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Regenerative Role of Lrig11 Cells in Kidney Repair
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Key Points
c Lrig11 cells exist long term during kidney homeostasis and become activated upon injury, contributing to regeneration.
c Lrig11 cells and their progeny emerge during tubulogenesis and contribute to proximal tubule and inner medullary
collecting duct development.

c Lrig11 cells expand and differentiate into a mature nephron lineage in response to AKI to repair the proximal tubule.

Abstract
Background In response to severe kidney injury, the kidney epithelium displays remarkable regenerative capabilities
driven by adaptable resident epithelial cells. To date, it has been widely considered that the adult kidney lacks multipotent
stem cells; thus, the cellular lineages responsible for repairing proximal tubule damage are incompletely understood.
Leucine-rich repeats and immunoglobulin-like domain protein 1–expressing cells (Lrig11 cells) have been identified as a
long-lived cell in various tissues that can induce epithelial tissue repair. Therefore, we hypothesized that Lrig11 cells
participate in kidney development and tissue regeneration.

Methods We investigated the role of Lrig11 cells in kidney injury using mouse models. The localization of Lrig11 cells in
the kidney was examined throughout mouse development. The function of Lrig11 progeny cells in AKI repair was
examined in vivo using a tamoxifen-inducible Lrig1-specific Cre recombinase-based lineage tracing in three different
kidney injury mouse models. In addition, we conducted single-cell RNA sequencing to characterize the transcriptional
signature of Lrig11 cells and trace their progeny.

Results Lrig11 cells were present during kidney development and contributed to formation of the proximal tubule and
collecting duct structures in mature mouse kidneys. In three-dimensional culture, single Lrig11 cells demonstrated long-
lasting propagation and differentiated into the proximal tubule and collecting duct lineages. These Lrig11 proximal
tubule cells highly expressed progenitor-like and quiescence-related genes, giving rise to a novel cluster of cells with
regenerative potential in adult kidneys. Moreover, these long-lived Lrig11 cells expanded and repaired damaged proximal
tubule in response to three types of AKIs in mice.

Conclusions These findings highlight the critical role of Lrig11 cells in kidney regeneration.
JASN 35: 1702–1714, 2024. doi: https://doi.org/10.1681/ASN.0000000000000462
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Introduction
The kidney is pivotal in removing metabolic waste and
regulating volume status. The proximal tubule is the main
cellular component of the kidney cortex, responsible for

most solute and water reabsorption from the glomerular
filtrate to maintain homeostasis.1 The proximal tubule
epithelium requires high levels of energy and oxidative
phosphorylation, rendering this structure vulnerable to
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injuries caused by obstructive, ischemic, hypoxic, oxidative,
and metabolic insults.2 Recurrent or severe injury to the
proximal tubule epithelium in the context of AKI is a major
cause of CKD,3 affecting over 13% of the global population;
treatment options are also limited.

In AKI, the damaged proximal tubule epithelium is
reconstituted by proliferative tubule cells4; however, their
source remains controversial. Some reports suggest that
functionally mature cells within the tubule proliferate to
repair damage to the proximal tubule.5 Proximal tubule
epithelial cells surviving in AKI dedifferentiate and pro-
liferate to repair the damaged proximal tubule.3,6–8 By
contrast, other studies suggest the existence of distinct
wingless-related integration site-responsive,9,10 SOX9-
expressing,11 and/or protrudin-expressing12 progenitor
populations. However, the cellular lineages responsible
for repairing proximal tubule damage are incom-
pletely understood.

Adult quiescent stem cells can be activated upon
tissue injury under physiologic conditions. Leucine-
rich repeats and immunoglobulin-like domains protein
1 (Lrig1) have been identified in the skin,13 intestine,14,15

lung,16 stomach,17 and oral mucosa18 of mice as markers
for adult epithelial stem cells that are largely quiescent
under normal conditions. In the skin, Lrig11 cells local-
ize to the junctional zone of the hair follicles and con-
tribute to the formation of the entire epidermal
lineage.13 In the intestine, Lrig11 cells are located in
the crypt base and are characterized as a relatively less
proliferative15 but long-lived stem/progenitor cell pop-
ulation, in contrast to the more proliferative Lgr51

stem/progenitor cells.19 In the stomach and oral mu-
cosa, Lrig1 marks long-lived stem cells capable of re-
generating the damaged epithelium.17,18

Lrig1 attenuates the downstream signaling cascade
induced by activation of the erythroblastic leukemia
viral oncogene homologue family of receptor tyrosine
kinases by facilitating their ubiquitylation and subse-
quent lysosomal degradation.20 Lrig1 ablation results
in increased proliferation of stem cells in vitro21 and
epithelial hyperproliferation in vivo,22 supporting that
Lrig1 maintains the quiescent state of adult stem cells.
Accordingly, we hypothesized that Lrig11 cells might be
involved in kidney development and tissue regeneration.
However, the function and existence of Lrig11 cells in the
kidney remain unknown.

To test this hypothesis, we investigated the localization
of Lrig11 cells in the kidney during the developmental and
adult stages of mice, scrutinized the role of Lrig11 progeny
cells in maintaining the kidney tubules and repairing prox-
imal tubule damage induced by AKI in mouse models, and
characterized the transcriptional signature of Lrig11 cells
and traced their progeny.

Methods
In Vivo Lineage Tracing in Mice
All experimental protocols were approved by the Animal
Ethics Review Committee of Yonsei University (Institu-
tional Animal Care and Use Committee 2017-0325).
Transgenic mice were intraperitoneally injected with

tamoxifen (Sigma-Aldrich; 100 mg/kg, three consecutive
days) in corn oil, followed by a single injection of
50 mg/kg 4-hydroxytamoxifen (Sigma-Aldrich) and
1 mg/ml progesterone (Sigma) in corn oil. The detailed
procedures for histological analysis are provided in the
Supplemental Material and Supplemental Table 1.

Single-Cell Capture, Library Preparation, and Single-Cell
RNA Sequencing
Tamoxifen-injected Lrig1-tdTomato mice were sacrificed at
1 and 365 days after injection. Kidney epithelial cells were
isolated for library preparation and single-cell RNA se-
quencing (scRNA-seq) (Supplemental Material).

Kidney Organoid Culture In Vitro
For two-dimensional or three-dimensional culture,
Lrig1-CreERT2 mice were crossed with R26R-TdTomato
or B6.129(Cg)-Gt(ROSA)26Sortm4(ACTB-tdTomato-EGFP)Luo/J
(R26R-ACTB-mT/mG; The Jackson Laboratory, 007676)
mice to generate homozygous reporter mice (Lrig1-mT/
mG mice) expressing membrane-localizing green fluores-
cent protein (mG). Details regarding the organoid culture
and protocol for quantitative polymerase chain reaction of
the organoids are provided in the Supplemental Material.

Results
Lrig11 Cells Were Present in the Kidney and Involved in
Kidney Epithelial Cell Generation
Immunohistochemistry showed positive LRIG1 expression
in the neonatal kidneys; however, positivity rate decreased
as the kidney matured. More related details are present in
the Supplemental Material (Supplemental Figure 1).

One day after tamoxifen administration in Lrig1-tdTo-
mato mice (Figure 1, B and C), tdTomato-expressing single
cells were scattered sparsely in the cortex, and their number
and clonal size increased over time. One year after tamox-
ifen administration, some tubules entirely comprised tdTo-
mato1 cells, indicating that Lrig11 cell progeny had
expanded to constitute the entire cortical tubules (Figure
1D and Supplemental Figure 1D). More details are present
in the Supplemental Material (Supplemental Figure 1, E
and F).

Next, we examined whether Lrig11 cells contribute to
kidney development during embryogenesis by administer-
ing tamoxifen to pregnant Lrig1-tdTomato mice at various
stages during embryonic development (Figure 1G). No
tdTomato-expressing cells were detected at E9.5 and
E10.5 when the ureteric bud invades the metanephric mes-
enchyme. However, tdTomato-expressing cells emerged in
the tubulogenesis phase (E13.5 and E18.5), and more than
20% of the tubules on both days comprised Lrig1 progeny
(Figure 1, H–J). These Lrig11 progeny cells expressed
Aquaporin 11 lotus tetragonolobus lectin1 proximal tu-
bule segments at E13.5 and E18.5 (Figure 2, H and H’) and
Aquaporin 21 segments of the inner medullary collecting
duct at E13.5 (Figure 2I). Lrig11 cells and their progeny
emerged during tubulogenesis and contributed to the
development of proximal tubule and inner medullary
collecting ducts.
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Figure 1. Presence and lineage tracing of Lrig1 in the mouse kidney. (A) LRIG1 expression in the adult kidney (top, left); immunofluo-
rescence images of LRIG1 and the proximal tubule marker LTL, along with quantification of total LRIG11LTL1 cells (top, right); and Lrig1
expression levels in the total glomerulus (Glom), cortex (Co), and IM CD for each expression region (bottom). (B) Strategy for generating
tamoxifen-inducible Lrig1-derived tdTomato labeling in vivo. (C) Lineage tracing strategy of Lrig11 cells and their progeny in the adult
kidney. (D) Representative immunohistochemistry images showing Lrig1tdT1 cells in brown at the indicated days after Cre-Loxp
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We immunostained sections of the tamoxifen-treated
Lrig1-tdTomato mouse kidney with antibodies against spe-
cific nephron lineage markers (Supplemental Figure 2A) to
identify the specific cell types derived from Lrig11 cells. At
365 days after Cre-Loxp recombination, tdTomato1 cells
were positive for lotus tetragonolobus lectin and Aqua-
porin 1, consistent with those in the proximal tubule (Fig-
ure 2A). They also colocalized with desmin1 cells in the
glomerulus, consistent with the patterns of mesangial cells
(Figure 2B). Lrig1tdTomato1 cells were not observed in the
other nephron lineages, such as the Cal-D28K1 distal con-
voluted tubule (Figure 2C), Aquaporin 21 or anion ex-
change protein 1 (AE1)1 connecting tubule (Figure 2, D
and D’), CLCK11 thin loop of Henle (Figure 2E), and
Tamm–Horsfall glycoprotein1 thin and thick loops of
Henle (Figure 2F). Time-course observations revealed
that Lrig1tdTomato1 cells progressively expanded to form
the lotus tetragonolobus lectin1 Aquaporin 11 proximal
tubule over 180 days. In the inner medullary collecting
duct, Aquaporin 21 principal cells and AE11 a-intercalated
cells were labeled with tdTomato (Figure 2G and
Supplemental Figure 2, C and D). In the nephron tubules
isolated 1 year after Lrig1-Cre recombination,
the Lrig1tdTomato1 cells had expanded in a longitudinal
direction, forming an entire tubular segment (Figure 2J).
Lrig1tdTomato1 clones were observed, starting as single cells
on day 1, expanding in both the horizontal and vertical
directions (Figure 2, K and L), and eventually forming
entire tubules (Figure 2M).

Lrig11 Cells Repaired Proximal Tubule Damage from
Various Kidney Injury Types
After high-dose folic acid–induced AKI (Figure 3A), the
kidneys showed severe tubular damage with loss of the
brush border, dilation of the lumen, and a necrotic tubular
epithelium (Figure 3B). After injury, Lrig11 cells survived
and increased in the high-dose folic acid–induced AKI
model; however, on day 7 of ongoing repair, their numbers
decreased to the baseline (Supplemental Figure 3A). Sub-
sequently, the clonal size of Lrig1tdTomato1 cells significantly
expanded in the high-dose folic acid group (Figure 3C),
whereas the number of clones was unchanged. Lrig1tdTomato1

cells costained with kidney injury molecule-1, a marker of
injured kidney cells (Figure 3D), and colocalized with the
lotus tetragonolobus lectin1 or Aquaporin 11 proximal tu-
bule. Damaged cortical Lrig1tdTomato1 cells did not express
Calbindin-D28k, whereas Lrig11 progeny costained with
Aquaporin 21 and AE11 cells, indicating their expansion
in the damaged proximal tubule and inner medullary col-
lecting duct regions (Supplemental Figure 3B). In the

recovery phase, the number of tdTomato1 lotus tetragono-
lobus lectin1 cells increased dramatically (Figure 3E).

Similar to the high-dose folic acid–induced AKI model,
unilateral ischemia/reperfusion injury and unilateral ure-
teral obstruction injury showed extensive tubular injury
with flattened tubule cells, tubular casts, and necrotic tubular
cells (Supplemental Figure 3, C, D, F, and G); larger tdTo-
mato1 clones were detected in the KIM-11 damaged tubules
than in the sham control (Supplemental Figure 3, E and H).

Lrig11 Progeny Cells Exhibited Self-Renewal and Long-
Term Propagation
Lrig11 cells in the adult kidney and intestine were pre-
dominantly quiescent, as indicated by low coexpression with
Ki-67 and 5-bromo-29-deoxyuridine (Supplemental Figure 4).
More details are present in the Supplemental Material.

Kidney organoids were prepared from Lrig1-mT/mG
mice after tamoxifen treatment (Figure 4G) to trace the
Lrig1mG1 cells (Figure 4H and Supplemental Figure 5). In
the initial culture, mT1 and Lrig1mG1 kidney cells coexisted
(Figure 4I, P0), whereas only Lrig1mG1 cells survived over
time (Figure 4I, P14). Lrig1mG1 cells formed organoids with
at least a 20-mm diameter (Figure 4J). Quantitative poly-
merase chain reaction showed that Lrig1mG1 organoids
expressed Lrig1, along with other nephron progenitor
markers (Sall1, Six2, Foxo1, Cited1, and Ors1) and ureteric
epithelium markers (Hoxp7 and Gata3 but not Wt1 and
cRET23) (Figure 4K and Supplemental Table 2).

We confirmed that cells constituting the Lrig1mG1 orga-
noids were part of the kidney lineage through PAX8 pro-
tein expression (Figure 4L). Lrig1mG1 organoids were
costained with Aquaporin 21 CD cells (Figure 4M) and
Megalin1 proximal tubule cells (Figure 4N), suggesting
that Lrig11 progeny could differentiate into a mature neph-
ron lineage with capacity to generate different lineages of
kidney cells.

ScRNA-Seq Profile of Lrig11 Cells
We explored the molecular landscape and cellular dynam-
ics of Lrig11 cells by scRNA-seq of kidney epithelial cells
from the Lrig1-tdTomato mice at days 1 and 365 (Figure
5A) to elucidate the subpopulation existing within the
kidney alongside the tubule cells. At day 1, 20.2% of total
kidney cells were identified as tdTomato1 cells, which
increased to 26.9% by day 365 (Figure 5B). Unsupervised
clustering of total kidney cells identified 17 cell clusters,
further defined according to reported sets of cell
type–specific markers on the basis of the expression of
more than 14 differentially expressed genes (DEGs), iden-
tified on the basis of an adjusted P value , 0.01 and

Figure 1. Continued. recombination. (E) Quantification of tdTomato1 cells on days 1, 3, 10, 30, 90, 180, and 365 (N54 mice, 112

images). Significance was tested using one-way ANOVA. (F) Quantification of tdTomato1 clone size at the indicated times plotted as

the percentage of the total number of clones (N54 mice, 448 images). Significance was tested using two-way ANOVA. (G) Lineage

tracing strategy of Lrig11 cells and their progeny during nephrogenesis. (H) Representative immunohistochemistry images showing

Lrig1-tdTomato1 cells in brown at the indicated embryonic dates to P46 in the Cre-Loxp recombination-induced kidney (N53, 48

images). (I) Quantification of tdTomato1 cells at the indicated dates. Significance was tested using one-way ANOVA. (J) tdTomato1

clone sizes quantified at the indicated tracing times and plotted as the percentage of the total number of clones. Significance was

tested using two-way ANOVA. All results are presented as mean6SD. *P , 0.05, **P , 0.01, ***P , 0.001, ****P , 0.0001. DAPI,

49,6-diamidino-2-phenylindole; IM CD, inner medullary collecting duct; LTL, lotus tetragonolobus lectin.
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average log fold change .1 (Figure 5C and Supplemental
Figure 6A). These clusters included cells with relatively
higher mitochondria content that were associated with
solute carrier transporter protein–expressing cells, such

as those in the proximal tubule and distal tubule.24 The
portion of the proximal tubule (PT) cluster significantly
increased (34%–56%) from day 1 to day 365 (Figure 5D).
The transcriptomes of Lrig11 cells were only sparsely

Figure 2. Continued. CNT (Aquaporin 2 [D], AE1 [D9]), LOH (CLCK1 [E], THP [F]), and CD (Aquaporin 2, AE1) (G). (H and

I) Kidney sections from E18.5 of Lrig1-tdTomato mice stained for tdTomato and nephron tubule markers. (J) Isolated tubule

obtained at day 365 after Cre recombination showing Lrig1tdT1 cells expanded longitudinally. The graph shows the tdTomato1

tubule length (mm) from isolated tubules. (K) Lrig1tdT1 cells in the isolated tubule immunofluorescence stained with Na1/K1-

ATPase on days 1, 30, and 365. (L) Z-stack reconstituted immunofluorescent image of tdTomato (red) and LTL (green) in the

kidney on days 1, 15, and 365. (M) Graphical image of the tdTomato1 cell division in the longitudinal (1) and horizontal

(2) directions of the tubule. AE1, anion exchange protein 1; CNT, connecting tubule; DCT, distal convoluted tubule; LOH, loop of

Henle; PT, proximal tubule.
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detected across multiple clusters, exhibiting low expression
levels, consistent with immunohistochemistry (Figure 5E).

Lrig11 cells showed high expression of genes associated
with differentiation (Krt8, Krt18), lipid metabolism
(pyruvate dehydrogenase kinase 4, Malat1), and quiescence
(Tob1, Btg2, and Klf6) (Supplemental Figure 6B). Lrig11

cells highly expressed cFos, cJun, and Socs3, which reg-
ulate somatic stem cell renewal25,26; Klf4, cMyc, and
Gata3, associated with reprogramming of stemness27;
and Hif1a, Foxo3, and Zbtb20, which are expressed
in quiescent stem cells28 (Figure 5F) compared with
Lrig12 cell populations. Gene ontology analysis of the
DEGs revealed that Lrig11 cell populations were en-
riched in genes involved in the antiapoptotic pathway,
cell differentiation, and development-associated path-
ways (Figure 5G). More details are present in the
Supplemental Material (Supplemental Figure 6, C–I).

Next, we traced tdTomato1 cells in day 1 and day 365
kidneys to examine the role of Lrig11 progeny in the long-
term maintenance of the proximal tubule. tdTomato1 cells
were widely distributed in nearly all kidney lineages, in-
cluding an immune cell cluster (Figure 5G). Although there
was no difference in the proportion of tdTomato1 cells in
most kidney clusters, the PT cluster showed a five-fold
increase in the number of tdTomato1 cells on day 365
(Figure 5H), consistent with in vivo lineage tracing of the
cortex (Figure 1), further demonstrating that Lrig11

progeny may contribute to long-term maintenance of
proximal tubule.

Enrichment of Lrig11 Cells and Their Progeny in a Novel
Stem Cell Niche of Adult Kidney Proximal Tubule
As shown in Figure 5H, tdTomato1 cells showed the great-
est increase in the day 365 PT cluster. The PT cluster was
divided into four subclusters (Figure 6A) on the basis of the
known sets of cell type–specific markers, including Slc5a12,
Slc5a2, and Slc13a3 for PTS1; Ddah1 for PTS2; and Slc16a9
and Slc7a13 for PT to identify the tdTomato1-enriched
cluster.S3 PTS1 and PTS2 clusters comprise fully differenti-
ated PT cells,24 whereas the PTS3 cluster comprises a label-
retaining cell population that recycles slowly in the
rat kidney.29

We discovered a novel subcluster in the day 365 PT
cluster, comprising proximal tubule quiescent progeni-
tors, designated PTQPs. The PTQPs cluster showed higher
expression levels of pyruvate dehydrogenase kinase 4 and
cysteine-rich protein 61 (Cyr61), upregulated in AKI30,31

(Fig. 6B), than those of the other PT subclusters, suggest-
ing its role in kidney regeneration. The ratio of PTS3

decreased with age, corresponding with the stem cell
niche characteristic.32 The ratio and total cell number of
PTQPs increased with age (Figure 6, C and D). More

related results are present in the Supplemental Material
(Supplemental Figure 7).

We performed immunofluorescent staining for JunD,
KLF6, and CYR61 in kidney sections because their encod-
ing genes were among the top 10 DEGs compared with
other PT clusters (Figure 6E) to determine specific markers
for PTQPs. JunD and CYR61 were not expressed in prox-
imal tubule populations (data not shown), whereas KLF6
was specifically stained in the PT and costained with lotus
tetragonolobus lectin markers (Figure 6F). KLF6 expres-
sion increased in lotus tetragonolobus lectin1KLF61 cells
by day 365 compared with that detected on day 1 (Figure
6G), supporting the increase in the PTQPs population in the
proximal tubule on day 365.

Lrig11 PTQPs Were Mainly Responsible for the
Regeneration of the Adult Kidney
We compared the composition of tdTomato-expressing
cells in each PT cluster on day 1 and day 365 to track
the changes in Lrig11 progeny in the PT clusters. The
proportion of tdTomato1 cells increased in the PTQPs

and PTS2 clusters at day 365 compared with that at day
1, whereas this population decreased in PTS3 and was
unchanged in PTS1 (Figure 6, H and I), suggesting that
Lrig11 progeny in PTS3 contribute to forming proximal
tubule mainly at younger ages, whereas the role of
Lrig11 progeny in PTQPs becomes more dominant
with age. We analyzed the trajectories of single cells
according to their progression toward differentiation to
test this hypothesis. Combining the data for day 1 and
day 365 samples, the PTS3 and PTQPs clusters branched
into two distinct trajectories toward PTS1 (Figure 6J).
The day 1 trajectory showed that PTS3 predominantly
differentiated into the PTS1 cluster, whereas the PTQPs

cluster mainly contributed to the PTS1 cluster cells on
day 365 (Figure 6K). Alignment of the trajectories dem-
onstrated that tdTomato-expressing cells in the PTS3

cluster predominantly differentiated into PTS1 on day
1, whereas those in the PTQPs cluster mainly contrib-
uted to PTS1 on day 365 (Figure 6L). Immunofluores-
cent staining showed that KLF61 cells (the marker for
PTQPs) colocalized with tdTomato-expressing tubules,
and the proportion of these KLF61 tdTomato1 tubules
significantly increased from day 1 to day 365 (Figure
6, M and N). Our data support that Lrig11 PTQPs cells
are responsible for the regeneration of the ma-
ture kidney.

Transcriptomic Profiling of LRIG11 Human Kidney Cells
Finally, we assessed LRIG1 expression in adult human
kidney cells using a public scRNA-seq database.33 More

Figure 5. Continued. significant GO terms (biological processes) associated with the Lrig11 DEGs. (H) Numbers of tdTomato1 cells

in the nephron cluster in the day 1 and day 365 kidneys. ALOH, ascending loop of Henle; B, B cells; CD-IC, collecting

duct intercalated cells; CD-PC, collecting duct principal cells; CNT CD-PC, CNT-collecting duct principal cells; DC, dendritic cells;

DEG, differentially expressed gene; DLOH, descending loop of Henle; ENDO, endothelial cells; GEC, glomerular epithelial cell;

GO, gene ontology; Gran, granulocytes; high MT, high mitochondrial cells in the PT; Macro, macrophages; NK, natural killer cells;

RBC, red blood cell; scRNA-seq, single-cell RNA sequencing; UMAP, uniform manifold approximation and projection.
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details related to this section are present in the
Supplemental Material (Supplemental Figure 8).

Discussion
Lrig1 was expressed in the embryonic and adult mouse
kidney. Lineage tracing revealed that Lrig11 cells and
their progeny constituted proximal tubule, mesangial cells
in the glomerulus, and principal/a-intercalated cells in
the inner medullary collecting duct. In the proximal tu-
bule, Lrig11 cells comprise a population of largely quies-
cent cells that proliferate and contribute to the repair of
proximal tubule damage after AKI.

The sources of cells contributing to the repair of prox-
imal tubule damage after kidney injury, Chang-Panesso
and Humphreys3 suggested that the regenerating cells are
the surviving tubular epithelial cells. This was supported
by the coexpression of Slc34a1,7 along with markers of
dedifferentiation, proliferation, and progenitor cells, rather
than the emergence of new immature cells.

A recent study34 demonstrated that mature cells can
undergo dedifferentiation; express progenitor-associated
genes, such as Sox911,35; and proliferate during recovery
from injury, a phenomenon termed “paligenosis.”34 How-
ever, another group proposed the involvement of a dis-
tinct progenitor cell population for kidney regeneration.
Protrudin1 cells may mark a kidney progenitor cell pop-
ulation.12 They compared the regenerative capacity of
protrudin1 cells with that of cells expressing Rosa26 in
an AKI damage model.12 Although Rosa261 cells recon-
stituted 80% of the tubules, protrudin1 cells reacted ear-
lier to kidney injury, suggesting a role of kidney
progenitor cells in kidney repair. These conflicting results
might stem from the experimental limitation of the lineage
tracing systems used in these previous studies, which
focused on a single gene marker, thereby limiting the
ability to monitor the dynamics of entire genes.

We demonstrated that Lrig11 cells express mature
proximal tubule markers along with various gene sets
associated with adult stem cells by combining tdTomato
lineage tracing systems with scRNA-seq analysis. This
showed that Lrig11 cells in the proximal tubule act as
mature and functional tubule cells, which harbor progen-
itor cell capacity, thereby actively participating in kidney
repair and maintenance. A similar phenomenon has been
suggested in the stomach. There are two stem cell zones:
the isthmus and base regions. In contrast to the isthmus
that shows rapidly cycling stem cells, the base chief cells
slowly cycle and express mature markers, such as gastric
intrinsic factor and pepsinogen. These cells are enriched
with secretory granules containing digestive enzymes.

However, adult stem cell markers—Lgr5, Troy, and
Lrig1—mark gastric intrinsic factor1 chief cells, and these
cells can transdifferentiate and proliferate when neces-
sary.36 These studies suggest that progenitor-like markers
coexist with mature cell markers in organs like the stom-
ach, and similar patterns might also be observed in fully
mature kidneys. Lrig11 cells and their progeny did not
express with kidney adult progenitors, suggesting that
Lrig11 cell represents a novel cell population that is com-
mitted to the regeneration of the proximal tubule. This
finding indicates that rather than depending on a single
progenitor cell, heterogeneous progenitor cell may partic-
ipate in maintaining the kidney.

Lrig1 regulates the quiescence and self-renewal of neu-
ronal stem cells by inhibiting epidermal growth factor
receptor signaling in the brain.37–40 LRIG1 negatively
regulates the erythroblastic leukemia viral oncogene ho-
mologue family by associating with receptor tyrosine
kinases and promoting their degradation.20 We specu-
lated that Lrig1 maintained the quiescence in the kidney,
and silencing of Lrig1 could activate epidermal growth
factor receptor, thereby inducing cell proliferation.

Our study has limitations because of the lack of re-
search on the function of individual Lrig11 cells as a
progenitor population. Therefore, analyses, such as multi-
ome analysis, are needed to investigate the role of indi-
vidual Lrig11 cells. In addition, it is necessary to verify the
effect of Lrig11 cell ablation on kidney homeostasis and
the repair of damaged epithelial cells.

We demonstrated the existence of a Lrig11 quiescent cell
population in the proximal tubule and its pivotal role in the
regeneration of kidney proximal tubule. These findings
provide important insight into the mechanisms underlying
proximal tubule repair, which can guide the development
of a therapeutic strategy to treat kidney injury.
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