes. In the
Baron Mouse dataset [18], scRobust identified all selected genes
as marker genes for T cells (accuracy 100%), unlike CIForm
and Concerto, which had lower performances (14% and 57%,
respectively) due to using 2,000 HVGs without marker genes
(Fig. 2b).

scRobust performed well in distinguishing between cells that
share the same general cell type but have different sub-cell
types or cell states, such as inflammatory and non-inflammatory
macrophages (Fig. 2b and Fig. S10). To investigate the perfor-
mance of scRobust in extracting general cell-type and sub-cell-
type information, we analyzed the recommended genes using
scRobust in the MacParland, Baron Human, and Baron Mouse
datasets, which contain sub-cell type relationship information.
Figure 5b shows the differential expression of the marker genes
identified by scRobust across different sub-cell types or cell states.
Marker genes selected in each subtype, such as S100A12, CD5L,
and MARCO, were exclusively expressed, demonstrating the effec-
tive extraction of detailed information. In contrast, FCER1G was
overexpressed in both sub-cell types because it was chosen as
a marker gene for both inflammatory and non-inflammatory
macrophages.

In the MacParland dataset, the marker genes reflect the roles
of each subtype. S100A12, a protein expressed in myeloid cells,
acts as a proinflammatory alarm signal and is associated with the
inflammatory response [33]. Conversely, MARCO is expressed on
tumor-associated macrophages that adopt an immunosuppres-
sive phenotype, counteracting inflammation within the tumor
microenvironment [34]. Therefore, we verified that scRobust can
extract not only common but also detailed sub-type information
in marker gene discovery.

Identifying drug tolerance stages and marker
genes
Aissa et al. [35] investigated changes in populations of the non-
small-cell lung cancer (NSCLC) cell line PC9 with varying degrees
of erlotinib tolerance over days. They observed that the earliest
drug-tolerant persisters (DTPs, observed on Days 2 and 4) and
the drug-tolerant expanded persisters (DTEPs, observed on Days
9 and 11) exhibit tolerance to significantly higher concentrations
of erlotinib compared to the untreated original PC9 cells (Day 0).
They presented UMAP representations of PC9 cells by treatment
days for an integrated dataset (Days 0, 1, 2, 4, 9, and 11) without
correcting for batch effects. However, it is crucial to remove batch
effects because the dataset itself serves as the label, making it
difficult to determine whether clustering is due to batch effects
or an ability of single-cell representation to distinguish tran-
scriptional changes associated with drug tolerance. After remov-
ing batch effects using ComBat [36], we found that cells repre-
sented with 1,000 HVGs were mixed regardless of treatment days
(Fig. 6a and b).

To examine whether scRobust can extract drug tolerance infor-
mation after removing batch effects, we pre-trained scRobust
with the integrated dataset after batch effect removal. We found
that cell embeddings of scRobust were clustered mainly by treat-
ment days, showing that scRobust can extract drug tolerance
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Figure 5. Marker gene discovery by scRobust. (a) Heatmaps showing the expression of the top genes with high attention scores identified by scRobust,
where the x-axis presents genes (Tables S21–29) and cells clustered by cell type. ∗, ∗∗, and ∗∗∗ denote CD4+/CD45RA+/CD25-, CD4+/CD45RO+, and
CD8+/CD45RA+ cell types, respectively. This visualization aids in understanding how these genes are differentially expressed across various cell types.
(b) t-SNE plots of target cell embeddings for scRobust, colored based on the expression of marker genes. These plots illustrate the distinction of cells
sharing the same parent cell type. In the MacParland dataset, for instance, non-inflammatory and inflammatory macrophages are differentiated by
the S100A12, CD5L, and MARCO genes. However, FCER1G provides information pertaining to the macrophage type. Similarly, in the Baron Human and
Mouse datasets, the marker genes effectively separate activated from quiescent stellate cells.
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Figure 6. t-SNE plots of integrated drug treatment datasets for days 0, 1, 2, 4, 9, and 11. t-SNE plots of 1000 HVGs for the integrated six drug treatment
datasets (a) before and (b) after removing the batch effect, colored by the days after treatment. t-SNE plots of cell embeddings of scRobust, colored by
(c) the days after treatment and (d) cluster numbers identified by Leiden algorithm.

information (Fig. 6c). Furthermore, using the Leiden algorithm
[32], we clustered the cell embeddings, and named clusters with
Day 0 > 70% of cells as sensitive, Day 1 > 70% as early DTPs, Days
2 and 4 > 70% as DTPs, and Days 9 and 11 > 70% as DTEPs (Fig. 6d
and Table S30). We used t-tests to identify marker genes among
the stages, selecting the ten genes with the lowest p-values (Fig.
S11). Comparing sensitive and resistant cells (early DTP, DTP, and
DTEP) in our clusters (Table S31), we found that previously known
drug resistance genes such as HSPB1, CYP1B1, SLC7A5, TAGLN,
ENO1, ID3, MTRNR2L12, FAM134B, S100A6, MALAT1, ALDH3A1,
and FTH1P3 were included, of which HSPB1, TAGLN, MTRNR2L12,
ALDH3A1, and FTH1P3 were specific to lung cancer or EGFR
inhibitors [37–49]. In addition, when using cell embeddings of
scRobust, ALDH3A1, a DTP-associated gene [50], was detected as
a marker gene between early DTPs and DTPs.

For comparison, we identified differentially expressed genes
from drug-tolerance stages according to treatment days: all cells
of Day 0 as sensitive, cells of day 1 as early DTPs, cells of days
2 and 4 as DTPs, and cells of days 9 and 11 as DTEPs. In this
approach, although five previously known drug-resistance genes
(CYP1B1, FSTL1 [51], SLC7A5, CCDC80 [52], and SERPINE1 [53])
were detected (Table S32), they were not specific to lung cancer
or EGFR inhibitors. In summary, scRobust effectively identified
marker genes distinguishing between sensitive and resistant cells
and various stages of drug tolerance.

scRobust in the scATAC-seq dataset
To verify whether our SSL strategy can be applied to other data
types, we pre-trained scRobust on the PBMCs scATAC-seq dataset
produced using the 10x Genomics Chromium system [3], which
provided both PBMCs scATAC-seq and scRNA-seq data for the
same cells. To assess the impact of pre-training, we compared
t-SNE plots of cell embedding vectors generated by scRobust with
those generated by PCA, using various numbers of input features

(i.e. 200, 500, and 1,000 selected features). As shown in Fig. S12, all
cell embedding vectors generated by scRobust using 200, 500, and
1000 features were clearly distinguished by cell types, whereas
some cell embeddings from PCA using a small number of features
were mixed. Specifically, CD16 Mono, CD14 Mono, and cDC cells
were well-separated in scRobust across all cases, but these cell
types were mixed in PCA when using 200 features. Additionally,
we conducted the cell type annotation test using scATAC-seq and
compared the results with those obtained using scRNA-seq (Fig.
S13), where scRobust and CIForm used 1,000 and 2,000 features,
respectively. scRobust using scATAC-seq achieved reasonable F1
and accuracy scores (F1: 0.789 and Acc: 0.883) compared with
scRobust and CIForm using scRNA-seq (scRobust: F1: 0.865 and
Acc: 0.909; CIForm: F1: 0.835 and Acc: 0.890), whereas CIForm
using scATAC-seq showed inferior performance (F1: 0.657 and Acc:
0.800). These results demonstrate that scRobust can still extract
global information from a small number of features in scATAC-
seq data and has the potential to interact effectively with various
omics data types.

Discussion
Our SSL strategy facilitates the learning of all genes and their
interrelations, rather than just a selected subset. This method-
ology enables the encoder to access and integrate global informa-
tion. Consequently, scRobust demonstrated superior performance
in cell-type annotation over benchmark methods, especially in
the annotation of rare cell types and additional dropout scenarios
(Fig. 2). scRobust showed remarkable performance under various
conditions (Fig. 3). Comparing cell embeddings between methods
revealed that scRobust effectively captured both cell-type and
sample-specific information, such as glucose control parameters
in diabetes. In marker gene discovery, scRobust effectively identi-
fied marker genes across various cell types (Fig. 5).
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scRobust employed highly unique genes unlike benchmark
methods using HVGs. This increases the chance of using marker
genes, which tend to be over- or exclusively expressed in the target
cells. Consequently, scRobust incorporated many T-cell marker
genes in the Baron mouse dataset and far outperformed the
benchmark methods.

Methods
Architecture of scRobust
The encoder of scRobust, modeled after the Transformer [54],
adapts its number of layers based on the dataset size. For larger
datasets, such as Zheng 68K [3], Zheng sorted [3], and TM [22],
with cell counts of 68,579, 20,000, and 54,865, respectively, a two-
layer encoder is employed. However, the encoder for the other
datasets with relatively small cells comprises a single layer. The
number of attention heads is consistently set to eight across all
datasets. Unlike the original BERT model where words are in order,
scRobust omits segment and position embeddings as gene order is
not influential; it solely utilizes token (gene) embedding vectors.

Gene embedding vectors in scRobust are initialized as trainable
and random, differing from gene embeddings such as Gene2vec
[55] used in other BERT-based cell type annotation models, such
as scBERT [5]. The gene vocabulary in scRobust varies depending
on the dataset and includes five special tokens: “PAD,” “SEP,”
“UNKNOWN,” “CLS,” and “MASK.” Input tokens comprise m genes
along with the CLS token, which serves as a summary vector.
The output from the “CLS” token is treated as a cell-embedding
vector, utilized in contrastive learning, gene expression prediction,
and cell type annotation. In our experiments, the gene-embedding
dimension was set to 512.

The gene-embedding vectors and gene-expression values for
all samples are represented as (E ,G), where E = E1, E2, ..., E|E| and
G = GE1, GE2, ..., GE|G|. Here, Ej ∈ R

d and GEi = [gei
1, gei

2, ..., gei
|E|] ∈

R
|E| denote the embedding vector for gene j, where |E| = 1, and the

gene expression vector of sample i, where gei
j ∈ R represents the

expression value of gene j in sample i, respectively.
To incorporate gene-expression values into gene-embedding

vectors, we normalized the gene-embedding vectors to unit vec-
tors and scaled them with the corresponding gene-expression
values, similar to the approach for GEN [56]. For example, the
embedding vector for gene j in sample i is scaled as gei

j × Ej. Thus,
the input and output tokens for sample i can be represented as
follows:

Xi = [E[CLS], gei
1 × E1, gei

2 × E2, ..., gei
m × Em] (1)

[hi
[CLS], h1, ...hm] = EnC(Xi) (2)

where h ∈ R
d, m is the number of input genes, EnC denotes the

Transformer encoder, and hi
[CLS] is a summary vector representing

cell embedding.
Unlike conventional methods using gene expression data,

scRobust does not require the same genes as inputs for all cells,
thanks to gene embeddings being represented by vectors, not
fixed input vector indices. For instance, if scRobust generates two
embedding vectors from two random gene sets, these vectors
would represent the cell embeddings for the target cell.

Contrastive learning
In a mini-batch containing N cells, scRobust creates two distinct
cell-embedding vectors for each cell by utilizing two subsets of
m randomly selected genes, which generates a total of 2N cell-
embedding vectors. Within this set, the vector pair originating

from the same cell is considered the “positive pair,” whereas the
remaining 2(N − 1) vectors, derived from other cells, are treated
as “negative samples.” The formulation of two different cell-
embedding vectors for a given sample i can be described as
follows:

Xi1 = [E[CLS], gei
r1

× Er1 , gei
r2

× Er2 , ..., gei
rm

× Erm ] (3)

Xi2 = [E[CLS], gei
r̃1

× Er̃1 , gei
r̃2

× Er̃2 , ..., gei
r̃m

× Er̃m ] (4)

[hi1
[CLS], hr1 , ...hrm ] = EnC(Xi1 ), [hi2

[CLS], hr̃1 , ...hr̃m ] = EnC(Xi2 ), (5)

where r ∈ R
m and r̃ ∈ R

m represent vectors of random indices,
m denotes the number of input genes, and EnC denotes the
Transformer encoder.

We used a fully connected network (FCN) to project the cell-
embedding vector h[CLS] into the cell embedding space. The con-
trastive loss function was identical to that used in simCLR [11],
facilitating the effective differentiation of cells in the embedding
space.

zi1 = f
(
hi1

[CLS]

)
(6)

Lcli1 ,i2
= − log

exp(sim(zi1 , zi2 )/τ)
∑2N

k=1 1[k �=i2] exp(sim(zi1 , zk)/τ)
(7)

Here, f represents the FCN with two layers, 1 is an indicator
function that evaluates to 1 if k �= i1, and τ is a temperature
parameter, which was set to 0.07 in our experiment.

In contrastive learning, we used approximately 10% of the
average number of genes without dropout as input genes (e.g.
50, 100, or 200 genes); thus a relatively small number of input
genes were used for pre-training. Notably, this approach not only
conserves computational resources but also enhances the quality
of the pre-trained model.

Gene expression prediction task
The cell-embedding vector, which successfully captures global
information, should encompass the complete gene expression
profile of the cell. To encode the cell-embedding vectors, we
trained the encoder to predict gene expression values from the
dot product between the projected cell-embedding vector and
corresponding gene-embedding vectors. The accuracy of these
predictions was assessed using mean squared error (MSE) as the
loss function.

h̃i1 = g
(
hi

[CLS]

)
(8)

[ĝei
r1

, ĝei
r2

, ..., ĝei
rm

] = h̃T
i1

[Er1 , Er2 , ..., ·Erm ] (9)

Lge = 1
m

m∑

k=1

(gei
rk

− ĝei
rk
)2 (10)

Here, g is the FCN with two layers and r ∈ R
m is a random-

index vector, which differs from that used to generate the cell-
embedding vector.

Objective function of scRobust
In the pre-training stage, contrastive learning and gene expression
prediction tasks progress simultaneously, and the combined self-
supervised learning loss can be described as follows:

Lssl = Lcl + Lge. (11)
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For each dataset, we constructed and trained separate encoders
due to the variability in gene numbers and sequencing platforms.
This approach necessitates distinct gene vocabularies and pre-
trained models for each dataset. After the pre-training stage, we
fine-tuned the encoders for cell type annotation.

Xi = [E[CLS], gei
u1

× Eu1 , gei
u2

× Eu2 , ..., gei
un

× Eun ] (12)

[hi
[CLS], hu1 , ...hun ] = EnC(Xi) (13)

t̂ = c
(
hi

[CLS]

)
(14)

L = CrossEntropy
(
t, t̂

)
(15)

Here, u ∈ R
n represents an index vector for highly unique genes,

EnC denotes the Transformer encoder, c denotes a classifier based
on the FCN with two layers, and t and t̂ correspond to the true and
predicted cell types, respectively. By utilizing a larger number of
genes in the downstream process than in the pre-training stage,
the representational power of the cell embedding is maximized.
Accordingly, we used 800 highly unique genes in our experiments.

Unique gene selection
As scRobust can use cell-specific input genes, rarely expressed
genes (potential marker genes) were prioritized as input. First, for
each gene of the scRNA-seq dataset, we calculated the proportion
of zero values (dropout) across samples. Second, for each sample,
we sorted genes in ascending proportions of zero values, priori-
tizing rarely expressed genes. Third, for each sample, input genes
were selected based on their order, prioritizing the most unique N
genes in each sample. The input genes differed for each sample
because each cell had different non-zero read count genes. The
use of highly unique genes can maximize the unique features of
each cell. Although scRobust does not use the same genes for all
cells, it can extract common features among cells because pre-
training of the encoder considers various subsets of whole genes.
Therefore, scRobust uses individual gene sets consisting of highly
unique genes in downstream tasks.

Pathway embedding vector
As pathways are defined by specific gene sets, scRobust can
generate pathway-related embedding vectors based on these gene
sets. In this context, we define two types of vectors: pathway-
informed cell embedding vectors and pathway embedding vec-
tors. A pathway-informed cell embedding vector is a type of cell
embedding vector that utilizes the pathway gene set and the gene
expression values of an input cell. Similarly, a pathway embedding
vector also relies on the genes within the pathway, but these
gene embedding vectors are not scaled by gene expression values.
These embedding vectors can be described as follows:

Xi
pw = [E[CLS], gei

pw1
× Epw1 , gei

pw2
× Epw2 , ..., gei

pwm
× Epwm ] (16)

Xpw = [E[CLS], Epw1 , Epw2 , ..., Epwm ] (17)

[hpw,i
[CLS], hi

pw1
, ...hi

pwm
] = EnC(Xi

pw) (18)

[hpw
[CLS], hpw1 , ...hpwm ] = EnC(Xpw), (19)

where pwk is gene k of the pathway gene set, i represents cell i,
and hpw,i

[CLS] and hpw
[CLS] are pathway-informed cell embedding and

pathway embedding vectors, respectively.
Since pathway embedding vectors are defined in the same

latent space as cell embedding vectors, we can assess how close

a pathway-informed cell embedding vector is to a target pathway
vector. To evaluate the closeness between two vectors, both the
direction and magnitude of the vectors must be considered, as not
only the direction but also the length of the vectors are important
in the cell embedding space. Therefore, we define the following
formula to evaluate how close vector a is to vector b:

closeness(a)b = a · b
b · b

= cos(θ)
|a|
|b| , (20)

where θ is the angle between vectors a and b.
To decide the cell type of a given cell, we calculate the closeness

scores between the input cell and candidate cell type pathway
vectors. Then, we annotate the cell with the cell type having the
highest closeness among candidate pathways.

Key Points

• Through the novel self-supervised learning strategy,
scRobust tackles the sparsity inherent in single-cell
RNA-seq data by learning all genes’ information.

• scRobust achieves state-of-the-art performance on eight
out of nine benchmark datasets on cell-type annotation
tasks and in a variety of scenarios.

• scRobust can predict cell types using pathway vectors
without fine-tuning and clustering.

• scRobust can generate high-quality cell embeddings
including not only cell-specific but also sample-specific
information.

• scRobust can detect the marker genes for cell types and
various drug tolerance stages.
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