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Abstract

Composite polymer electrolytes (CPEs), produced by incorporating inorganic

nanoparticles (NPs) into polymer matrices, have gained significant attention as

promising candidates for solid-state lithium metal batteries (LMBs). However,

the aggregation of dense inorganic fillers results in nonuniform CPEs, thereby

impeding LMB performance. Here, we fabricated in-situ photo-polymerized

CPEs by incorporating different weight ratios (0–20 wt%) of Li6.4La3Zr1.4-
Ta0.6O12 (LLZTO) into a polymer electrolyte system composed of poly(butyl

acrylate)-based elastomer and succinonitrile-based plastic crystal phases. The

rapid photo-polymerization process (�5 min) enabled homogeneous dispersion

of LLZTO within the CPE matrix at 10 wt% LLZTO (L10), resulting in the high

ionic conductivity (1.02 mS cm�1 at 25�C) and mechanical elasticity (elonga-

tion at break ≈ 1250%) compared to those of CPE without LLZTO (L0). As a

result, the L10-based LMB with a LiNi0.8Co0.1Mn0.1O2 cathode exhibited a high

capacity of 166.7 mAh g�1 after 200 cycles at 0.5C, significantly higher than

those of L0 (74.0 mAh g�1) and L20 (104.8 mAh g�1). In comparison, in-situ

thermal polymerized CPE with 10 wt% LLZTO NPs showed aggregation of NPs

due to slow polymerization kinetics (�2 h), resulting in inferior LMB cycling

performance compared to the L10. This work highlights the importance of in-

situ photo-polymerized CPEs with homogenous dispersion of inorganic NPs to
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achieve high ionic conductivity and mechanical robustness suitable for the sta-

ble operation of LMBs.
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1 | INTRODUCTION

The development of lithium (Li) metal batteries (LMBs)
has garnered significant attention due to their high
energy density.1 This is attributed to Li metal's superior
theoretical specific capacity (3860 mAh g�1) and lower
electrochemical potential (�3.04 V vs. the standard
hydrogen electrode) compared to conventional graphite
anodes.2,3 However, LMBs face substantial safety chal-
lenges particularly when using flammable liquid electro-
lytes, due to uncontrolled dendrite formation during cell
cycling.4–6 Solid-state electrolytes (SSEs) are promising
alternatives to liquid electrolytes due to their nonflamma-
ble nature and mechanical properties for inhibiting Li
dendrite growth.7–12 Among SSEs, solid polymer electro-
lytes (SPEs) have the advantages of mechanical flexibility,
facile processing, and a smooth interface between the
electrode and the electrolyte.13–19 However, the ionic con-
ductivity of SPEs is significantly lower than that of liquid
electrolytes.20,21 Moreover, their mechanical properties,
such as elasticity, adhesion, and toughness, are often
insufficient to accommodate the large volume changes of
Li during cycling and prevent dendrite formation.22–24

To overcome the limitations of SPEs, composite poly-
mer electrolytes (CPEs) have emerged as an effective
strategy by incorporating inorganic nanoparticles (NPs)
into the polymer matrix.25–28 CPEs can leverage the com-
bined benefits of both polymer and inorganic compo-
nents, resulting in enhanced mechanical, thermal, and
electrochemical properties.29–32 Among various inorganic
fillers used in CPEs, sulfide-based NPs, such as
Li10GeP2S12 and Li6PS5X are intrinsically unstable, as
they react with atmospheric moisture to release toxic H2S
gas and have a narrow electrochemical stability window
below 3.0 V (vs. Li/Li+).33–35 In contrast, Li-ion (Li+)-
conducting oxide-based Li7La3Zr2O12 (LLZO) NPs are
more stable against air and have a wider electrochemical
window (>4.0 V vs. Li/Li+).36,37 However, LLZO NPs
encounter poor compatibility with Li metal, which has
been addressed by incorporating various dopant species
to improve their chemical compatibility with Li
metal.38,39 For example, tantalum (Ta)-doped LLZO of
Li7�xLa3Zr2�xTaxO12 (0.2 < x < 1) (LLZTO) is known for
its excellent stability in contact with Li metal and its

ability to lower the interfacial resistance between the
electrode and electrolyte.40–43

Inorganic NPs typically become strongly aggregated,
preventing their homogeneous dispersion within the
polymer matrix and causing nonuniform Li+ flux
throughout the CPEs.44–46 Therefore, it is crucial to
develop a suitable CPE fabrication process for achieving
uniform CPE structures and thus improving LMB perfor-
mances. While ex-situ processing methods, such as high-
temperature mixing, hot-pressing, and electrospinning
can improve the NP dispersion in a polymer matrix,47–50

ex-situ fabricated CPEs often struggle with poor electrode
adhesion and a nonconformal electrolyte/electrode inter-
face compared to in-situ fabricated CPEs.51 Note that the
in-situ approach can form a smooth and conformal inter-
facial contact with electrodes by injecting a liquid precur-
sor solution into the electrode prior to the polymerization
reaction.52 However, in-situ thermal polymerization of
CPE can lead to NP precipitation and aggregation
because of the extended reaction time (i.e., more than
2 h) required for complete monomer conversion.53 In
contrast, photo-polymerization offers rapid polymeriza-
tion kinetics within a few minutes, resulting in a more
uniform distribution of inorganic NPs within the polymer
matrix.54–57 Thus, we envision that photo-polymerization
is particularly well-suited for the in-situ fabrication of
CPEs and is advantageous for industrial applications.

Herein, we design CPEs through an in-situ photo-
polymerization process. The rapid photo-polymerization
time (�5 min) allows uniform dispersion of LLZTO NPs
within an elastomeric electrolyte matrix composed of
crosslinked poly(butyl acrylate) (poly(BA)) and ion-con-
ductive succinonitrile (SN) with Li salts, achieving stable
operation of LMBs. We note that both the NP fraction
and polymerization kinetics are crucial factors in produc-
ing homogeneous CPEs through the in-situ process. To
understand the structure and properties of CPEs with dif-
ferent weight ratios of LLZTO, several CPEs were formed
with 0, 10, and 20 wt% LLZTO. Among them, the CPE
containing 10 wt% LLZTO (L10) shows excellent
mechanical properties, with an elongation at break (εb)
of 1250% and a high adhesion energy of approximately
10.1 J m�2 at the CPE/CPE interface, while maintaining
a high ionic conductivity (σ) of 1.02 mS cm�1 at 25�C
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compared to the CPE without LLZTO. Increasing the
LLZTO fraction to 20 wt% resulted in a decrease in both
mechanical properties (900%, 6.6 J m�2) and σ value
(0.76 mS cm�1) due to the increased aggregation of
LLZTO NPs. The full-cell performance of L10, using a Li
anode and LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode shows
excellent cycling stability with 95% capacity retention
after 200 cycles at 0.5C and a cutoff voltage of 4.3 V
(vs. Li/Li+). In contrast, in-situ thermal polymerization
causes LLZTO aggregation and strong phase separation
from the elastomeric matrix due to the slow polymeriza-
tion kinetics (�2 h), resulting in inferior LMB perfor-
mance compared to L10. This work highlights the
importance of in-situ photo-polymerization for designing
uniform CPEs to achieve highly stable LMBs.

2 | RESULTS AND DISCUSSION

The CPEs were synthesized by in-situ photo-polymeriza-
tion of precursor solutions containing monomer- and SN-
based solutions with LLZTO NPs (Scheme 1). The precur-
sor solutions were prepared by mixing monomer- and
SN-based solutions in equal volumes of BA and SN.58–60

Briefly, the monomer-based solution included BA mono-
mer, 1 mol% of poly(ethylene glycol) diacrylate (PEGDA)
crosslinker, and 0.5 mol% of 1-hydroxycyclohexyl phenyl
ketone (HCPK) photo-initiator. Upon polymerization, the
PEGDA crosslinker formed multiple linkages with linear
poly(BA) chains, producing a crosslinked polymer net-
work.61,62 The SN-based solution was composed of SN,
lithium bis(trifluoromethanesulfonic)imide (LiTFSI), and
lithium difluoro(oxalato)borate (LiDFOB). A 5 vol% of
fluoroethylene carbonate (FEC) additive was added into
the SN-based solution to prevent the undesired reactions
between SN and Li metal anode.63 The incorporation of
LiDFOB helps to prevent the corrosion of the aluminum
current collector caused by LiTFSI during cell cycling.64

The Li salt concentration was fixed at 0.8 M LiTFSI and
0.2 M LiDFOB within the CPE precursor solutions. The
inorganic LLZTO NP with a median particle size (D50) of
�500 nm was selected as the inorganic material for the
CPE-based LMB system because of its excellent compati-
bility with Li metal anode, inducing a low interfacial
resistance at the Li/CPE interface of CPEs.38,65 Each CPE
sample was denoted as LX (X = 0, 10, and 20), where
X represented the weight ratio of LLZTO added relative
to the total weight of the precursor solution. Then, the
coin cell assembly employed an in-situ photo-polymeriza-
tion approach by casting precursor solutions onto the
anode and cathode, followed by ultraviolet (UV) light
irradiation (Figure S1).

2.1 | Design of CPEs through in-situ
photo-polymerization process

The polymerization kinetics of the photo-polymerization
process of poly(BA) was monitored by measuring Fourier-
transform infrared spectroscopy (FTIR) for the samples
with different polymerization times (Figure 1A). The
characteristic C C stretch peak of the acrylate monomer,
typically seen at 1620 and 1637 cm�1, disappeared within
5 min under UV irradiation, indicating complete poly-
merization of crosslinked polymers. In Figure 1B, the pre-
cursor solution turned into opaque bulk CPE after the
short photo-polymerization process. The fast photo-poly-
merization kinetics could effectively form a CPE with
homogeneously distributed LLZTO NPs by preventing the
aggregation of LLZTO and their separation from the poly-
mer matrix. The distribution of LLZTO NPs was charac-
terized by the cross-sectional morphology of CPEs using
scanning electron microscopy (SEM) and corresponding
energy-dispersive X-ray spectrometer (EDS) mapping
(Figure 1C–E and Figure S2). For L0, the wrinkled surface
structure of the CPE was observed without any inorganic
fillers (Figure 1C). With the addition of 10 wt% LLZTO,
L10 exhibited well-dispersed LLZTO NPs throughout the
CPE, indicating that rapid photo-polymerization success-
fully trapped the NPs and prevented their aggregation
within the crosslinked polymer matrix (Figure 1D). In
contrast, an excessive amount of fillers within L20 led to
the aggregated LLZTO NPs within the CPE matrix
(Figure 1E). The cross-sectional EDS mapping images for
Lanthanum (La) and Zirconium (Zr) elements further
supported the agglomeration of LLZTO NPs within the
L20 (Figure S2). We performed optical microscopy
(OM) and cryogenic transmission electron microscopy
(Cryo-TEM) for the L0, L10, and L20 samples to charac-
terize the phase structures of CPEs as well as the

SCHEME 1 The design of in-situ photo-polymerized CPEs

containing LLZTO NPs.
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distribution of LLZTO NPs in the CPEs (Figure S3 and
Figure S4). Both the OM and Cryo-TEM images showed
the severe aggregations of LLZTO NPs in the L20 and sug-
gested significant differences in the LLZTO distributions
between the L10 and L20 samples.

To understand the phase structures of CPEs, we mea-
sured 7Li solid-state nuclear magnetic resonance (7Li
NMR) spectroscopy and Cryo-TEM. The 7Li NMR spectra
of the L0 sample revealed three distinct peaks, corre-
sponding to Li+ interactions with the BA-Li, SN-Li, and
BA/SN interface (Figure S5A).60 This indicates a phase-
separated structure between the crosslinked poly(BA)
and SN phases, a result of polymerization-induced phase
separation (PIPS) during the photo-polymerization pro-
cess. This phase-separated structure consisting of an
interconnected ion-conducting SN phase within a poly-
mer phase was clearly observed in the Cryo-TEM image
(Figure S4A), which is beneficial for enhancing both
ionic conductivity and mechanical performance of elec-
trolytes.66,67 The LLZTO-containing CPEs, L10, and L20,
also exhibited distinct peaks corresponding to the poly-
mer and the SN phases, indicating similar phase separa-
tion after photo-polymerization (Figure S5B,S5C).
Interestingly, the incorporation of LLZTO NPs induced
the migration of a fraction of Li+ from the SN to the poly
(BA) phase, resulting in the increased Li+ concentration
in the poly(BA) matrix in L10 and L20 compared to L0
and affecting the Li+ conductivity in the CPEs.

2.2 | Physiochemical properties of
in-situ photo-polymerized CPEs

To investigate the effect of LLZTO NPs on the chemical
interaction within CPEs, Raman spectra were obtained in
the 1670–1750 cm�1 range (Figure 2A), with the full
spectra provided in Figure S6. The L0 sample displayed a
carbonyl (C O) stretching band at 1719 cm�1 due to the
free C O groups in the poly(BA) phase. The C O peak
was blue-shifted by 3.7 cm�1 for L10 and 10.2 cm�1 for
L20, indicating chemical interactions between the C O
groups and LLZTO NPs. This shift is primarily attributed
to the La-ion (La3+) in LLZTO fillers, which provided
numerous Lewis acid sites that facilitate intermolecular
coordination with electron-withdrawing C O groups in
polymer matrix through Lewis acid–base interactions.68

For L20, the increased LLZTO content provided more
La3+ sites for Lewis acid–base interactions, leading to a
further peak shift of the C O groups in the poly(BA)
phases. Additionally, Raman spectroscopy was also inves-
tigated in the 2220–2300 cm�1 range to reveal the inter-
molecular interaction between LLZTO NPs and the SN
phases within the CPEs (Figure 2B). The L0 sample
showed a peak at 2262 cm�1, corresponding to the nitrile
(C≡N) groups of the SN phase. Notably, the C≡N peak
was shifted by 0.9 cm�1 for L10 and 1.6 cm�1 for L20,
indicating La–Nitrile interactions between the La3+ and
the C≡N groups within the CPE matrix.69 These results

FIGURE 1 (A) FTIR of crosslinked poly(BA) by photo-polymerization according to different processing times. (B) Optical image of the

L0 before and after photo-polymerization. Cross-sectional SEM image of CPEs: (C) L0, (D) L10, and (E) L20. Insets display bulk photographs

of each electrolyte. Red circles in (E) indicate the aggregated LLZTO NPs.
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confirmed that the inorganic LLZTO fillers in CPEs could
interact favorably with both the poly(BA) and SN phases.

The Li+ transport properties in CPEs were assessed
through ionic conductivity measurements using electro-
chemical impedance spectroscopy (EIS) (Figure 2C). L0
displayed a superior σ value of 1.14 mS cm�1 at 25�C,
presumably due to the efficient Li+ transport through the
SN-based conducting network within the CPEs. For L10,
the well-dispersed LLZTO NPs within the CPE matrix
resulted in a comparably high σ value of 1.02 mS cm�1.
In contrast, the σ value of L20 significantly decreased to
0.76 mS cm�1 due to the LLZTO aggregation, which may
interrupt the Li+ conduction channel of the SN phases
within CPEs. This decrease was also partly due to the
reduction in Li+ concentration within the ion-conducting
SN phase, as shown in Figure S5C.

The mechanical adaptability of CPEs is crucial for
accommodating the significant volume changes of Li
metal during cycling. To assess the impact of LLZTO con-
tent on the mechanical properties of CPEs, we evaluated
the mechanical elasticity using a universal testing
machine (UTM) (Figure 2D). Notably, L10 exhibited
remarkably improved elasticity (εb ≈ 1250%) compared to
L0 (εb ≈ 400%). We attribute the higher mechanical prop-
erties of L10 to the uniformly dispersed LLZTO NPs,
which bridge the soft polymeric segments via chemical
coordination bonding with the C O groups of poly(BA)
matrix (Figure 2A).68 This strong coordination

interaction between the poly(BA) phase and LLZTO NPs
in the CPE matrix could reinforce the mechanical proper-
ties including elasticity. Moreover, LLZTO NPs induced
the migration of a fraction of Li+ from the SN phase to
the elastomeric poly(BA) phase (Figure S5B), greatly
improving the mechanical elasticity of CPEs. This is due
to the formation of a coordinated network between Li+

and C O groups in poly(BA) chains.70 Therefore, the
excellent elasticity of L10 could accommodate Li volume
changes and maintain a conformal contact at the Li/CPE
interface during repeated charge/discharge, improving
the cycling stability of LMB operation.66 In comparison,
L20, with aggregated LLZTO fillers, showed reduced elas-
ticity (εb ≈ 900%), likely due to the nonuniform mechani-
cal properties throughout the CPE.

The electrochemical performances of the CPEs were
evaluated in full cells using NCM811 cathodes. As
described in the coin-cell assembly process (Figure S1),
the CPEs were in-situ photo-polymerized on both the
anode and cathode and then sandwiched to fabricate
the LMB full cells. This assembly process produced a
CPE/CPE interface (Figure S7) that significantly affects
the interfacial stability of the assembled cells. To assess
the interfacial properties at the sandwiched CPEs with
varying LLZTO contents, we measured the adhesion
forces using a UTM (Figure S8). For L0, the low Gc of
3.1 J m�2 indicated a relatively weak CPE/CPE interface,
which could result in contact loss at the CPE interface

FIGURE 2 Raman shift of the

(A) carbonyl (C O) groups in poly(BA)

phase and (B) nitrile (C≡N) groups in
SN phase within CPEs. (C) σ value of

CPEs determined by electrochemical

impedance spectroscopy at 25�C.
(D) Stress–strain curves of CPEs at an

extension rate of 100 mm min�1.
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due to significant dimensional volume change of the CPE
during cycling. The instability in physical and electro-
chemical contact between CPEs could cause a notable
increase in cell impedance and disrupt the disconnected
Li+ conduction pathway. In contrast, LLZTO-containing
L10 exhibited a significantly improved Gc of 10.1 J m�2,
possibly due to enhanced LLZTO-poly(BA) and LLZTO-
SN intermolecular interactions within the CPEs. There-
fore, the strong coordination between the C O group of
the polymer phase and LLZTO NPs could promote better
physical and electrochemical integration at the CPE
interface. In contrast, L20 showed a reduced Gc of
6.6 J m�2 compared to L10, due to aggregated LLZTO
NPs creating nonuniform and rough surfaces at the CPE/
CPE interface.

2.3 | Electrochemical performance of
in-situ photo-polymerized CPEs

The electrochemical performances of L0, L10, and L20
CPEs were evaluated through cycling tests using 400 μm-
Li metal/CPEs with a polypropylene (PP) separator/
NCM811 full cells at 0.5C. As described in the previous

section related to Figure S1, coin cells were constructed
by assembling the in-situ polymerized CPEs on both sides
of the separator/anode and cathode after casting identical
precursor solutions on each side. A detailed full cell fabri-
cation process is provided in Section 3.1. As shown in
Figure 3A, the full cell of L0 exhibited a low capacity of
74.0 mAh g�1 (50% capacity retention) with an average
Coulombic efficiency (CE) of 99.4% after 200 cycles at
0.5C. In contrast, L10, with well-dispersed LLZTO NPs,
displayed the highest capacity of 166.7 mAh g�1 (95%
capacity retention) with an average CE of 99.7% after
200 cycles at 0.5C, demonstrating superior cycling stabil-
ity for CPE-based LMBs. However, L20, with an excessive
amount of LLZTO, showed less stable cycling with a
decreased discharge capacity of 104.8 mAh g�1 (77%
capacity retention) with an average CE of 99.5% after
200 cycles (Figure 3B and Figure S9).

EIS analysis was employed to gain deeper insights
into the electrochemical performances of full cells with
varying LLZTO contents. Specifically, we monitored
changes in impedance at the CPE/CPE interface, which
can be closely related to Li+ transport through the elec-
trolytes. The Nyquist plot of pristine full cells before
cycling (Figure 3C) shows that the semicircle corresponds

FIGURE 3 (A) Cycling performance of 400 μm-Li/NCM811 (2.5 mg cm�2) full cells at 0.5C after three formation cycles at 0.2C in the

voltage range of 3.0–4.3 V. (B) Corresponding discharge profiles of composite polymer electrolyte at 200th cycle. (C, D) Nyquist plot of the

full cells; (C) Pristine and (D) 200th cycle. (E) Rate capability test of the full cells at different C-rates.
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to the combined charge transfer resistance (Rct) from the
electrode/CPE and CPE/CPE interfaces (Figure S7). The
L10 full cell showed a lower Rct value of 95 Ω compared
to L0 (178 Ω) and L20 (122 Ω), indicating the highest
interfacial stability of L10 before cycling. In the EIS mea-
surements of the full cells after 200 cycles at 0.5C
(Figure 3D), L10 maintained the lowest overall resistance
(113 Ω) compared to L0 (413 Ω) and L20 (274 Ω), corre-
lating with the superior cycling performance of the L10-
based full cell. Furthermore, L10 showed a higher trans-
ference number (t+) of 0.55, compared to L0 (0.49) and
L20 (0.35), which could be due to its low interfacial resis-
tances at CPE/CPE and Li/CPE interfaces while main-
taining efficient Li+ transport through SN channel
(Figure S10).

Moreover, the Rct value influences the rate capability
of the full cells (Figure 3E). The L10 delivered higher dis-
charge capacities at all C-rates (i.e., 0.2, 0.5, 1, 2, and 3C)
compared to L0 and L20. Notably, at a high rate of 3C,
L10 maintained a capacity of 134.8 mAh g�1, whereas L0
and L20 showed significantly reduced capacities of 69.1
and 30.9 mAh g�1, respectively. For L0, the low adhesion
energy (Gc ≈ 3.1 J m�2) disrupted the Li+ conduction
pathway, resulting in a high Rct (178 Ω) value due to an
unstable CPE/CPE junction (Figure S8 and Figure 3C).

This poor interfacial stability could impede the rate
performance of L0, despite its superior bulk ionic conduc-
tivity. In contrast, L10 showed better rate capability than
L0 due to a stable CPE/CPE interface with a higher Gc of
10.1 J m�2 and lower Rct (95 Ω) value.

We summarize the key properties of in-situ photo-
polymerized CPEs, which include high σ, mechanical
elasticity, and interfacial adhesion, all contributing to
high LMB performance (Scheme 2). Uniform coordina-
tion of LLZTO NPs with polymer and SN phases is cru-
cial for achieving superior mechanical properties of
CPEs and stable interfaces in the full cell. First, L0, with
a lack of LLZTO NPs and adhesive properties at the
CPE/CPE junction, showed an impeded Li+ transport
due to a disconnected Li+ conduction pathway. In con-
trast, the superior adhesion energy of L10 (Gc ≈
10.1 J m�2) compared to L0 and L20 was helpful in
maintaining stable contact at the CPE/CPE interface.
This adhesive property of L10 could mitigate the interfa-
cial resistance at the CPE/CPE junction. These results
were attributed to the strong coordination of well-dis-
persed LLZTO NPs with the poly(BA) and SN phases
throughout the CPE. Furthermore, the remarkably
enhanced elasticity of L10 (εb ≈ 1250%) compared to L0
and L20 was beneficial for achieving low impedance at

SCHEME 2 Schematic illustration of LLZTO NPs distribution and coordination interactions in each CPE with different NP ratios. The

L10 with uniformly dispersed NPs exhibits strong coordination in CPE matrix, forming stable interfaces by its high σ, enhanced Gc, and εb.
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the Li/CPE interface. The high mechanical elasticity of
L10 could accommodate the large volume change of the
Li metal upon charging and restore its dimension upon
discharging.59,71 Additionally, the high σ (>1.0 mS cm�1)
of L10 also contributed to rapid Li+ transport at the
CPE/CPE and Li/CPE interfaces. However, with the fur-
ther increase of LLZTO content, L20 showed the agglom-
eration of inorganic fillers, resulting in nonuniform Li+

flux at the CPE/CPE and Li/CPE interfaces. This aggre-
gation behavior of NPs also led to an increased Rct due to
the lower Gc (6.6 J m�2) at CPE/CPE interface than that
of L10. Thus, L10 shows superior full cell cycling perfor-
mance by successfully leveraging the advantages of
LLZTO and elastomeric electrolytes. These beneficial
features are primarily attributed to the well-dispersed
LLZTO NPs within the CPE, achievable through in-situ
photo-polymerization, which requires only a few
minutes for the construction of the CPEs.

2.4 | Characterization of the cycled-Li
metal anodes of in-situ photo-
polymerized CPEs

To further understand the difference in the cycling per-
formance of the full cells in Figure 3A, we investigated
the chemical composition of the SEI layer at the Li/CPE

interface. We characterized the cycled-Li metal anodes of
the L0, L10, and L20 full cells after 200 cycles at 0.5C
using X-ray photoelectron spectroscopy (XPS). In general,
inorganic SEI layer species exhibited significantly high
shear modulus values, such as LiF (>50 GPa) and Li2O
(>40 GPa), compared with organic SEI compounds
(<10 GPa). This high shear modulus is crucial for pre-
venting dendrite growth by forming a robust Li/CPE
interface.72,73 It is known that Li dendrite growth could
be effectively suppressed if the shear modulus of the SEI
component is 2-fold greater than that of Li (4.8 GPa).74,75

We estimated the integrated peak area ratio of inorganic
(Li2O, LiF) to organic (RCOOLi) compounds. The L10
showed a higher inorganic to organic ratio (10.1) com-
pared to those of L0 (6.4) and L20 (2.5), effectively sup-
pressing dendritic Li metal formation (Figure 4A–C).76

The O 1s and F 1s spectra further supported that the inor-
ganic-rich SEI layers of L10 contained a greater amount
of inorganic compounds (Li2O, LiF) compared to L0 and
L20 (Figure 4D–F and Figure S11). For L10 with well-dis-
persed LLZTO NPs, the coordination interactions
between the polymer matrix and LLZTO contribute to
the preferential formation of inorganic-based SEI with
the decomposition of Li salts.68 Consequently, the inor-
ganic-based SEI layer of the L10 system effectively sup-
presses Li dendrite growth, resulting in a highly stable
full cell cycling performance.

FIGURE 4 (A–C) Li 1s and (D–F) O 1s XPS spectra of cycled-Li metal anodes of full cells with different CPEs after 200 cycles at 0.5C.
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2.5 | Comparison of in-situ thermal
polymerized and photo-polymerized CPEs

The rapid photo-polymerization successfully dispersed
10 wt% LLZTO NPs within the CPE for high-performing
LMBs. To highlight the importance of this fast in-situ
polymerization kinetics on the NP dispersion in CPE and
electrochemical performance, the precursor solution of
the CPE containing 10 wt% of LLZTO was subjected to
in-situ thermal polymerization, denoted as CPE-heat.
For CPE-heat, the composite precursor solutions were
made with the same components as the L10, except that
azobisisobutyronitrile (AIBN) thermal initiator was used
instead of the HCPK initiator. In Figure 5A, in-situ ther-
mal polymerization exhibited significantly slower kinet-
ics (�2 h) compared to photo-polymerization (�5 min),
resulting in the agglomeration of NPs during the forma-
tion of the crosslinked poly(BA) network. The CPE-heat
exhibited macroscale phase distinction upon thermal
processing, due to the slow polymerization kinetics and
precipitation of LLZTO NPs (Figure 5B,C). It is noted
that to better visualize the vertical distribution of
LLZTOs in the sample, we used much thicker CPE-heat
and CPE-photo samples compared to the films used in
the full cell cycling test. SEM images revealed no NPs on
the upper layer, while the bottom layer showed signifi-
cantly aggregated LLZTO NPs within the polymer matrix
(Figure 5D,E). The uneven distribution of NPs could neg-
atively affect the physical and electrochemical properties
of CPEs due to nonuniform Li+ flux. The macroscopi-
cally phase-separated and agglomerated LLZTO NPs in
CPE-heat were further evidenced by EDS mapping
images in Figure S12. In contrast, there was no signifi-
cant vertical segregation of LLZTO NPs in CPE-photo
samples (Figure S13). Thus, the rapid kinetics of photo-
polymerization proved to be an effective process for fab-
ricating homogeneous CPEs with uniformly dispersed
LLZTO NPs.

To further evaluate the electrochemical performance
according to the different polymerization processes, full
cell cycling tests of CPE-heat and CPE-photo were con-
ducted using a 40-μm Li foil, a higher loading NCM811
(�10 mg cm�2) (Figure 5F–H). After 80 cycles at a high
current density of 1.0 mA cm�2 (�0.5C), the CPE-heat
revealed a discharge capacity of 50.0 mAh g�1 (34%
capacity retention) with an average CE of 98.7%. These
results can be attributed to the nonuniform CPE forma-
tion caused by the sedimentation of LLZTO NPs, leading
to uneven Li+ transport. In contrast, CPE-photo main-
tained a capacity of 136.6 mAh g�1 (82% capacity reten-
tion) with an average CE of 99.5%. The cycling
performance of full cells with CPE-photo was further
demonstrated through replicated cells (Figure S14).

3 | CONCLUSION

We have developed the CPEs via an in-situ photo-poly-
merization method, introducing LLZTO inorganic fillers
within polymer electrolytes composed of elastomer and
plastic crystal phases. The rapid polymerization time
(�5 min) enabled uniform dispersion of LLZTO NPs
within the polymer matrix, achieving stable operation of
LMBs. By adjusting the weight ratio of LLZTO, the CPE
containing 10 wt% LLZTO (L10) exhibited a high σ value,
excellent elasticity and adhesion properties with well-dis-
tributed LLZTO NPs. Furthermore, L10 demonstrated
superior performance in Li/NCM811 full cells, maintain-
ing a capacity retention of 95% after 200 cycles with a
specific capacity of 166.7 mAh g�1 with an average CE of
99.7% at a 0.5C. These results were attributed to the
mechanical enhancement of CPEs by strong coordination
between LLZTO and crosslinked polymer matrix, and sig-
nificantly reduced interfacial resistances at the CPE/CPE
and Li/CPE interfaces. We further demonstrated that the
prolonged processing time with the in-situ thermal poly-
merization method results in the sedimentation of
LLZTO NPs and non-uniform CPEs, compared to the
uniform and high-performing CPEs fabricated by the fast
photo-polymerization method. Thus, this work provides
a facile design strategy for CPEs using in-situ photo-poly-
merization to develop highly stable LMBs.

3.1 | Experimental section

3.1.1 | Preparation of electrolytes

The CPEs (i.e., L0, L10, and L20) were fabricated in an
argon (Ar)-filled glove box (<0.1 ppm of O2 and H2O con-
centration). BA (≥99%; Sigma Aldrich) was degassed by
Ar bubbling for 30 min before use. The BA-based solu-
tion was prepared by mixing 1 mol% of PEGDA (average
Mn: 575 g mol�1; Sigma Aldrich), 0.5 mol% of HCPK
(Sigma Aldrich) or AIBN (Sigma Aldrich) for initiator in
BA liquid. Unlike BA monomer, SN (≥99%; TCI) was uti-
lized after a repeated freeze-pump-thaw procedure for
three times. The SN-Li salts solution was prepared by
mixing SN with LiTFSI (≥99%; Sigma Aldrich), and LiD-
FOB (≥99%; Sigma Aldrich) at 60�C. A 5 vol% of fluor-
oethylene carbonate (FEC) (≥ 98.0%; TCI) additive was
added into the SN-based solution to prevent undesired
reactions between SN and Li metal anode.60,63 The Li salt
concentration within the CPE precursor solution was
fixed to 0.8 M LiTFSI and 0.2 M LiDFOB. Each BA-based
solution and SN-Li salt solution was mixed homoge-
neously in a 1:1 volume ratio at 40�C to generate the CPE
precursor solutions. Then, a desired weight ratio of
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FIGURE 5 (A) FTIR spectra of crosslinked poly(BA) by thermal polymerization according to different processing times. (B) Bulk

photograph and (C) cross-sectioned SEM images at low magnification of CPE-heat. Cross-sectional SEM images of (D) top and (E) bottom

layer of CPE-heat. (F) Cycling performance of 40 μm-Li/high-loading NCM811 (�10.0 mg cm�2) full cells using CPE-heat and CPE-photo in

the voltage range of 3.0–4.3 V. The cell was cycled at 1.0 mA cm�2 after three formation cycles at 0.2 mA cm�2. Corresponding

Galvanostatic charge–discharge (GCD) profiles of (G) CPE-heat and (H) CPE-photo.
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LLZTO NPs (D50: �500 nm, MTI Korea) was dispersed
in the precursor solutions by magnetic stirring, which
were subsequently in-situ photo-polymerized for 5 min to
form the CPEs using a UV lamp with a wavelength of
365 nm and a power of 10 W. The vertical distance
between the UV lamp and the CPE samples was 15 cm.
In the case of in-situ thermal polymerization, CPE pre-
cursor solutions were heated in the 70�C oven for 2 h.

3.1.2 | Material characterization

The bulk morphologies of CPEs were observed by field-
emission SEM (Hitachi SU-8320), equipped with an EDS.
FTIR spectra were obtained using a Bruker ALPHA-P
spectrometer. To investigate the intrinsic polymerization
kinetics of thermal and photo-polymerization, FTIR was
conducted on the crosslinked poly(BA) matrix. The distri-
bution of LLZTO NPs in CPEs was observed using an
optical microscope in the reflection mode (Eclipse L150,
Nikon). Raman measurements were taken using a
Raman spectrometer (ARAMIS, Horiba Jobin Yvon) at
an excitation wavelength of 514 nm. The 7Li NMR spec-
tra were obtained using a Bruker Avance III HD 500-
MHz solid-state NMR spectrometer at ambient tempera-
ture. To address the moisture sensitivity, samples were
prepared within an inert glove box and sealed in poly
(chlorotrifluoroethylene) rotors. The NMR results were
referenced to a 1 M LiCl aqueous solution set at 0 ppm.
To investigate the internal morphology of CPEs, a cryo-
TEM experiment was performed. The CPEs were cryo-
genically vitrified in a liquid nitrogen (N2) chamber for
10 s. A Leica EM FC7 ultramicrotome containing a cryo
chamber equipped with a glass knife was utilized to
section the vitrified CPEs. The block face for the sample
preparation was approximately 200 � 200 μm. The ultra-
thin (�50 nm thick) sections were transferred to a
200 mesh carbon-coated copper grid while maintaining
temperatures between �90 and �80�C. Cross-sectional
images of CPEs were acquired using a JEOL JEM-1400
(JEOL Ltd.) operating at 120 kV equipped with a Gatan
914 cryo-holder (Gatan Inc.). TEM images were recorded
by a Veleta charge-coupled device (CCD) camera (EMSIS
GnbH) with a 1 s exposure time. Data were analyzed with
the RADIUS imaging software. A mechanical tensile test
and interfacial adhesion-strength measurements were
performed utilizing UTM (Lloyd Instruments LR5K). The
tensile stress (y-axis) of the CPEs was expressed as a true
stress value. The bulk samples of CPEs were prepared in
a dogbone-shaped mold (ASTM D412 Type C). The SEI
layer compositions at Li metal interfaces were investi-
gated using XPS (Thermo VG Scientific K-alpha), with

binding energies calibrated with the C 1s peak at
284.8 eV (C C component).

3.1.3 | Electrode preparation

NCM811 cathode was prepared by a slurry coating pro-
cess. NCM811 active material, Super P conductive car-
bon, and polyvinylidene fluoride (PVDF) were mixed in
N-methyl-2-pyrrolidone for 24 h with a weight ratio of
8:1:1 to fabricate a slurry. The slurry was coated onto a
current collector of aluminum foil. The fabricated cath-
odes were dried at 90�C for 1 h, followed by vacuum dry-
ing at 60�C for 24 h. The loading densities of the active
material were �2.5 and �10 mg cm�2, respectively.

3.1.4 | Electrochemical measurements

The electrochemical performance tests were evaluated
using 2032-type coin cells in a glove box filled with Ar gas
(<0.1 ppm of O2 and H2O concentration). The CPE pre-
cursor solutions were mixed homogeneously and injected
onto Li metal with a separator (i.e., Celgard 2500 for Li/
NCM811 full cells and Li symmetric cells, glass fiber (GF/
A) for ionic conductivity analysis). For the full cell
fabrication of the in-situ photo-polymerization process
(Figure S1), the precursor solutions were cast onto both
anode and cathode. For the preparation of CPE on the Li
metal anode, we employed a PP separator to increase the
wettability of the precursor solution to the Li metal sur-
face. Before coin cell assembly, the UV light was irradi-
ated both the Li anode and NCM811 cathode for 5 min.
In the case of in-situ thermal polymerization, the coin cell
was assembled before the thermal polymerization at 70�C
for 2 h. EIS measurements (BioLogic SP-200) were
recorded from 5 MHz to 2 mHz for full cells. The Li+

transference number (t+) was measured using Li symmet-
ric cells via the Bruce–Vincent method. The ionic conduc-
tivity of CPEs was measured by EIS with stainless
steel (SS)/CPE/SS symmetric cells at 25�C within an envi-
ronmental chamber. The 400 μm-Li/CPE/NCM811
(�2.5 mg cm�2) full cells were conducted by galvanostatic
charge/discharge tests in the voltage range of 3.0–4.3 V
(Neware battery tester) for 200 cycles at 25�C. The full cell
cycling tests were performed at 0.5C after three formation
cycles at 0.2C. The rate capability tests were conducted in
the same voltage range, with C-rates varying from 0.2 to
3C. The high-loading full cells composed of 40 μm-Li/
CPE/NCM811 (�10.0 mg cm�2) were evaluated by galva-
nostatic charge/discharge tests at current densities of
1.0 mA cm�2 after three formation cycles at 0.2 mA cm�2.
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