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Abstract Highly magnetized neutron stars have quantum
refraction effects on pulsar emission due to the non-linearity
of the quantum electrodynamics (QED) action. In this paper,
we investigate the evolution of the polarization states of pul-
sar emission under the quantum refraction effects, combined
with the dependence on the emission frequency, for dipole
and quadrudipole pulsar models; we solve a system of evo-
lution equations of the Stokes vector, where the birefringent
vector, in which such effects are encoded, acts on the Stokes
vector. At a fixed emission frequency, depending on the mag-
nitude of the birefringent vector, dominated mostly by the
magnetic field strength, the evolution of the Stokes vector
largely exhibits three different patterns: (i) monotonic, or (ii)
half-oscillatory, or (iii) highly oscillatory behaviors. These
features are understood and confirmed by means of approx-
imate analytical solutions to the evolution equations. Also,
the evolution patterns are shown to differ between dipole and
quadrudipole pulsar models, depending on the magnetic field
strength.

1 Introduction

Strong fields may open a window for testing fundamental
physics. Even before quantum electrodynamics (QED) was
fully developed and precisely tested in the weak field regime,
Heisenberg and Euler showed that a strong electromagnetic
field can polarize the Dirac vacuum [1]. Schwinger intro-
duced the proper-time integral method to obtain the one-
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loop effective QED action of the vacuum under a uniform
electromagnetic field [2]. The so-called Heisenberg-Euler-
Schwinger (HES) action provides an effective theory of elec-
trodynamics in strong fields, in which the linear Maxwell
vacuum is turned into a dielectric medium with electric,
magnetic, and magneto-electric responses. Consequently, a
photon propagating in a region of strong electromagnetic
fields can experience vacuum birefringence, i.e., a quantum
refraction effect [3,4]. Furthermore, when the electric field
is sufficiently strong to be comparable to the critical elec-
tric field strength (Ec = m2

ec
3/ (eh̄) ≈ 1.3 × 1016 V/cm),

electron–positron pairs can be created spontaneously out of
the vacuum, which is called Sauter–Schwinger pair produc-
tion [5–7]. Observing these effects will validate the quantum
vacuum model in the strong-field regime; however, vacuum
birefringence is practically far more likely to be implemented
or observed than Sauter–Schwinger pair production.

Although the relevant field strength is too high to attain
by terrestrial means, an experiment and several proposals for
testing strong-field QED have been reported. In the PVLAS
(Polarizzazione del Vuoto con Laser, i.e., polarization of vac-
uum with laser) project, permanent, superconducting mag-
nets have been used with laser as a probe, and a limit on
vacuum birefringence has been reported for a field strength
of 2.5×104 G [8]. Recently, several proposals have appeared,
in which ultra-intense laser fields are used with X-rays as a
probe [9–11]; the current ultra-intense laser can provide a
magnetic field strength of 1010 G [12], which corresponds
to millisecond pulsars, but not to young pulsars. Although
the fields from such lasers are still weaker than the critical
magnetic field strength, Bc = m2

ec
3/eh̄ ≈ 4.414 × 1013 G

by three orders, these proposals are promising for the obser-
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vation of vacuum birefringence in the relatively weak-field
regime. Thus, they are seriously considered to be conducted
at upcoming ultra-intense laser facilities [12].

However, the observation of vacuum birefringence in the
strong-field regime requires a field strength comparable to
the critical value. It has been predicted that such extreme
fields are available from astrophysical compact objects. For
instance, highly magnetized neutron stars have magneto-
spheres whose field strength approaches up to ∼ 2 × 1015 G
(about 50 times as high as the critical field strength) [3,13]. In
this regard, several space telescope missions are being con-
ducted or proposed to observe the X-rays from neutron stars
for vacuum birefringence: the Imaging X-ray Polarimetry
Explorer (IXPE) [14], X-ray Polarimeter Satellite (XPoSat)
[15], the enhanced X-ray Timing and Polarimetry (eXTP)
[16] and the Compton Telescope project [17]. The X-rays
from a neutron star contain information about vacuum bire-
fringence in its magnetosphere, and the birefringence effect
accumulates over the magnetospheric size. Such accumula-
tion is a great advantage compared to terrestrial laser exper-
iments, not to mention the available field strength. This way,
astrophysical compact objects can be used as a laboratory to
test fundamental physics in the strong-field regime [3,18,19].

The HES action is well approximated by the post-
Maxwellian action, even up to the strength one order lower
than the critical magnetic field Bc, which keeps up to the
quadratic terms of the Maxwell scalar and pseudo-scalar.
Therefore, the post-Maxwellian action exhibits non-linear
characteristics of vacuum polarization, such as quantum
refraction [20–22]. Previously, we have studied the quan-
tum refraction effects on the propagation of a probe photon
in the magnetic dipole field background of a pulsar model
[23]. The study is non-trivial in comparison with other simi-
lar studies wherein the background magnetic field is assumed
to be uniform, in that we have to deal with a dipole magnetic
field, the strength and direction of which vary over space.

In this work, we investigate the evolution of the polariza-
tion states of pulsar emission under the quantum refraction
effects, combined with the dependence on the emission fre-
quency, for dipole and quadrudipole (for the first time, to
our knowledge) pulsar models; with growing theoretical and
observational concerns for beyond-dipole effects, this study
extends the scope of previous works by taking into account
the multipolar magnetic field structure, the importance of
which has been illuminated in different contexts of pulsar
astronomy by a number of studies (see [24–28] and refer-
ences therein). To this end, we employ the evolution equa-
tions of the Stokes vector, where such effects are encoded
into the birefringent vector that acts on the Stokes vector.
The Stokes vector has a crucial advantage over the polar-
ization vector in representing polarization states: it can be
directly determined from experimentally measurable quanti-
ties and accommodate depolarization effects due to incom-

plete coherence and random processes during the photon
propagation. Solutions of the evolution equations describe
how the polarization states change along the photon propa-
gation path from the emission point towards an observer. It
turns out that the evolution of the Stokes vector, at a fixed
frequency of emission, largely exhibits three different pat-
terns, depending on the magnitudes of the birefringent vector,
dominated mostly by the magnetic field strength: (i) fraction-
ally oscillatory - monotonic, or (ii) half-oscillatory, or (iii)
highly oscillatory behaviors, which are found by numeri-
cal solutions and also confirmed by approximate analytical
solutions. These are novel features rarely illuminated in pre-
vious studies on the same topic. In addition, it is investigated
how the aforementioned features regarding the evolution of
the Stokes vector change as we replace a dipole field with a
quadrudipole field to modify the pulsar magnetic field struc-
ture. Throughout our analysis, X-ray emission from pulsars,
with frequency ∼ 1018 Hz, is considered; in this regime, the
vacuum contribution to the birefringence dominates that of
the plasma [29,30]. Also, our analysis is sufficiently rigor-
ous in solving the evolution equations of the Stokes vec-
tor, in that we feed into the equations the precise informa-
tion of photon propagation under the pulsar rotation effect,
through the magnetic field geometries of oblique dipole and
quadrudipole rotators, with all the quantities involved fully
affine-parameterized; then, the equations are solved solely in
terms of an affine parameter.

The paper is organized as follows. In Sect. 2.1, we intro-
duce a system of evolution equations of the Stokes vector
and apply this formalism to our pulsar emission model for an
oblique dipole rotator. In Sect. 2.2, the evolution equations
are solved for some known rotation-powered pulsars (RPPs)
in three ways: fully numerically, via perturbation analysis,
and using an analytical approximation. Also, we discuss the
evolution patterns of the Stokes vectors resulting from the
solutions. In Sect. 3.1, we consider a magnetic quadrudipole
model for pulsar emission and look into the evolution equa-
tions under this model. In Sect. 3.2, we solve the evolution
equations for the same RPPs fully numerically, and compare
the results with those for the dipole case in Sect. 2.2. Then
finally, we conclude the paper with discussions on other sim-
ilar studies and future follow-up studies.

2 Evolution of polarization states in strong magnetic
field – dipole pulsars

2.1 Evolution equations of Stokes vector

Classically, polarization properties of pulsar emission are
described by the Stokes parameters {I, Q,U, V }, where I
is a measure of the total intensity, Q and U jointly describe
the linear polarization, and V describes the circular polariza-
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Fig. 1 A cross-sectional view
of a pulsar magnetosphere with
the dipole magnetic field lines
(green) around a neutron star.
The vertical dashed line (black)
and the inclined solid line (red)
represent the rotation axis and
the magnetic axis, respectively.
α between these axes denotes
the inclination angle. The scale
of the unity in this graph is
equivalent to the neutron star
radius ∼ 106 cm. The red
dashed line represents the
trajectory curve of the light ray
traced by the propagation vector
n̂[0] as projected onto the
xz-plane (Credit: [37],
reproduced with modifications)

tion of pulsar emission (for more details, see Appendix A).
However, in the presence of a strong magnetic field in the
background of the emission, the polarization evolves along
the photon propagation path from the emission point towards
an observer. The evolution of the polarization can be inves-
tigated systematically using the formalism initiated by [31–
33], and further developed by [29,34–36], namely, a system
of evolution equations of the Stokes vector, described as

dS
ds

= k�̂ × S, (1)

where k ≡ ω/c denotes the wave number for the electro-
magnetic radiation and s is an affine parameter to measure
the length of the photon trajectory, and S is the normal-
ized Stokes vector, defined out of the Stokes parameters as
S = (S1, S2, S3) ≡ (Q/I,U/I, V/I ),1 and �̂ is the dimen-
sionless birefringent vector, defined as2

�̂ ≡ αe

30π
(B/Bc)

2 sin2 ϑ
(
E2

I − E2
II, 2EIEII, 0

)
, (2)

whereαe denotes the fine-structure constant andαe/ (30π) ≈
7.743×10−5 and Bc ≈ 4.414×1013 G is the critical magnetic

1 The classical Stokes vector can be expressed via pulse profiles of
pulsar curvature emission, as illustrated in Appendix A.
2 Note that our k�̂ is equivalent to the birefringent vector as defined in
the references above.

field, and ϑ denotes the angle between the photon trajectory
and the local magnetic field line (see Fig. 1), i.e.,

ϑ = cos−1
(
n̂[0] · B̂

)
, (3)

with n̂[0] being the classical propagation vector and B̂ ≡
B/ |B|, and

Ei ≡ −B̂ · (
n̂[0] × εi[0]

)
, i = I, II, (4)

with εI[0] and εII[0] being the two classical mode polarization
vectors, orthogonal to each other and to n̂[0]; the specific
forms of n̂[0], εI[0] and εII[0] are later given by Eqs. (8), (12)
and (13), respectively, for the magnetic field of an oblique
dipole rotator as described by Eq. (5) and Fig. 1.

In our pulsar emission model, we consider curvature radi-
ation produced along the magnetic field lines of an oblique
dipole rotator as illustrated in Fig. 1:

B (r, θ, φ) = 2μ (cos α cos θ + sin α sin θ cos φ)

r3 er̂

+ μ (cos α sin θ − sin α cos θ cos φ)

r3 e
θ̂

+ μ sin α sin φ

r3 e
φ̂
, (5)

where μ is the magnetic dipole moment and α denotes the
inclination angle between the rotation axis and the mag-
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netic axis.3 The photon beam from curvature radiation is
tangent to the field line at the emission point (xo, yo, zo) =
(ro sin θo, 0, ro cos θo).

However, at the same time, our pulsar magnetosphere
rotates, and therefore the field lines get twisted due to the
magneto-centrifugal acceleration on the plasma particles
moving along the field lines [38]. Then, taking into considera-
tion this magneto-hydrodynamic (MHD) effect, the direction
of the classical photon propagation, which must line up with
the particle velocity in order for an observer to receive the
radiation, can be described as [39]

n̂[0] = βB̂ + �p × r
c

, (6)

where on the right-hand side

β ≡
[

1 −
(

	pr

c

)2

sin2 θ

(
1 − sin2 α sin2 φ

3 cos2 θ ′ + 1

)]1/2

−	pr

c

sin α sin θ sin φ(
3 cos2 θ ′ + 1

)1/2 , (7)

with c being the speed of light and cos θ ′ ≡ cos α cos θ +
sin α sin θ cos φ, and the second term accounts for the cen-
trifugal acceleration, with �p ≡ 	pez4 and 	p = 2π/P
being a pulsar rotation (angular) frequency, as given in terms
of the rotation period P .

During the rotation the azimuthal phase changes by φ ∼
	pt , while our photon has propagated a distance by s ∼ ct .
In our analysis, the photon propagation is described with
the consideration of the MHD effect above, assuming φ to
be very small; e.g., φ � 10−1 is considered for a millisec-
ond pulsar with 	p ∼ 102 Hz, during the time of rotation
t � 10−3 s, such that s � 107 cm, which corresponds to the
propagation distance within about 10 times the neutron star
radius. For Eq. (6) we take only the leading order expansions
of B̂ (ro, θo, φ) and β (ro, θo, φ) in φ from Eqs. (5) and (7),
respectively, and can express the classical propagation vector

3 Here the symbol α must be distinguished from the fine-structure con-
stant αe.
4 Here the symbol �p must be distinguished from the birefringent vec-

tor �̂.

n̂[0] in Cartesian coordinates as

n̂[0] = n̂x[0]ex + n̂ y[0]ey + n̂z[0]ez (8)

with

n̂x[0] ≈ 2 cos (θo − α) sin θo + sin (θo − α) cos θo(
3 cos2 (θo − α) + 1

)1/2

+ O
(
φ2,

(
	pro/c

)2
, φ

(
	pro/c

))
, (9)

n̂z[0] ≈ 2 cos (θo − α) cos θo − sin (θo − α) sin θo(
3 cos2 (θo − α) + 1

)1/2

+ O
(
φ2,

(
	pro/c

)2
, φ

(
	pro/c

))
, (10)

and

n̂ y[0] ≈ 	p

c

[
sin α s(

3 cos2 (θo − α) + 1
)1/2 + ro sin θo

]

+O
(
φ2,

(
	pro/c

)2
, φ

(
	pro/c

))
, (11)

where we have considered 	pro/c � φ, e.g., for a millisec-
ond pulsar with 	p ∼ 102 Hz and ro ∼ 106 cm, such that(
	pro/c

)2 � φ
(
	pro/c

)
� φ2, all to be ignored in our anal-

ysis, and have substituted φ = 	ps/c in Eq. (11), the leading
order rotational effect to be considered in our analysis.

The orthogonal pair of classical mode polarization vec-
tors, εI[0] and εII[0], both being also orthogonal to n̂[0] as
given by Eq. (8) above, are determined as

εI[0] = n̂z[0]ex + n̂ y[0]ey − n̂x[0]ez, (12)

εII[0] = − (
n̂x[0] + n̂z[0]

)
n̂ y[0]ex + ey

+ (
n̂x[0] − n̂z[0]

)
n̂ y[0]ez, (13)

such that the three vectors, n̂[0], εI[0] and εII[0] form an
orthonormal basis.5 Using these for Eq. (4), we obtain

EI = −B̂ · (
n̂[0] × εI[0]

) ≈ 4 cos (θo − α) cos (θ − α) + sin (θo − α) sin (θ − α) + 2 sin (θ − θo)(
3 cos2 (θo − α) + 1

)1/2 (
3 cos2 (θ − α) + 1

)1/2 n̂ y[0]

− 	p sin α s

c
(
3 cos2 (θ − α) + 1

)1/2 + O
(
φ2,

(
	pro/c

)2
, φ

(
	pro/c

))
, (14)

EII = −B̂ · (
n̂[0] × εII[0]

) ≈ − 2 sin (θ − θo)(
3 cos2 (θo − α) + 1

)1/2 (
3 cos2 (θ − α) + 1

)1/2 + O
(
φ2,

(
	pro/c

)2
, φ

(
	pro/c

))
. (15)

5 It can be checked out that n̂[0] · εI[0] ≈ 0 + O
((

	pro/c
)2

)
,

n̂[0] · εII[0] = 0 and ε I[0] · εII[0] = 0 while n̂2
[0] ≈ 1 + O

((
	pro/c

)2
)

and ε2
I,II[0] ≈ 1 + O

((
	pro/c

)2
)

.
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By means of Eqs. (3), (5) and (8) one can express

cos ϑ ≈ 4 cos (θo − α) cos (θ − α) + sin (θo − α) sin (θ − α)(
3 cos2 (θo − α) + 1

)1/2 (
3 cos2 (θ − α) + 1

)1/2

+ O
(
φ2,

(
	pro/c

)2
, φ

(
	pro/c

))
, (16)

sin ϑ ≈ 2 sin (θ − θo)(
3 cos2 (θo − α) + 1

)1/2 (
3 cos2 (θ − α) + 1

)1/2

+ O
(
φ2,

(
	pro/c

)2
, φ

(
	pro/c

))
. (17)

Now, using the relations between Eqs. (14)–(17), the bire-
fringent vector can finally be specified from Eq. (2):

	̂1 ≈ −ηB2 sin4 ϑ + O
(
φ2,

(
	pro/c

)2
, φ

(
	pro/c

))
,

(18)

	̂2 ≈ −2ηB2 sin3 ϑ

[
(cos ϑ + sin ϑ) n̂ y[0]

− 	p sin α s

c
(
3 cos2 (θ − α) + 1

)1/2

]

+ O
(
φ2,

(
	pro/c

)2
, φ

(
	pro/c

))
, (19)

where η ≡ αe/
(
30πB2

c

)
6 and

B = Bmaxr3∗
(
3 cos2 (θ − α) + 1

)1/2

2
(
x2 + z2

)3/2 , (20)

with Bmax being the maximum magnetic field intensity at the
polar cap7 and r∗ being the neutron star radius (≈ 106 cm),
and n̂ y[0], cos ϑ and sin ϑ are given by Eqs. (11), (16) and
(17), respectively.

To facilitate solving the evolution equation (1) in the next
subsection, we substitute the following identities,

cos (θ − α) = sin α x + cos α z(
x2 + z2

)1/2 ,

sin (θ − α) = cos α x − sin α z(
x2 + z2

)1/2 ,

sin (θ − θo) = cos θo x − sin θo z(
x2 + z2

)1/2 , (21)

together with

x = n̂x[0]s + ro sin θo, z = n̂z[0]s + ro cos θo (22)

6 η = η2 − η1, where η1 and η2 are parameters defined via η1/4 =
η2/7 = αe/

(
90πB2

c

) ∼ 10−31 g−1 cm s2, from the post-Maxwellian

Lagrangian LPM = − (
B2 − E2

)
/2 + η1

(
B2 − E2

)2
/4 + η2 (E · B)2

[40].
7 From Eq. (5) Bmax = |B (r = r∗, θ = α)|.

into (16) and (17). Then our solutions for the Stokes vector
S will be parameterized solely by s.

2.2 Solving the evolution equations

From Eq. (1) we write down a system of first-order ordinary
differential equations to solve:

Ṡ1 (s) = k	̂2 (s) S3 (s) , (23)

Ṡ2 (s) = −k	̂1 (s) S3 (s) , (24)

Ṡ3 (s) = k
[
	̂1 (s) S2 (s) − 	̂2 (s) S1 (s)

]
, (25)

where an over-dot ˙ denotes differentiation with respect to s,
and 	̂1 (s) and 	̂2 (s) are given by (18) and (19), respectively.
By solving these equations numerically, we find out how the
photon polarization evolves through the strong magnetic field
in the background of our pulsar emission.

However, in case
∣∣∣k	̂1,2 (s) s

∣∣∣
max

� 1, one can obtain a

solution to Eq. (1) via perturbation:

S = S[0] + δS[1] = S[0] + k
∫

�̂ × S[0] ds, (26)

where δS[1] means the leading order quantum correction to
the unperturbed (initial) Stokes vector S[0]. Here the cor-
rection can be treated as the leading order perturbation with
αe/ (30π) (B/Bc)

2 ∼ 10−5 (B/Bc)
2 being a perturbation

parameter. Upon inspection of Eqs. (18) and (19) for Eq.
(26), we can further write down our solution in terms of its
components:

S1 ≈ S1[0] − 2kηS3[0]

∫
B2 sin3 ϑ

[
(cos ϑ + sin ϑ) n̂ y[0]

− 	p sin α s

c
(
3 cos2 (θ − α) + 1

)1/2

]
ds, (27)

S2 ≈ S2[0] + kηS3[0]

∫
B2 sin4 ϑds, (28)

S3 ≈ S3[0] + kη

{
2S1[0]

∫
B2 sin3 ϑ

[
(cos ϑ + sin ϑ) n̂ y[0]

− 	p sin α s

c
(
3 cos2 (θ − α) + 1

)1/2

]
ds

−S2[0]

∫
B2 sin4 ϑds

}
. (29)

2.2.1 Examples

We consider X-ray emissions from three neutron stars: (i)
one with Bmax ≈ 1012 G and 	p ≈ 392.7 Hz (P ≈ 0.016 s),
(ii) another with Bmax ≈ 5.6 × 1012 G and 	p ≈ 22.28 Hz
(P ≈ 0.282 s), (iii) the third with Bmax ≈ 5.0 × 1013 G and
	p ≈ 19.6 Hz (P ≈ 0.32 s). For all three, we assume ro =
2r∗ ≈ 2×106 cm, θo = 60◦, α = 45◦, η ≈ 3.97×10−32 and
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ω ≈ 2π × 1018 Hz (k ≈ 2.0958 × 108 cm−1).8 These stars
belong to ‘rotation-powered pulsars’ (RPPs) [41].9 In Fig. 2
the three RPPs chosen from the X-ray group are encircled:
(i) the one in orange, (ii) another in cyan, (iii) the third in
green. Given the X-ray emissions from these, we solve the
evolution equations (1) for the following cases.

Example (i)
With Bmax ≈ 1012 G and 	p ≈ 392.7 Hz (P ≈ 0.016 s),
we obtain numerical solutions of Eqs. (23)–(25) (in solid
lines) or perturbative solutions by means of Eqs. (27)–(29)
(in dashed lines), as shown in Fig. 3a, b, given the initial
Stokes vectors S (0) = (S1 (0) , S2 (0) , S3 (0)) = (1, 0, 0)

and (0.8, 0, 0.6), respectively. The perturbative solutions

agree well with numerical ones as
∣∣∣k	̂1,2 (s) s

∣∣∣
max

∼∣∣∣k	̂1,2
(
s†1,2

)
s†1,2

∣∣∣ ∼ 10−2 � 1, where s†1,2 is the

extremum, i.e., d	̂1,2
(
s†1,2

)
/ds = 0. On the Poincaré

sphere, our solutions are represented by the magenta and light
blue loci in Fig. 6a, corresponding to Fig. 3a, b, respectively.
The loci imply a fraction of an oscillation for the polarization
evolution, as is confirmed later by the approximate analytical
solutions in Sect. 2.2.2.

Example (ii)
With Bmax ≈ 5.6 × 1012 G and 	p ≈ 22.28 Hz (P ≈
0.282 s), we obtain numerical solutions of Eqs. (23)–(25), as
shown in Fig. 4a, b, given the initial Stokes vectors S (0) =
(S1 (0) , S2 (0) , S3 (0)) = (1, 0, 0) and (0.8, 0, 0.6), respec-
tively. On the Poincaré sphere, our solutions are represented
by the magenta and light blue loci in Fig. 6b, corresponding
to Fig. 4a, b, respectively. The loci imply about half an oscil-
lation for the polarization evolution, as is confirmed later by
the approximate analytical solutions in Sect. 2.2.2.

Example (iii)
With Bmax ≈ 5.0 × 1013 G and 	p ≈ 19.6 Hz (P ≈
0.32 s), we obtain numerical solutions of Eqs. (23)–(25), as
shown in Fig. 5a, b, given the initial Stokes vectors S (0) =
(S1 (0) , S2 (0) , S3 (0)) = (1, 0, 0) and (0.8, 0, 0.6), respec-
tively. On the Poincaré sphere, our solutions are represented
by the magenta and light blue loci in Fig. 6c, corresponding
to Fig. 5a, b, respectively. The loci imply multiple oscilla-
tions for the polarization evolution, as is confirmed later by
the approximate analytical solutions in Sect. 2.2.2.

8 For the emission location (ro, θo) and the inclination angle α are given
the same values for the three stars; the values are not based on actual
observations. This is intended for comparing the QED effects from the
three different sources under the same conditions.
9 RPPs refer to neutron stars whose radiation is powered by loss of their
rotation energy, via creation and acceleration of e+e− pairs in the strong
magnetic field, Bmax ∼ 1011 − 1013 G. The number of detected RPPs
are known to be about ∼ 4000 in radio, ∼ 10 in optical (including NIR
and UV), ∼ 100 in X-ray and ∼ 300 in gamma-ray emissions [41–43].

With regard to the adiabatic evolution condition as
mentioned in Refs. [29,34,35], we carefully examine our
results presented in Figs. 3, 4 and 5 to see what inter-
pretations the condition leads to. Solving the condition∣∣∣∣k�̂

(
d ln |k�̂|/ds

)−1
∣∣∣∣ � 0.05 for s yields sPL1 � s �

sPL2,10 where sPL1[2] refers to the lower [upper] bound for the
‘polarization limiting’ distance as measured from the emis-
sion point. Using this, one can check out the following:
(1) for 6.2 × 105 cm � s � 1.8 × 106 cm in Fig. 3,
(2) for 3.1 × 105 cm � s � 6.2 × 106 cm in Fig. 4,
(3) for 1.1 × 105 cm � s � 1.9 × 107 cm in Fig. 5,
our Stokes vector evolves evidently; otherwise, it freezes.

2.2.2 Approximate analytical solutions

Plotting the birefringent functions 	̂1 (s) and 	̂2 (s), as given
by (18) and (19), respectively, one can observe that they
feature distinctive patterns; they can be well approximated
by some analytic models, whose curves resemble the origi-
nal plots. In Fig. 7 are plotted the birefringent functions for
the three cases: (a) Bmax ≈ 1012 G and 	p ≈ 392.7 Hz
(P ≈ 0.016 s), (b) Bmax ≈ 5.6×1012 G and 	p ≈ 22.28 Hz
(P ≈ 0.282 s), (c) Bmax ≈ 5.0 × 1013 G and 	p ≈ 19.6 Hz
(P ≈ 0.32 s) with solid lines (see Fig. 7a–c, respectively),
where they have been evaluated with the same initial condi-
tion as assumed in Sect. 2.2.1.

In correspondence with the actual birefringent functions
above, the following analytical models are also plotted with
dashed lines in Fig. 7:

	̂1,2 (s) ≈ −a1,2s
p+1
p e−bs for

0 ≤ s ≤ 20r∗
(
≈ 2 × 107 cm

)
, (30)

where a1 > 0, a2 < 0, b > 0 and p > 0 are free parameters;
with suitable values chosen for these, our model functions can
give rise to solutions of Eqs. (23)–(25) that match fairly well
the numerical results obtained in Sect. 2.2.1. Here we express

a1,2 = −	̂1(min),2(max)

[
e

(1 − q) s†1 + qs†2

] p+1
p

,

b = p + 1

p
[
(1 − q) s†1 + qs†2

] , (31)

where 	̂1(min),2(max) = 	̂1,2
(
s†1,2

)
, evaluated from (18),

(19), with s†1,2 denoting the extremum. We have set p = 100

10 Note that our k�̂ is equivalent to the birefringent vector as defined
in Refs. [29,34,35] and that we set the condition value to 0.05 rather
than 0.5 as in the references.
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Fig. 2 The population of
detected rotation-powered
pulsars (RPPs) plotted against
their rotation period. RPPs
detected in X-rays and
gamma-rays are represented by
red dots and blue stars,
respectively. Three RPPs chosen
from the X-ray group, (i) one
with Bmax ≈ 1012 G and
	p ≈ 392.7 Hz (P ≈ 0.016 s),
(ii) another with
Bmax ≈ 5.6 × 1012 G and
	p ≈ 22.28 Hz (P ≈ 0.282 s),
(iii) the third with
Bmax ≈ 5.0 × 1013 G and
	p ≈ 19.6 Hz (P ≈ 0.32 s), are
encircled in orange, cyan and
green colors, respectively
(Credit: [41], reproduced with
modifications)

Fig. 3 For Example (i): the
evolution of the Stokes vector
S (s) = (S1 (s) , S2 (s) , S3 (s)),
0 ≤ s ≤ 20r∗

(≈ 2 × 107 cm
)
,

for the X-ray emissions from the
pulsar with Bmax ≈ 1012 G and
	p ≈ 392.7 Hz (P ≈ 0.016 s);
the subscript (p) stands for
‘perturbative’

(a sufficiently large number) for all three cases, and q =
0.99999 for (a) and (b), and q = 0.0532 for (c) in Fig. 7,11

Plugging Eq. (30) into Eqs. (23)–(25), we obtain analytical
solutions as follows (for a complete derivation, see Appendix
B):

S1 (s) ≈ a2So√
a2

1 + a2
2

cos (� (s; p) + δ) + a1C√
a2

1 + a2
2

, (32)

S2 (s) ≈ − a1So√
a2

1 + a2
2

cos (� (s; p) + δ) + a2C√
a2

1 + a2
2

, (33)

11 In particular, the values forq have been chosen such that our solutions
converge to the asymptotic limits that match well the numerical results
given by Figs. 3b, 4b and 5b in Sect. 2.2.1, as s tends to ∞.

S3 (s) ≈ So sin (� (s; p) + δ) , (34)
where

� (s; p) ≡ k
√
a2

1 + a2
2b

− 4p+1
2p s

1
2p e− 1

2 bs

×
[
M 1

2p ,
p+1
2p

(bs) − (bs)
2p+1

2p e− 1
2 bs

]
, (35)

and Mκ,μ (z) denotes a Whittaker function of the first kind,12

and a1,2 and b are given by (31). Here we determine So,C and

12 The expression inside the square brackets in Eq. (35) has
been reduced from its original form as given by Eq. (B7) in
Appendix B, using the identity M(2p+1)/(2p),(p+1)/(2p) (bs) =
(bs)(2p+1)/(2p) e−bs/2M (0, (2p + 1) /p, bs), with the Kummer func-
tion M (0, (2p + 1) /p, bs) = 1 as a special case [44].
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Fig. 4 For Example (ii): the
evolution of the Stokes vector
S (s) = (S1 (s) , S2 (s) , S3 (s)),
0 ≤ s ≤ 20r∗

(≈ 2 × 107 cm
)
,

for the X-ray emissions from the
pulsar with
Bmax ≈ 5.6 × 1012 G and
	p ≈ 22.28 Hz (P ≈ 0.282 s)

Fig. 5 For Example (iii): the
evolution of the Stokes vector
S (s) = (S1 (s) , S2 (s) , S3 (s)),
0 ≤ s ≤ 20r∗

(≈ 2 × 107 cm
)
,

for the X-ray emissions from the
pulsar with
Bmax ≈ 5.0 × 1013 G and
	p ≈ 19.6 Hz (P ≈ 0.32 s)

Fig. 6 Representations of the
Stokes vectors from Examples
(i)–(iii) on the Poincaré sphere.
The loci imply patterns of the
polarization evolution in terms
of oscillation
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Fig. 7 Plots of the birefringent
functions 	̂1 (s) and 	̂2 (s) and
their approximate analytic
models 	̂1(m) (s) and 	̂2(m) (s)

δ by matching the initial value of the Stokes vector S (0) =
(S1 (0) , S2 (0) , S3 (0)) with Eqs. (32)–(34) evaluated at s =
0.

In Fig. 8 we plot the above solutions (32)–(34) for the
following cases, assuming ro = 2r∗ ≈ 2×106 cm, θo = 60◦,
α = 45◦, η ≈ 3.97×10−32 for 	̂1(min),2(max) = 	̂1,2

(
s†1,2

)
(evaluated via (18) and (19)) and ω ≈ 2π × 1018 Hz (k ≈
2.0958 × 108 cm−1) for the X-ray emissions, with the initial
Stokes vector S (0) = (0.8, 0, 0.6):
Case (a) (see Fig. 8a); for Bmax ≈ 1012 G and 	p ≈
392.7 Hz (P ≈ 0.016 s), with the parameters 	̂1(min) ≈
−2.5511 × 10−16, 	̂2(max) ≈ 2.2054 × 10−16, s†1 ≈
1.0202 × 106 cm, s†2 ≈ 7.5467 × 105 cm, p = 100, q =
0.99999 for a1,2 and b (evaluated via (31)), and So ≈ 0.7961,
C ≈ 0.6052, δ ≈ 2.2879,
Case (b) (see Fig. 8b); for Bmax ≈ 5.6 × 1012 G and
	p ≈ 22.28 Hz (P ≈ 0.282 s), with the parameters
	̂1(min) ≈ −8.0001 × 10−15, 	̂2(max) ≈ 3.9240 × 10−16,
s†1 ≈ 1.0202 × 106 cm, s†2 ≈ 7.5467 × 105 cm, p = 100,
q = 0.99999 for a1,2 and b (evaluated via (31)), and
So ≈ 0.6013, C ≈ 0.7990, δ ≈ 1.6360,
Case (c) (see Fig. 8c); for Bmax ≈ 5.0 × 1013 G and
	p ≈ 19.6 Hz (P ≈ 0.32 s), with the parameters 	̂1(min) ≈
−6.3776 × 10−13, 	̂2(max) ≈ 2.7567 × 10−14, s†1 ≈
1.0202 × 106 cm, s†2 ≈ 7.5467 × 105 cm, p = 100, q =
0.0532 for a1,2 and b (evaluated via (31)), and So ≈ 0.6010,
C ≈ 0.7993, δ ≈ 1.6283.

These plots compare with Figs. 3b (for Example (i)), 4b
(for Example (ii)) and 5b (for Example (iii)) in Sect. 2.2.1,
respectively.

The analytical solutions (32)–(34) provide a useful tool for
understanding the different patterns of polarization evolution
for the three cases above, as given by Fig. 8a–c. Inspecting
numerically the functional argument � (s; p) given by (35),
one can approximate it to a simpler form with the help of
(30) and (31):

For 0 ≤ s � 2.5 × 106 cm,

� (s; p = 100) = k
√
a2

1 + a2
2b

− 401
200 s

1
200 e− 1

2 bs

×
[
M 1

200 , 101
200

(bs) − (bs)
201
200 e− 1

2 bs
]

≈ 0.24k
√

	̂2
1(min) + 	̂2

2(max)πs. (36)

Using this, we can estimate how much the oscillations for the
three cases have progressed, for example, during 0 ≤ s �
2.5 × 106 cm:

�
(
s ≈ 2.5 × 106 cm; p = 100

)

≈
⎧⎨
⎩

0.04π (a fraction of an oscillation) for Case (a),
π (about half an oscillation) for Case (b),
80π (multiple oscillations) for Case (c),

(37)

each of which can be checked by comparison with Fig. 8a–c,
respectively.

Recalling Example (i) from Sect. 2.2.1, one finds that the
condition for perturbation can be equivalently expressed with
the help of (36):

∣∣∣k	̂1,2 (s) s
∣∣∣
max

∼
∣∣∣k	̂1,2

(
s†1,2

)
s†1,2

∣∣∣

∼ 0.24k
√

	̂2
1(min) + 	̂2

2(max)π × 106 cm

≈ 0.017π � 1 for Example (i) or Case (a). (38)

Extending this argument, similarly to (37) above we may
state the following in reference to the patterns of polarization
evolution:
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Fig. 8 Plots of the analytical
solutions S(a) (s) =(
S1(a) (s) , S2(a) (s) , S3(a) (s)

)
,

given the initial Stokes vector
S (0) = (0.8, 0, 0.6)

∣∣∣k	̂1,2 (s) s
∣∣∣
max

⎧⎨
⎩

� 1 (fractionally oscillatory - monotonic) for Example (i),
∼ 1 (half oscillatory) for Example (ii),
� 1 (highly oscillatory) for Example (iii).

(39)

These features can also be checked by comparison with the
loci on the Poincaré sphere, as given by Fig. 6a–c, which
imply the three different patterns of the polarization evolu-
tion in terms of oscillation (by means of the number of turns
of the circular loci).

Here the approximate analytical solutions serve our pur-
pose well, in that they help us to understand the different
patterns of polarization evolution, which depend largely on
the major profiles of pulsar emission, such as the emission
frequency, the magnetic field strength and the rotation fre-
quency of the neutron stars, as implied from Eq. (36). On
the other hand, it would be worthwhile to check how close
the numerical and analytical solutions are to each other by

evaluating the cross-correlations between them. For exam-
ple, comparing Figs. 5b and 8c, over the entire region of
polarization evolution (2 × 102 cm � s � 2 × 107 cm), the
cross-correlation coefficients between S1 and S1(a), between
S2 and S2(a), and between S3 and S3(a) turn out to be approxi-
mately 0.9998, 0.6757, and 0.6521, respectively. This shows
that the two solutions are in decent agreement with each
other; although the asymptotic values, S1 (∞) and S1(a) (∞),
S2 (∞) and S2(a) (∞), and S3 (∞) and S3(a) (∞) are fairly
closely matched to each other with less than 10% differences,
the correlations are decreased by the mismatched phases
between the two solutions.
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3 Evolution of polarization states in strong magnetic
field – quadrudipole pulsars

3.1 Modified magnetic field geometry and evolution
equations of Stokes vector

The pulsar magnetic field structure may not be assumed to
be purely dipolar as given by (5). This assumption is based
on the behavior of the field in the far-field regime, where
its high-order multipole (�) components decrease faster than
low-order ones, like r−(�+1), which justifies the use of the
dipole field as a good approximation [28]. However, tak-
ing into account the possible contributions from the mul-
tipolar components, especially in the vicinity of the neu-
tron star, we need to extend our pulsar model by super-
posing the dipole and higher-order multipole fields. A sim-
ple extension can be implemented by considering a rotating
off-centered dipole, and a number of studies have been car-
ried out regarding a variety of astrophysical consequences
of such extension models in pulsar astronomy (see [28] and
references therein).13 As the simplest model, one can con-
sider ‘quadrudipole’ fields, a superposition of dipole and
quadrupole fields [24,25,27].

The magnetic field of an oblique quadrudipole rotator can
be written as

Bqd (r, θ, φ) =
[

2μd (cos α cos θ + sin α sin θ cos φ)

r3 + μq
(
3 (cos α cos θ + sin α sin θ cos φ)2 − 1

)

r4

]
er̂

+
[

μd (cos α sin θ − sin α cos θ cos φ)

r3 + 2μq (cos α sin θ − sin α cos θ cos φ) (cos α cos θ + sin α sin θ cos φ)

r4

]
e
θ̂

+
[

μd sin α sin φ

r3 + 2μq sin α sin φ (cos α cos θ + sin α sin θ cos φ)

r4

]
e
φ̂
. (40)

Here the subscript ‘qd’ on the left-hand side stands for
‘quadrudipole’ (hereafter, this will be attached to notations
for any quantities affected by the quadrudipole field), and μd

and μq denote the magnetic dipole and quadrupole moments,
respectively.

The magnetic dipole moment can be expressed as μd =
πr2∗ I , as produced by a static loop current I of radius of
the neutron star r∗, encircling its equator. Similarly, one
can express the magnetic quadrupole moment as μq =
2χπr3∗ I = 2χr∗μd, as produced by two identical mag-
netic dipole loops carrying opposing equal currents I , each
of radius r∗, separated by distance χr∗ (i.e., anti-Helmholtz

13 The multipole field structure extended in this way inevitably has the
higher-order fields aligned with the dipolar axis. Although the aligned
multipole fields might not accurately represent actual field geometries
in nature (as illustrated in Ref. [26]), the models would still be useful
for estimating roughly the ‘beyond-dipole’ effects in pulsar emission in
the near-field regime, as shown in Sect. 3.2.1 later.

coils), where χ > 0 is a free parameter to determine the ratio
between the dipole and quadrupole moments. For example,
the magnetic field lines of an oblique quadrudipole rotator,
with χ = 1, that is, μq = 2r∗μd, set for Eq. (40) are illus-
trated in Fig. 9.

As the magnetic field geometry changes from (5) to (40),
the classical propagation vector shall be modified from (6)
to

n̂[0]qd = βqdB̂qd + �p × r
c

, (41)

where B̂qd ≡ Bqd/
∣∣Bqd

∣∣ and

βqd ≡
[

1 −
(

	pr

c

)2

sin2 θ

(
1 − sin2 α sin2 φ

f (θ ′;χ)

)]1/2

−	pr

c

sin α sin θ sin φ

[ f (θ ′;χ)]1/2 , (42)

with

f
(
θ ′;χ

) ≡ 3 cos2 θ ′ + 1 + 16χ
r∗
r

cos3 θ ′ + 4χ2
(r∗
r

)2

×
(

5 cos4 θ ′ − 2 cos2 θ ′ + 1
)

(43)

and cos θ ′ ≡ cos α cos θ + sin α sin θ cos φ.

Similarly to Sect. 2.1, taking only the leading order expan-
sions of B̂qd (ro, θo, φ) and βqd (ro, θo, φ) in φ from Eqs. (40)
and (42), respectively, one can write down the classical prop-
agation vector out of Eq. (41) in Cartesian coordinates as

n̂[0]qd = n̂x[0]qdex + n̂ y[0]qdey + n̂z[0]qdez (44)

where

n̂x[0]qd ≈ [ f (θo − α;χ)]−1/2
{

2 cos (θo − α) sin θo

+ sin (θo − α) cos θo

+ 2χ
r∗
ro

[ (
3 cos2 (θo − α) − 1

)
sin θo

+ 2 cos (θo − α) sin (θo − α) cos θo

]}

+ O
(
φ2,

(
	pro/c

)2
, φ

(
	pro/c

))
, (45)
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Fig. 9 A cross-sectional view
of a pulsar magnetosphere with
the quadrudipole (dipole +
quadrupole) magnetic field lines
(green) around a neutron star,
where the relation between the
magnetic dipole and quadrupole
moments is set by μq = 2r∗μd
for the total field (40). The
vertical dashed line (black) and
the inclined solid line (red)
represent the rotation axis and
the magnetic axis, respectively.
α between these axes denotes
the inclination angle. The scale
of the unity in this graph is
equivalent to the neutron star
radius ∼ 106 cm. The red
dashed line represents the
trajectory curve of the light ray
traced by the propagation vector
n̂[0]qd as projected onto the
xz-plane

n̂z[0]qd ≈ [ f (θo − α;χ)]−1/2
{

2 cos (θo − α) cos θo

− sin (θo − α) sin θo

+ 2χ
r∗
ro

[ (
3 cos2 (θo − α) − 1

)
cos θo

− 2 cos (θo − α) sin (θo − α) sin θo

]}

+ O
(
φ2,

(
	pro/c

)2
, φ

(
	pro/c

))
, (46)

and

n̂ y[0]qd ≈ 	p

c

{
[ f (θo − α;χ)]−1/2 sin α

×
(

1 + 4χ
r∗
ro

cos (θo − α)

)
s + ro sin θo

}

+ O
(
φ2,

(
	pro/c

)2
, φ

(
	pro/c

))
, (47)

with f (θo − α;χ) referring to Eq. (43) for θ = θo and φ =
0. In association with n̂[0]qd, the orthogonal pair of classical
mode polarization vectors are determined as

εI[0]qd = n̂z[0]qdex + n̂ y[0]qdey − n̂x[0]qdez, (48)

εII[0]qd = − (
n̂x[0]qd + n̂z[0]qd

)
n̂ y[0]qdex + ey

+ (
n̂x[0]qd − n̂z[0]qd

)
n̂ y[0]qdez, (49)

such that the three vectors, n̂[0]qd, εI[0]qd and εII[0]qd form an
orthonormal basis.

In addition, due to (40) and (44), the angle between the
photon trajectory and the local magnetic field line, as defined
by Eq. (3) shall be modified. Then we have

cos ϑqd ≈ [
f (θo − α;χ)

]−1/2
[ f (θ − α;χ)]−1/2

×
[
4 cos (θo − α) cos (θ − α) + sin (θo − α)

× sin (θ − α) + χg1 (r, θ) + χ2g2 (r, θ)
]

+ O
(
φ2,

(
	pro/c

)2
, φ

(
	pro/c

))
, (50)

where

g1 (r, θ) = 4
r∗
ro

[(
3 cos2 (θo − α) − 1

)
cos (θ − α)

+ cos (θo − α) sin (θo − α) sin (θ − α)
]

+ 4
r∗
r

[(
3 cos2 (θ − α) − 1

)
cos (θo − α)

+ cos (θ − α) sin (θ − α) sin (θo − α)
]
, (51)

g2 (r, θ) = 4
r2∗
ror

[(
3 cos2 (θo−α) −1

) (
3 cos2 (θ − α) − 1

)

+4 cos (θo−α) sin (θo−α) cos (θ−α) sin (θ−α)
]
.

(52)
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Now, having Bqd, n̂[0]qd, εI[0]qd, εII[0]qd and cos ϑqd at
hand, as given by Eqs. (40), (44), (48), (49) and (50) above,
respectively, we modify the evolution equations of the Stokes
vector (1) to

dS
ds

= k�̂qd × S, (53)

where

�̂qd ≡ αe

30π

(
Bqd/Bc

)2 sin2 ϑqd

(
E2

Iqd−E2
IIqd, 2EIqdEIIqd, 0

)
.

(54)

Here sin ϑqd is defined via (50), and

EIqd = −B̂qd·
(
n̂[0]qd × εI[0]qd

)

≈ [ f (θo − α;χ)]−1/2 [ f (θ − α;χ)]−1/2

×
{[

2 cos (θo − α) + 2χ
r∗
ro

(
3 cos2 (θo − α) − 1

)]

×
[
2 cos (θ − α) + 2χ

r∗
r

(
3 cos2 (θ − α) − 1

)]

+ sin (θo − α)

[
1 + 4χ

r∗
ro

cos (θo − α)

]
sin (θ − α)

×
[
1 + 4χ

r∗
r

cos (θ − α)
] }

n̂ y[0]qd

− EIIqdn̂ y[0]qd − 	p sin α

c
[ f (θ − α;χ)]−1/2

×
[
1 + 4χ

r∗
r

cos (θ − α)
]
s

+ O
(
φ2,

(
	pro/c

)2
, φ

(
	pro/c

))
, (55)

EIIqd = −B̂qd·
(
n̂[0]qd × εII[0]qd

)

≈ [ f (θo − α;χ)]−1/2 [ f (θ − α;χ)]−1/2

×
{ [

2 cos (θ − α) + 2χ
r∗
r

(
3 cos2 (θ − α) − 1

)]

× sin (θo − α)

[
1 + 4χ

r∗
ro

cos (θo − α)

]

−
[

2 cos (θo − α) + 2χ
r∗
ro

(
3 cos2 (θo − α) − 1

)]

× sin (θ − α)
[
1 + 4χ

r∗
r

cos (θ − α)
] }

+ O
(
φ2,

(
	pro/c

)2
, φ

(
	pro/c

))
, (56)

with f (θ − α;χ) referring to Eq. (43) for φ = 0.

3.2 Solving the evolution equations

From Eq. (54) one can write out the non-zero components of
the birefringent vector:

	̂1qd ≈ −ηB2
qd sin2 ϑqdE2

IIqd

+ O
(
φ2,

(
	pro/c

)2
, φ

(
	pro/c

))
, (57)

	̂2qd ≈ 2ηB2
qd sin2 ϑqdEIqdEIIqd

+ O
(
φ2,

(
	pro/c

)2
, φ

(
	pro/c

))
, (58)

where η ≡ αe/
(
30πB2

c

)
, and EIqd and EIIqd refer to Eqs.

(55) and (56), respectively, and sin ϑqd is defined via Eq.
(50), while

Bqd = Bmaxr3∗ [ f (θ − α;χ)]1/2

2 (1 + 2χ)
(
x2 + z2

)3/2 (59)

due to Eq. (40), with Bmax being the maximum magnetic field
intensity at the polar cap, r∗ being the neutron star radius
and f (θ − α;χ) referring to Eq. (43) for φ = 0. Having
Eqs. (57) and (58) at hand, we solve a system of differential
equations, i.e., the evolution equations of the Stokes vector,
written out in component form from (53):

Ṡ1 (s) = k	̂2qd (s) S3 (s) , (60)

Ṡ2 (s) = −k	̂1qd (s) S3 (s) , (61)

Ṡ3 (s) = k
[
	̂1qd (s) S2 (s) − 	̂2qd (s) S1 (s)

]
. (62)

3.2.1 Examples

We consider again X-ray emissions from the same three RPPs
as in Sect. 2.2.1: (i′) one with Bmax ≈ 1012 G and 	p ≈
392.7 Hz (P ≈ 0.016 s), (ii′) another with Bmax ≈ 5.6 ×
1012 G and 	p ≈ 22.28 Hz (P ≈ 0.282 s), (iii′) the third
with Bmax ≈ 5.0 × 1013 G and 	p ≈ 19.6 Hz (P ≈ 0.32 s).
Again, for all three, we assume ro = 2r∗ ≈ 2 × 106 cm,
θo = 60◦, α = 45◦, η ≈ 3.97×10−32 and ω ≈ 2π×1018 Hz
(k ≈ 2.0958×108 cm−1). However, unlike the dipole pulsars
as in Sect. 2.2.1, quadrudipole pulsars can be modeled by
setting the value of an arbitrary parameter χ to determine the
ratio between the magnetic dipole and quadrupole moments;
we choose two values, χ = 1.585 and 0.85 to model each
RPP in our analysis here.14

In Figs. 10, 11 and 12 are plotted our numerical solutions
of Eqs. (60)–(62) for the Stokes vectors in Examples (i′), (ii′)
and (iii′), respectively. Also, in Fig. 13 we present the solu-
tions as represented on the Poincaré sphere for χ = 1.585

14 The values χ = 1.585 and 0.85 have been determined
such that they optimize 	̂1qd (s; χ) ≤ 0 and 	̂2qd (s; χ) ≥
0, respectively. That is to say, the optimal values of 	̂1qd(min)

and 	̂2qd(max) are found at
(
s ≈ 8.2444 × 105 cm; χ ≈ 1.585

)
and(

s ≈ 6.3588 × 105 cm; χ ≈ 0.85
)
, respectively, which are deter-

mined from ∂	̂1qd (s; χ) /∂s = ∂	̂1qd (s; χ) /∂χ = 0 and
∂	̂2qd (s; χ) /∂s = ∂	̂2qd (s; χ) /∂χ = 0, respectively. In consid-
eration of Eqs. (60)–(62), these values will maximize the effects of
birefringence on our evolution system.
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Fig. 10 For Example (i′): the
evolution of the Stokes vector
S (s) = (S1 (s) , S2 (s) , S3 (s)),
0 ≤ s ≤ 20r∗

(≈ 2 × 107 cm
)
,

for the X-ray emissions from the
quadrudipole pulsar with
Bmax ≈ 1012 G and
	p ≈ 392.7 Hz (P ≈ 0.016 s)

only; there is little difference in the representations of solu-
tions between χ = 1.585 and 0.85 cases. The solutions rep-
resented by the three magenta loci and the three light blue
loci in Fig. 13 correspond to Figs. 10a, 11a, 12a and Figs. 10c,
11c, 12c, respectively. In Fig. 10 for Example (i′), where Bmax

is relatively weak among the three RPPs, general patterns of
polarization evolution are shown to be nearly the same for
χ = 1.585 and 0.85, and to be almost the same even to the
dipole case as given by Fig. 3 for Example (i) in Sect. 2.2.1; it
is also confirmed by comparing the representations in Figs. 6a
and 13a. In contrast, in Fig. 11 for Example (ii′), where Bmax

is intermediate among the three RPPs, general patterns of
polarization evolution are shown to be nearly the same for

χ = 1.585 and 0.85, but to be noticeably different from the
dipole case as given by Fig. 4 for Example (ii) in Sect. 2.2.1;
comparing the representations in Figs. 6b and 13b, the num-
ber of cycles appears to become nearly doubled (from half
a cycle to one cycle). However, in Fig. 12 for Example (iii′),
where Bmax is the strongest among the three RPPs, general
patterns of polarization evolution are shown to be similar for
χ = 1.585 and 0.85, with noticeable differences in phase,
but to be significantly different from the dipole case as given
by Fig. 5 for Example (iii) in Sect. 2.2.1; the plots appear
to be much denser in the early part of evolution in Fig. 12
than in Fig. 5, as the polarization states oscillate much more
frequently in the quadrudipole field than in the dipole field,
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Fig. 11 For Example (ii′): the
evolution of the Stokes vector
S (s) = (S1 (s) , S2 (s) , S3 (s)),
0 ≤ s ≤ 20r∗

(≈ 2 × 107 cm
)
,

for the X-ray emissions from the
quadrudipole pulsar with
Bmax ≈ 5.6 × 1012 G and
	p ≈ 22.28 Hz (P ≈ 0.282 s)

which can also be confirmed by comparing the representa-
tions in Figs. 6c and 13c.

4 Conclusions and discussion

We have investigated the evolution of polarization states of
pulsar emission under the quantum refraction effects, com-
bined with the dependence on the emission frequency, for
both dipole and quadrudipole pulsar models. To this end, we
have solved a system of evolution equations of the Stokes

vector given by (1) (or by (23)–(25)) and (53) (or by (60)–
(62)) in the dipole and quadrudipole cases, respectively, for
three examples of RPPs at a fixed frequency for specific emis-
sions (e.g., X-rays as in sections 2.2.1, 2.2.2 and 3.2.1). Our
main results are presented by Figs. 3, 4, 5 and 10, 11, 12 in the
dipole and quadrudipole cases, respectively, from numerical
solutions and in part from perturbative solutions. Also, we
have replaced the birefringent vector with some approximate
models as in Fig. 7 to solve the evolution equations analyti-
cally in the dipole case, and obtained the results as presented
by Fig. 8. It is noteworthy that at a fixed frequency of emis-
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Fig. 12 For Example (iii′): the
evolution of the Stokes vector
S (s) = (S1 (s) , S2 (s) , S3 (s)),
0 ≤ s ≤ 20r∗

(≈ 2 × 107 cm
)
,

for the X-ray emissions from the
quadrudipole pulsar with
Bmax ≈ 5.0 × 1013 G and
	p ≈ 19.6 Hz (P ≈ 0.32 s)

Fig. 13 Representations of the
Stokes vectors from Examples
(i′)–(iii′) for χ = 1.585 on the
Poincaré sphere. The loci imply
patterns of the polarization
evolution in terms of oscillation
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sion the evolution of the Stokes vector largely exhibits three
different patterns, depending on the magnitudes of the bire-
fringent vector, in which the magnetic field strength is a dom-
inant factor: (i) fractionally oscillatory – monotonic, or (ii)
half-oscillatory, or (iii) highly oscillatory behaviors. These
features are shown by the numerical solutions in Figs. 3, 4, 5,
6, and also confirmed by the approximate analytical solutions
in Fig. 8. In addition, we have examined how the aforemen-
tioned features change in the quadrudipole case.

This study is centered on solving the evolution equations
for polarization states (1), wherein the birefringent vector
that contains all information about the quantum refraction
effects, coupled to the frequency of pulsar emission, acts on
the Stokes vector; the evolution results from the combination
of the quantum refraction effects and the frequency depen-
dence of the emission. This is a major difference from our
previous work [23], wherein the same effects have no con-
nection to the emission frequency; the work solely focuses
on the quantum refraction effects on the propagation and
polarization vectors in pulsar emission, with no reference
to other properties, such as the emission frequency. In this
regard, it is worthwhile to draw comparison between the
two quantities, the polarization vector and the Stokes vec-
tor, both of which are used to describe polarization states.
The polarization vector is defined directly from the radia-
tive electric field vector (i.e., the unit electric field vector),
and it is parallel-transported along the the propagation vec-
tor; usually, we consider such two vectors orthogonal to each
other and to the propagation vector to define an orthonormal
basis consisting of the three vectors. In contrast, the Stokes
vector is defined from Stokes parameters which are built out
of the radiative electric field vector [45]. The representation
of the Stokes vector is abstract in the sense that it is a vec-
tor defined on the Poincaré sphere. The Stokes vector is not
parallel-transported along the the propagation vector, but can
still be defined along the propagation vector as the two polar-
ization vectors move along it; hence, it can be parameterized
by s to represent polarization states along the photon trajec-
tory. However, the Stokes vector has a crucial advantage over
the polarization vector in representing polarization states in
some astrophysical studies like this: it can be directly esti-
mated from polarimetric measurements and accommodate
depolarization effects due to incomplete coherence and ran-
dom processes during the photon propagation [46].

Our results in this study may be of some significance
for the currently operating and planned X-ray space tele-
scopes: Imaging X-ray Polarimetry Explorer (IXPE) [14],
X-ray Polarimeter Satellite (XPoSat) [15], the enhanced X-
ray Timing and Polarimetry mission (eXTP) [16] and the
Compton Telescope project [17]. These telescopes measure
the polarization of the X-rays from energetic compact objects
such as magnetars and black holes to unveil their geome-
try and physical environment in detail. Several magnetars

observed by IXPE have been estimated to have overcritical
field strengths [47,48]. Furthermore, a recent measurement
of the X-ray polarization of the magnetar 4U 0142+61 has
shown that the polarization degree and angle change as a
function of X-ray energy, the interpretation of which has led
to two competing scenarios about the X-ray emission of the
magnetar [47,49]. In fact, a full analysis of the polarime-
try data would require a physical model that comprehen-
sively incorporates the properties regarding the polarization
of surface emission, the photon propagation through mag-
netized plasmas, birefringence due to a magnetized quan-
tum vacuum, and gravitational effects on photon propagation
[50,51].

In this study, we have focused on vacuum birefringence
as it is one of the most significant phenomenological issues
to be tested by the X-ray polarimetry in practice. When the
magnetic field is sufficiently strong and slowly varying, the
polarization states evolve due to vacuum birefringence; that
is, the Stokes vector components change during the photon
propagation within the so-called polarization-limiting radius
[29,34], which can be several to a couple dozen neutron-
star radii, depending on the magnetic field strength at the
surface of a neutron star and the emission frequency. How-
ever, beyond the polarization-limiting radius, the polariza-
tion states ‘freeze’, remaining the same until finally being
observed through polarimetry [34,51]. The new features of
the polarization evolution presented in our study, such as the
three different oscillatory patterns of the Stokes vectors and
the effects of the possible contributions from the multipolar
components may all closely concern the observation through
the X-ray polarimetry, and therefore should be taken into
proper consideration for a more accurate model for pulsar
emission.

Effects of gravitation have not been considered in this
study. However, close to the neutron star, where gravitation
due to the neutron star mass may not be negligible, its effects
must be taken into account in our analysis. Then, basically,
the following shall be redefined in curved spacetime: (1) the
QED one-loop effective Lagrangian, (2) the refractive index
for the photon propagation, (3) the magnetic field geometry
in the magnetosphere, (4) the radiative electric field due to
a charge moving along a magnetic field line, (5) the photon
trajectory. All these have not been rigorously dealt with in
previous studies. In this regard, inclusion of the gravitational
effects will involve non-trivial and immense analyses, and
therefore shall be conducted for a long-term plan in our future
studies.
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Appendix A The classical Stokes vector

Consider a particle with a charge q moving along a curved
trajectory (a magnetic field line). Then the curvature radiation
due to this can be expressed by the electric field:

E (t) = q

c |r − ξ (tret)|
n ×

[(
n− ξ̇(tret)

c

)
× ξ̈(tret)

c

]

(
1 − ξ̇(tret)

c · n
)3 , (A1)

where tret ≡ t − r/c is the retarded time, ξ represents
the particle’s trajectory, n is the propagation direction of
the radiation, and an over-dot ˙ denotes differentiation with
respect to t . In a suitably chosen Cartesian frame, by set-
ting ξ (tret) = ρ (sin (βctret/ρ) , 0, cos (βctret/ρ)), with ρ

being the radius of curvature of the particle’s trajectory, and
n = (cos ϕ, sin ϕ, 0), with ϕ being the angle measured from
the x-axis to the plane of the particle’s motion, we can con-
struct a simple toy model for pulse profiles of pulsar curvature
emission as described below [37].

One can express Stokes parameters out of the radiation
field (A1), which describe its polarization properties [52]:

I = Ẽ∗‖ Ẽ‖ + Ẽ∗⊥ Ẽ⊥

= E2
o ω2

[(
δ2 + ϕ2

)2
K2

2/3

(
ρω

3βc

(
δ2 + ϕ2

)3/2
)

+ϕ2
(
δ2 + ϕ2

)
K2

1/3

(
ρω

3βc

(
δ2 + ϕ2

)3/2
)]

, (A2)

Q = Ẽ∗‖ Ẽ‖ − Ẽ∗⊥ Ẽ⊥

= E2
o ω2

[(
δ2 + ϕ2

)2
K2

2/3

(
ρω

3βc

(
δ2 + ϕ2

)3/2
)

−ϕ2
(
δ2 + ϕ2

)
K2

1/3

(
ρω

3βc

(
δ2 + ϕ2

)3/2
)]

, (A3)

U = Ẽ∗‖ Ẽ⊥ + Ẽ‖ Ẽ∗⊥ = 0, (A4)

V = −i
(
Ẽ∗‖ Ẽ⊥ − Ẽ‖ Ẽ∗⊥

)

= −2E2
o ω2ϕ

(
δ2 + ϕ2

)3/2
K2/3

(
ρω

3βc

(
δ2 + ϕ2

)3/2
)

× K1/3

(
ρω

3βc

(
δ2 + ϕ2

)3/2
)

, (A5)

where Ẽ‖ and Ẽ⊥ denote the components of the Fourier trans-
form Ẽ (ω) = Ẽ‖ (ω) ez + Ẽ⊥ (ω) ey = ∫ ∞

−∞ E (t) exp (iωt)
dt , expressed in the Cartesian frame, and ∗ means the com-

plex conjugate, and Eo = qβ/
(

2
√

3π2rρ
)

, and δ ≡ γ −1 =
(
1 − β2

)1/2 � 1 is the half-angle of the beam emission,
and K1/3 and K2/3 denote the modified Bessel functions of
the second kind. With regard to the polarization state of the
radiation field, I is a measure of the total intensity, Q and
U jointly describe the linear polarization, and V describes
the circular polarization. These parameters can be plotted as
functions of the phase angle ϕ, where ϕ ≤ δ � 5◦ usually, to
simulate the pulse profiles of pulsar emission theoretically.

Out of the Stokes parameters, one can define the Stokes
vector S = (S1, S2, S3) ≡ (Q/I,U/I, V/I ) and express it
using (A2)–(A5):

S1 =
(
δ2 + ϕ2

)
K2

2/3

(
ρω
3βc

(
δ2 + ϕ2

)3/2
)

− ϕ2K2
1/3

(
ρω
3βc

(
δ2 + ϕ2

)3/2
)

(
δ2 + ϕ2

)
K2

2/3

(
ρω
3βc

(
δ2 + ϕ2

)3/2
)

+ ϕ2K2
1/3

(
ρω
3βc

(
δ2 + ϕ2

)3/2
) , (A6)

S2 = 0, (A7)

S3 = −
2ϕ

(
δ2 + ϕ2

)1/2
K2/3

(
ρω
3βc

(
δ2 + ϕ2

)3/2
)

K1/3

(
ρω
3βc

(
δ2 + ϕ2

)3/2
)

(
δ2 + ϕ2

)
K2

2/3

(
ρω
3βc

(
δ2 + ϕ2

)3/2
)

+ ϕ2K2
1/3

(
ρω
3βc

(
δ2 + ϕ2

)3/2
) . (A8)
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Fig. 14 The classical Stokes
vector S(c) (ϕ) =(
S1(c) (ϕ) , S2(c) (ϕ) , S3(c) (ϕ)

)
plotted against the phase angle
ϕ. Its initial values
S (ϕ = 0) = (1, 0, 0) and
S

(
ϕ ≈ −1.16 × 10−6 rad

) =
(0.8, 0, 0.6) are marked by solid
circles and solid boxes,
respectively

In Fig. 14 is plotted the classical Stokes vector against the
phase angle ϕ, where we have set, for example, δ ≈ 10−8,
ρ ≈ 108 cm, β ≈ 1 and ω ≈ 2π × 1018 Hz to model
pulse profiles of X-ray pulsar emission. Here the initial
values for the Stokes vector, S (ϕ = 0) = (1, 0, 0) and
S

(
ϕ ≈ −1.16 × 10−6 rad

) = (0.8, 0, 0.6), as in the exam-
ples given in Sect. 2.2.1, are marked by solid circles and solid
boxes, respectively.

Appendix B Approximate analytical solutions to evolu-
tion equations

Substituting Eq. (30) into Eqs. (23)–(25), the evolution equa-
tions can be reduced as follows: For 0 ≤ s ≤ 20r∗,

Ṡ1 (s) ≈ −ka2s
p+1
p e−bs S3 (s) , (B1)

Ṡ2 (s) ≈ ka1s
p+1
p e−bs S3 (s) , (B2)

S̈3 (s) −
(
p + 1

ps
− b

)
Ṡ3 (s) + k2

(
a2

1 + a2
2

) (
s

p+1
p e−bs

)2

× S3 (s) ≈ 0. (B3)

First, we solve Eq. (B3) for S3 (s), and then using this
solution, obtain S1 (s) and S2 (s), by integrating Eqs. (B1)
and (B2), respectively:

S3 (s) ≈ So sin (� (s; p) + δ) , (B4)

S1 (s) ≈ a2So√
a2

1 + a2
2

cos (� (s; p) + δ) + S1o, (B5)

S2 (s) ≈ − a1So√
a2

1 + a2
2

cos (� (s; p) + δ) + S2o, (B6)

where

� (s; p) ≡ k
√
a2

1 + a2
2b

− 4p+1
2p s

1
2p e− 1

2 bs

×
[
M 1

2p ,
p+1
2p

(bs) − M 2p+1
2p ,

p+1
2p

(bs)

]
, (B7)

and Mκ,μ (z) denotes a Whittaker function of the first kind.
Here employing the identity S2

1 (s) + S2
2 (s) + S2

3 (s) = 1
(conservation of the degree of polarization), one can specify
S1o and S2o in terms of a1, a2 and a constant C , and establish
a relation between So and C :

S1o = Ca1√
a2

1 + a2
2

, S2o = Ca2√
a2

1 + a2
2

, S2
o + C2 = 1. (B8)

Then So, C and δ are determined by matching the initial
value of the Stokes vector S (0) = (S1 (0) , S2 (0) , S3 (0))

with Eqs. (B4)–(B6) evaluated at s = 0.
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