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1. Introduction

Soft tactile sensors are crucial in modern robotics, where the
primary objective is to enable robots to perform proper
grasping and locomotion in unstructured environments while
cooperating with humans.[1] For this purpose, a soft tactile
sensor attached to the gripper can provide tactile feedback to
the robot, enabling robots to grasp objects such as fruits,

vegetables, and mechanical components
with human-like sensory capabilities.[2,3]

A variety of sensor types are currently
emerging, with differing purposes and
environments in mind. For the measure-
ment of human physical activity, sensors
can be fabricated as thin films,[4,5] or even
foam if they require very soft properties.[6]

Among these diverse soft sensor mecha-
nisms, optical, capacitance, and magnet-
based systems have gained particular
attention as force measurement systems.
Optical sensors utilize a camera to monitor
pressure-related changes in the skin sur-
face.[7,8] These sensors typically consist of
a wide-angle camera placed inside a soft
gripper, which has a thin hemispherical
skin with visual markers attached. The
camera captures images to analyze skin
deformation as the gripper grasps the
object, determining its shape and contact
force. These systems are highly accurate,
with excellent resolution, rapid response
times, and low sensitivity to electromag-
netic interference. However, their sensor

bulkiness is a limiting factor since the camera must be thick
enough to provide a good overall view of the skin. For instance,
ref. [9] notes limitations in thickness (≈30mm), measuring area
(13� 17mm2), and force measurement range (≈1.4 N).

Capacitance-based sensors detect external forces by measur-
ing changes in capacitance. They typically consist of an array
of channels where metal channels intersect with each other.[10–12]

These sensors can be easily fabricated from elastomers and met-
als, making them suitable for integration into most pneumatic
soft grippers. However, capacitance-based sensors typically have
limitations such as a limited force measurement range, low force
resolution,[13,14] signal drift, and limited stretchability.[10]

Magnet-based sensors, especially those utilizing magnetic
sources and Hall sensors, can be designed to be slim. They
are capable of detecting both the strength and location of exter-
nally applied normal and shear forces.[15–19] Bhirangi et al.[20]

introduced a soft tactile sensor that utilizes Hall sensors to mea-
sure normal and shear forces. The sensor exploits the motion
and distortion of a magnetized film in a specific pattern. A deep
learning (DL) neural network is used to determine the location of
the applied force. However, the sensor’s maximum measurable
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Soft tactile sensors are soft and sufficiently flexible for attachment to a robot’s
gripper to enhance human-like sensory capabilities. However, existing tactile
sensors exhibit large size and a limited force measurement range. This article
presents a novel design of a new soft tactile sensor for a robotic gripper,
incorporating a sandwich-like multilayered structure, together with a deep
learning (DL) model, which overcomes the limitations of traditional sensors. The
structure consists of three distinct layers: a 15 wt% iron magnetorheological
elastomer, a flexible printable circuit board layer equipped with three-dimensional
Hall sensors (TLE493D; Infineon), and permanent magnets. Additionally, a
multilayer perceptron network that can classify the loading state is adopted for
the DL model. This new tactile sensor is capable of performing three distinct
functions simultaneously: measurement of normal forces up to 3.73 kgf, iden-
tification of the precise location of force occurrence by subdivision into intervals
of 2.5 mm, and differentiation between a wide (≈8mm) and narrow (≈2mm)
contacted surface area. This newly developed soft tactile sensor has considerable
potential for improvement in the performance of robotic grippers through its high
accuracy, resolution, and large measurement range, as demonstrated by
experimentation with the sensor attached to a real gripper.
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force is less than 2.5 N, which limits its applicability when
connected to a robotic gripper that exerts a significant force.
Other existing magnet-based textile sensors also prioritize high
sensitivity and set the maximummeasurable force low by design-
ing the sensor to have a large number of Hall sensors placed in a
thin structure.[21–23] These examples demonstrate the trade-off of
soft tactile sensors among sensor sensitivity, size, and durability.
Their small size limits their force measurement range, while
their large bulk makes them difficult to use in practical robotic
grippers.

To address this issue, a soft tactile sensor must meet three
criteria simultaneously:[24,25] 1) compactness, 2) a wide
measurement range, and 3) high localization accuracy and force
resolution. Most tactile sensors used in robotic grippers are mag-
net-based.[26–28] Although they have a simple structure and high
sensitivity, their force measurement range tends to be limited.
Our proposed sensor is an innovative magnet-based soft tactile
sensor that satisfies three criteria.[29] It uses magnetorheological
elastomers (MREs) in a sandwich-like multilayer structure and
incorporates a bottleneck DL model, as illustrated in Figure 1
and 4.

MREs are rubber-like solid materials made up of magnetically
sensitive particles embedded in a nonmagnetic polymer matrix.
They display a range of physical properties, including increased
stiffness when exposed to an external magnetic field.[30] MREs
have gained significant attention in recent years due to their
potential applications in various engineering fields.[31–34] Due
to the complex nature of MREs, studies that utilize them to create
soft tactile sensors[35] or attach them to grippers[36] have
regarded them simply as inductance markers or magnetic flux
inductors. However, this approach has resulted in sensors with
a limited force measurement range. Our proposed sensor uses a
sandwich-like configuration to fully utilize the physical character-
istics of the MREs and significantly expand the range of force
measurement.

The multilayer structure of our sandwich-like configuration
consists of layers of elastomers with distinct properties, resulting
in higher stability of soft sensors.[37–39] The proposed sensor has
a sandwich-like structure with a top layer composed of an MRE, a
middle flexible printable circuit board (FPCB) layer, and a bottom
layer containing a rigid magnet. The top and bottom layers are
more rigid than the middle layer. This design allows for high
sensitivity and a wide force measurement range by increasing
the degree of deformation of the middle sensing layer and toler-
ating a large external force.[30,40] In addition, to enhance the func-
tionality and accuracy of the tactile sensor, a bottleneck DL neural
network that can effectively extract features from the data was
utilized. This network addresses the interference caused by
the mechanical hysteresis of the elastomer when an external
force is applied to the sensor. It is used to measure the magni-
tude of the force, determine the point of contact, and classify the
area of the object in contact. The classification of the area of a
contacted object is a new capability that has not been identified
in previous studies. This function enables the sensor to classify
the area in contact with the object as either small or large,
enabling the robotic gripper to identify the morphological
configurations of asymmetrical or oddly shaped parts.

As a result, the proposed soft tactile sensor can measure a
load of 3.63 kgf with 96.418% accuracy using a simple structure

comprising four Hall sensors and a thickness of 10mm.
Additionally, it can locate the source of the force with
96.857% accuracy when a 2mm diameter object gradually
applies an external force to the sensor. These characteristics
exceed the payload capabilities of commercial soft grippers.[41]

In the following section, the design scheme of the proposed
MRE-based soft tactile sensor is explained in detail.
Section 2.1 describes each layer of the sandwich-like structure
and explains the rationale behind the design of each layer.
Section 2.2 provides a comparative analysis to determine the
appropriate MRE for use in the soft sensor via COMSOL soft-
ware. Section 2.3 covers the actual fabrication of the soft tactile
sensor. Section 3 discusses the experimental setup and results of
DL model training. Verification experiments and results for the
sensors attached to a robotic gripper are presented in Section 4.
The sensors accurately discriminated between the head and tail
of a screw during the gripping process. Section 5 presents a
summary of the results.

2. Sensor Design

2.1. Sandwich-like Multilayer Structure

While previous studies have utilized thin magnetic films to
reduce sensor thickness,[42,43] the objective of this study was
to manufacture sensors for a robotic gripper capable of identify-
ing industrial parts and withstanding a significant force in the
single-digit kgf range. To achieve sufficient strength, this article
proposes a new sensor design consisting of three layers —an
MRE layer, an FPCB layer, and a magnetic layer— stacked in
a sandwich-like configuration, as shown in Figure 1a.

The magnetic layer contains four hard cylindrical magnets
(Neodymium, Ø3� 2 T, 3100 G) embedded in a soft elastomer
to enhance stiffness. The insertion of rigid bodies into the lower
elastomer layer reduces the vulnerability of the FPCB layer to
deformation by external forces, thereby protecting the FPCB
from potential damage and abnormal operation. To enhance
the measurement range of the soft tactile sensor, we incorpo-
rated four Hall sensors onto the FPCB layer, precisely aligned
with the magnet’s axis. This design reduces the negative effects
of shear deformation on the electronics, which are typically
caused by force on the soft tactile sensor. As a result, the struc-
tural stability improves the overall measurement range of the
sensor system. In addition, the proposed structure deforms
the MRE layer to bring it closer to the magnet layer. This allows
the Hall sensor to measure the convergence of the magnetic flux
vector to the point where the force is applied. It also effectively
deforms the FPCB according to the shape and position of the
indenters that generate the external force, thus providing mean-
ingful sensor data, as shown in Figure 1b. However, conven-
tional magnet-based soft tactile sensor designs typically consist
of a magnetic field-generating layer and a sensing layer.[44–46]

When an external force is applied, only the magnetic field-
generating layer deforms; this deformation is sensed by the
sensing layer to measure the external force. The corresponding
structure requires a small thickness between the two layers to
benefit from measurement accuracy;[22,23] however, a thin struc-
ture inevitably has a limited force measurement range.
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The proposed sensor has a thickness of 10mm, which is suit-
able for measuring large forces while maintaining mechanical
stability. Additionally, as can be seen in the verification experi-
ment conducted in Session 4 of this article, this thickness is
appropriate for situations where the attached robotic gripper
picks up uneven objects and accurately recognizes the gripping
shape of the object. Therefore, the soft tactile sensor has a

symmetrical thickness of 5 mm in relation to the FPCB at the
center. According to ref. [47], the degree of deformation of the
elastomer’s pressurized and unpressurized zones varies depend-
ing on the ratio of the radius of the indenter r that exerts pressure
on the sensor and the thickness D of the elastomer above the
rigid structure. This can be divided into three cases: r>D,
r≈D, and r<D. For r>D, the strain energy density (SED) is

Figure 1. DL model-based soft tactile sensor system. a) Actual sensor geometry and schematic diagram of the sandwich-structured soft tactile sensors
consisting of a bottom layer with magnets, a FPCB layer, and a MRE layer. When the external force is applied to the soft tactile sensor, three-dimensional
(3D) Hall sensors can detect the deformations of the magnetic flux vectors. b) Comparative analysis of the structure proposed in this article (left) and a
general soft tactile sensor structure (right). In the proposed structure, the magnetic flux data measured by the Hall sensor were more useful in identifying
the contact location. c) Verification of performance change according to the internal structure of the MRE. COMSOL confirmed that the isotropic structure
is more suitable for soft tactile sensors. d) The fabrication process of the proposed soft tactile sensor.
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high in the region below the indenter. In contrast, for r<D, the
SED is high in the exterior region. For r≈D, the SED is similar
in both regions. Here, SED represents the energy generated by
internal stress and deformation, indicating the degree of object
deformation. We used indenters with radii of 1 and 4mm to train
the DL model of the proposed sensor. The variance in elastomer
deformation based on the indenter size can result in substantial
differentiation between the gathered datasets, thereby aiding in
the training of the DL model. Therefore, we set D= 5mm to
induce the case of r<D, where deformation is larger in the
indented area than in the unindented area, and the case of
r≈D, where the deformation of both areas is similar.

2.2. MRE

After determining the efficient structure of a sensor, we designed
MREs suitable for the structure. The unique mechanical and
magnetic properties of MREs, which exhibit stiffness enhance-
ment and field concentration (FC) properties, enable further
improvements in sensor performance that previous soft sensors
could not achieve. In studies such as,[30,40,48,49] the combination
of an MRE layer and a conventional elastomer layer has been
shown to offer improved stability, including extended lifetime
and high fatigue resistance. This combination can also serve
as a sensor because of the contrasting mechanical properties
of the two layers. However, if the physical properties of the layers
of the sandwich-like structure differ significantly, the layers may
separate when a large external force is applied. We have found
that the iron particle content should be 15 wt% in order for the
MRE layers to have adequate stiffness.[50,51] Furthermore, to pre-
vent damage to the MRE layer from constant exposure to external
forces, we increased the thickness of that layer to 2mm, which is
greater than the typical MRE (=1mm).[52–59] This adjustment
enhanced the storage modulus, indicating the elastomer’s capac-
ity to store energy.[60]

The FC function of the MRE also enhances the sensitivity of
soft-textile sensors by increasing the magnetic flux strength that
Hall sensors can detect.[61] This function introduces a unique
distinctive capability known as contact area classification.[62]

The isotropic and anisotropic arrangement of MRE particles
affects the extent of their FC effect.[63,64] We used COMSOL
to determine which of the two structures was more effective
in a sandwich-like configuration (Figure 1c). In the simulation,
the soft textile sensor had a sandwich-like structure containing a
2mm thick MRE layer. Specifically, the MRE layer consisted of
elastomer and uniformly distributed iron particles ranging from
tens to hundreds of microns in size (particle size has minimal
effect on the magnitude of the FC function).[65] The COMSOL
results showed that the isotropic structure increased the mag-
netic flux intensity by 7.32% compared with the anisotropic
structure. The magnetic flux converged to the point of external
force generation, confirming the performance of the proposed
sensor design. The soft tactile sensor designed with this structure
has three stages: 1) a data generation process, 2) a DL model
training process, and 3) verification experiments in which the
sensor is attached to a robotic gripper, as shown in Figure 4
and 7.

2.3. Sensor Fabrication

Figure 1d illustrates the manufacturing process of the sensor.
First, the elastomer (Xinus Silicone SH2115) is poured into
the lower mold and allowed to partially cure. The mold, which
has four small pillars for the neodymium magnets, was
fabricated using a 3D printer. Place the FPCB with the four
Hall sensors on top of the 80% cured elastomer. Ensure the four
Hall sensors are aligned with the small pillars of the lower mold
on the same z-axis. Next, assemble the upper mold and fill it with
elastomer to cover the FPCB. When the upper elastomer layer is
≈80% cured, pour a layer of 15 wt% iron MRE on top and allow it
to cure completely. After curing, the fully assembled tactile
sensor is removed from the mold, and a magnet is placed
underneath. The dimensions of the finished sensor are
30mm� 30mm� 10mm.

3. DL-Based Sensor Training

3.1. Experimental Setup

The simple bottlenecked DL model was utilized as an algorithm
for the sensor in this study. The UR3 robot (Universal Robots)
was used to acquire rich and precise data for model training. The
experimental setup involved attaching a load cell (CDFS-100 kg,
BONGSHIN) and an indenter to the tool flange of the UR3 robot.
Subsequently, a randomly selected area of the soft tactile sensor
was pressed. During the experiment, the vector values provided
by the four Hall sensors were recorded, along with the force value
measured by the load cell and the incidence position value. The
precision of the UR3 robot was 0.1mm, while the precision of
the load cell was 0.01 kgf.

Two types of indenters were used in the study to evaluate the
soft tactile sensor, as shown in Figure 2a. The first indenter was
an 8mm diameter cylinder, which resembled the large area of an
asymmetric industrial part, such as the head of a screw. To
ensure efficient data labeling and training of the artificial neural
network model, the sensor surface was divided into nine sections
of approximately the same size as the indenter surface, as illus-
trated in Figure 2b.

Even when the pressure resulted in unfavorable deformation,
subdividing the sensor area helped the model accurately identify
the location of the applied pressure. The second indenter was
conical in shape with a hemispherical tip measuring 2mm in
diameter, simulating a sharp object. The 30mm-wide sensor
area was divided into smaller 2.5mm-wide subareas. The
2.5mm spacing was chosen to allow the DL model used for
the proposed sensor to exhibit contacted object area classification
functionality. For the model to learn effectively, the magnetic flux
data collected during the indenter-mediated application of exter-
nal force to the soft tactile sensor should exhibit a significant dif-
ference; the classification model should capture this disparity.
However, if the spaces between external force zones are smaller
than the diameter of the indenter (i.e., 2 mm), the classification
accuracy will decrease. Therefore, we divided the external force
zones with a spacing of 2.5 mm, which is larger than the diame-
ter of the indenter. During the pressing process, the outermost
sensor section was excluded from the experiment because the
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indenter was prone to slipping out of the peripheral region.
Accordingly, 81 points were selected for the research experiment.

3.2. Sensor Calibration

The 3D Hall sensors on the FPCB have been calibrated to ensure
accurate magnetic field measurements. This process is essential
as it is affected by various factors, such as the arrangement of the
particles inside the MRE and the presence of an external mag-
netic field. The primary goal of the calibration was to remove
the soft iron and hard iron effects from the Hall sensor, as illus-
trated in Figure 2c.[66,67] The soft iron effect is observed when a
nearby ferromagnetic object, such as an MRE, deflects or distorts
the magnetic field, changing its direction. In contrast, the hard
iron effect occurs when the magnetic field generator is near the
sensor. The soft iron and hard iron effects can cause a slight off-
set in the Hall sensor’s measurements. To correct for these
effects, we applied adjustments for stretching, tilting, and

shifting of the measured flux data, as illustrated in Figure 2d.
During the calibration process, the magnetic force data from
the four Hall sensors were recorded in a zero state, indicating
that no external force was applied. The recorded magnetic data
values were used to create a 3D ellipsoid to fit the data.

The center point of the 3D ellipsoid was then relocated to the
origin, and a correction filter was created to transform the ellip-
soid into a sphere to address hard and soft iron effects. The cor-
rection process was performed individually for each of the four
Hall sensors to ensure that all sensors produced normalized
triaxial magnetic field vectors. The normalized vectors were visu-
alized, as shown in Figure 2e. The top portion of Figure 2e shows
the cylindrical indenter applying no force to Section 2 of the soft
textile sensor and then applying a force of 1.2 kgf (blue and
orange arrows, respectively). The bottom portion of the figure
depicts the same scenario repeated for Section 5 of the soft
sensor. For additional visualizations of the sensor data, please
refer to Figure S2 and S3, Supporting Information.

Figure 2. Experimental setup and calibration of soft-iron/hard-iron effects. a) A load cell and indenter are attached to UR3. The load cell measures external
force transmitted to the laptop throughMyRio. Indenters are used to compress the soft tactile sensor, with cylindrical and conical indenters mimicking the
head and tail of a screw, respectively. b) Top-down view of the soft tactile sensor’s MRE layer. The area of the soft tactile sensor is divided to determine
the location of external force generation. When using a cylindrical indenter, the sensor is divided into nine sections (left); when using a conical indenter,
the sensor is divided into 81 sections (right). c) Soft-iron/hard-iron effect. Ideal data values are offset (hard-iron effect) and skewed in a specific direction
(soft-iron effect) by their surroundings. d) Visualization of original data from the Hall sensors (left) and calibrated data (right). e) Calibration performed
on actual data collected while pressing section 2 (upper) and section 5 (lower). Calibrated vector data have a uniqueness that allows discrimination of
individual points.
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3.3. Data Generation

To investigate the compression characteristics of the soft tactile
sensor, two experiments were conducted using 9-section and
81-section models, as illustrated in Figure 2b. Each experiment
consisted of a zero-state measurement process and a pressing
process during which real-time recordings were made of the
magnetic flux vector information, the classification number of
the pressed section, and the magnitude of the pressing force.
In the zero-state measurement process, 500 data sets were col-
lected from each of the four Hall sensors to create a calibration
filter while the tactile sensor was in a zero-state. This measure-
ment process was performed prior to the pressing process and
during every third cycle of the pressing process due to possible
changes in the elastomer layer and MRE layer properties associ-
ated with continuous deformation. During the pressing process,
a randomly selected section of the soft tactile sensor was com-
pressed by an indenter to a depth of 7.62mm, with a maximum
recorded force of 3.73 kgf. Considering the nonlinear mechanical
properties of the elastomer,[68–74] the pressing process
was repeated 17 times within 5min at a constant speed of
≈0.86mm s�1. This is because the physical properties of the elas-
tomer vary depending on the degree of prestressing, the distance
between the previously compressed area and the newly com-
pressed area, and the pressing speed.[75–77] This phenomenon is

more severe in the MRE layer due to the pressing-related destruc-
tion and subsequent reformation of the internal particle structures
during the rest periods.[78] ≈35 000 data points were obtained in
the 9-section case and 67 000 data points in the 81-section case,
both with a 20-Hz sampling rate. These data points were then
calibrated using the filter created by the zero-state measurement
process. An artificial neural network trained with these data points
is expected to have high accuracy in various situations.

3.4. Data Validity and Sensor Reliability

Before commencing data training, we validated the collected data
and checked the reliability of the sensors. We first performed a
t-distributed stochastic neighbor embedding (t-SNE) visualiza-
tion to ensure that the data collected over multiple rounds
showed correlation and consistency. T-SNE is a nonlinear
dimensionality reduction technique that computes and opti-
mizes the similarity between high-dimensional and low-
dimensional data using a probability distribution. Figure 3a
visualizes the similarity between high-dimensional data as the
proximity between low-dimensional data. Data with the same sec-
tion labels are marked with the same color. It can be observed
that both 9-section and 81-section data are generally clustered
with data of the same color, indicating a high similarity between
them. Surprisingly, it is observed that the data is clustered in a

Figure 3. a) The t-SNE visualization displays a “9-section dataset” collected using an 8mm-diameter cylinder indenter on the left and an “81-section
dataset” collected using a 2 mm-diameter cone-shaped indenter on the right. The data are well separated from each other. Additionally, due to the
elastomer’s hysteresis, the data clusters into a specific curve shape. b) This image visualizes the calibrated sensor data measured when an external
force is applied to the sensor, proving the reliability of the sensor. To observe the dynamic changes in the sensor data, an external force was applied
with an 8mm cylinder indenter to sec 2, 4, 6, and 8 where the Hall sensor is located. Three sets of data were measured for each zone: (1 set) measured
when the external force was first applied to the zone, (4 set) measured after 500 deformations, and (7 set) measured after 1000 deformations. The data
visualized is based on the Bz data, which shows the largest rate of change, and the depth at which the indenter pressed the sensor is 7.62mm in all four
sections. The larger the previous deformation of the sensor, the smaller the maximum value of the measured data, but the overall pattern is the same,
showing that the proposed sensor is stable over 1000 deformations.
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thread-like pattern. This is probably due to the hysteresis caused
by the sensor’s constant exposure to external forces.

Figure 3b compares the data output from 1000 consecutive
pokes with an 8mm cylinder in the four zones where the
Hall sensor is located inside the soft sensor. The colors blue,
orange, and green represent the Hall sensor data at the first poke,
after 500 pokes, and after 1000 pokes, respectively. This
illustrates how the intensity of the Hall sensor data changes
depending on the amount of external force the soft sensor has
experienced. The strength of the signal measured by the Hall
sensor decreases slightly as it experiences more deformation,
but the overall pattern of the sensor signal remains consistent.
Specifically, there is a significant difference between the sensor
data before exposure to external forces and the sensor data after
exposure to external forces, but the latter is very similar. By con-
firming that the data pattern remains consistent even after 1000
deformations, we can verify that the proposed sensor is durable
enough to generate a consistent data pattern even after 1000 con-
secutive deformations.

3.5. Artificial Network with Hysteresis Compensation

Previous studies have utilized DL neural networks with
nonlinear activation functions to process nonlinear data from
elastomer-based soft tactile sensors.[29,79–82] Hysteresis is a
nonlinear property exhibited by elastomers, including MREs,
that results in differences in mechanical behavior during loading
and unloading.[83–85] Figure 4c demonstrates the phenomenon,
showing experimental data collected by a load cell. The magni-
tude of the measured force varies due to the elastomer’s hystere-
sis, despite the data being collected at the same node speed
(0.86mm s�1) and compression depth of the soft tactile sensor.
Furthermore, the study indicates that the maximum measured
force decreases as the number of compressions increases.
Two DL neural networks were utilized in this study:
MLPClassifier and MLPRegressor (MLP, multilayer perceptron),
both available in the widely used Python machine learning
library, scikit-learn. The MLPClassifier is utilized in classification
learning to make predictions regarding one of several predefined
class labels.[86] The sensor uses a label for location instead
of an XY coordinate system; therefore, a localization model
was employed for this neural network. The MLPRegressor is uti-
lized as a model for measuring force magnitude in regression
training and predicting continuous data.[87] This model analyzes
the correlation between load cell data and Hall sensor data that
change during repeated loading and unloading of the soft sensor.

The MLPs used in this article consist of four layers, as illus-
trated in Figure 4b. The third layer is a bottleneck structure,
where the layer size is significantly reduced compared to the
front and back layers, effectively extracting features from data.[88]

The MLPClassifier model generates a position value for the exter-
nal force when the magnetic flux data from the four Hall sensors
(12 input data points) are inputted. The MLPRegressor utilizes
the result as an input along with magnetic flux data (consisting of
13 input data points) to determine the magnitude of the external
force. In terms of layer size, slight variations in optimization
were observed depending on the type of data used during train-
ing. In general, the size of the bottleneck layer was 30 or 40, while

different sizes from 230 to 300 were used for the remaining
layers.

Two experiments were conducted to confirm the effectiveness
of tagging the loading and unloading states of data: separation
learning and summation learning. In the first experiment,
separation learning, the 9-section and 81-section datasets were
divided into three cases: data measured during loading, data
measured during unloading, and data randomly mixed from
the previous two cases. Six DL models were generated using
only these data, and their performances were evaluated to
assess the importance of state tagging. After confirming its
importance, in the second experiment, summation learning
was applied, combining the 9-section and 81-section data sets
to train a DL model for determining whether the measured
magnetic flux data were caused by a cylindrical or conical
indenter.

3.5.1. Separation Learning

To investigate the tagging of loading and unloading states by con-
sidering elastomer hysteresis, a separation learning experiment
was performed. First, the dataset collected from the four 3D Hall
sensors, measuring the magnetic flux during pressing on
the 9-section and 81-section elastomer datasets, was divided
into three states: loaded, unloaded, and nondivided. An
MLPClassifier model was then trained on each dataset to esti-
mate the location of the external force on the sensor. In the next
step, the MLPRegressor model was used to estimate the force
magnitude by incorporating the actual external force location
data into the same dataset. The accuracy of both models in pre-
dicting the location and magnitude of the external force was
evaluated.

Table 1 displays the results of evaluating the accuracy of mod-
els that predict the location and magnitude of external forces.
Here, the models were trained with a dataset that either included
or excluded hysteresis information. The location estimation
models, generated by MLPClassifier, exhibited similar prediction
accuracies. The model achieved accuracies of 99.644% and
96.747% in 9-section case and 81-section case, respectively, when
trained without hysteresis information, which is comparable to
the accuracy achieved when trained with hysteresis information.
However, the force estimation models generated by
MLPRegressor exhibited differences in performance. When
the model was trained on a dataset without hysteresis informa-
tion, the force measurement model’s accuracy and mean square
error (MSE) were 89.699% and 0.0483 kgf2 for the 9-section case,
and 94.971% and 0.0322 kgf2 for the 81-section case, respectively.
Improvements in force calculation accuracy were observed for
force models trained on datasets containing hysteresis data.
The accuracy of force calculation for the loading and unloading
states of 9-section was improved by 4.22% and 5.372%, respec-
tively. The corresponding MSE values decreased by 0.0152 and
0.0238 kgf2. In 81-section, the accuracy of force calculation
improved by 1.447% and 1.537%, respectively; the corresponding
MSE values decreased by 0.0063 and 0.0077 kgf2. The accuracy of
the MLPRegressor model was measured using the prediction
coefficient of determination.
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3.5.2. Summation Learning

The objective of the summation learning experiment was to
enhance the capabilities of our soft tactile sensor by merging data
from the 9-section and 81-section datasets. We hypothesized that
a DL neural network trained on this merged dataset would accu-
rately classify the surface shape of the indenter. The experiment
involved modifying the structures of the DL models, as depicted
in the lower part of Figure 4b. TheMLPClassifier was modified to
predict the expected location value and the type of node con-
tacted. Similarly, the MLPRegressor was adjusted to accept input
data with node-type information.

The results are presented in the lower part of Table 1, with
force estimation accuracy and MSE of 96.357% and

0.02447 kgf2 for loading, and 95.642% and 0.02801 kgf2 for
unloading, respectively. The sensor exhibited an accuracy of
91.761% in discriminating between different areas. The area dis-
crimination accuracy was determined by calculating the proportion
of cases in which the model predicted the correct answer for both
the shape and contact area values of a node. The study showed that
the summation model accurately performed area discrimination
and node classification with over 90% accuracy while maintaining
a similar level of force prediction accuracy compared to the sepa-
rate learningmodel. In conclusion, the summation learningmodel
enabled the soft sensor to determine themagnitude and location of
the external force and classify the contact type (point or surface).
This sensor has a wide range of potential applications, including
gripping objects of various sizes with robotic grippers.

Figure 4. a) Flowcharts showing data generation and the model learning process. Magnetic flux data are represented as B. Figures with blue and
yellow backgrounds briefly are summarized Sections 3.3 and 3.4. b) The training process of four-layer MLP. The third layer has a bottleneck structure
with a size of 30–40, and the sizes of the remaining layers are≈230–300. Rectified linear unit was used as the activation function, and the learning rate was
0.0001–0.00005. When learning the hysteresis model, we tag whether the soft tactile sensor is in the loading or unloading state by identifying the change
in flux vector size. Among the four models introduced, the top two are models that do not consider elastomer hysteresis, whereas the bottom
two are models that consider elastomer hysteresis. c) Force data obtained by compressing the soft tactile sensor five times with the UR3 robot.
Two phenomena were observed: hysteresis by loading/unloading and a change in physical properties as the prestress state continues (maximum mea-
surable force decreasing).
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3.5.3. Model Performance Check

To validate the performance of the trained models, we evaluated
the classification model using a confusion matrix and the regres-
sion model by comparing actual and predicted force. Figure 5
displays the performance of the three location classification mod-
els, including two models trained after partitioning the collected
dataset based on load/unload state and one nondivided model. In
the case of 9-section, the models frequently misjudged the zero
state when there was no external force and when force was
applied to Section 1. This was confirmed when a weak force
was applied to Section 1 and changes in the Hall sensor data
did not appear immediately. In the 81-section case, the model
that learned the unloaded state data often confused it with
Section 3 directly above when Section 12 was pressed and with
Section 4 when Section 13 was pressed. The root cause of these
errors was identified as being due to the geometry of the FPCB,
which is horizontally elongated. It was determined that these
errors could be resolved by modifying the design of the
FPCB. This conclusion is supported by the findings presented
in Figure S4 and S5, Supporting Information. In the summation
model case, an even distribution of accuracy was observed across
all areas.

Figure 6 illustrates a comparison between the actual force
measured by the load cell and the force predicted by the regres-
sion models when the soft sensor was pressed to a depth of up to
7.62mm. The analysis was conducted for up to 16 presses due to
the physical properties of the elastomer, which were confirmed
in Section 3.4 of the paper. The model’s predicted values were
anomalous for up to the 16th press due to the large change in
physical properties when the elastomer first undergoes deforma-
tion. Afterward, they were omitted because they showed similar
behavior. The top of the figure shows the situation with an 8mm
cylindrical indenter and the bottom shows the situation with a
2mm conical indenter. In general, models that learned only
one indenter data showed better prediction values than summa-
tion models that learned all of the indenter data in both situa-
tions. However, the 81-section models, illustrated at the
bottom of the figure, exhibit fluctuations in the prediction values,

unlike the 9-section models, which show stable force predictions.
This phenomenon occurs primarily in regions where the magni-
tude of the external force is less than 1 kgf. It appears that this is
due to the inability of four Hall sensors alone to precisely track
small deformations in a small area. This directly leads to errors in
the position prediction value used as input to the force prediction
model. In addition, both the 9-section and 81-section situations
show a significant discrepancy between the actual and predicted
values during the initial piercing of the sensor. However, in sub-
sequent cases, the predicted value closely follows the actual value.
This phenomenon is attributed to the difference in hysteresis
between the undeformed and deformed elastomer, as shown
in Figure 3b. Additional indicators that can demonstrate the per-
formance of the regression model, such as the Kernel Density
Estimation Plot, the Scatter Plot, and the Violin Plot, are
presented in Figure S6–S8, Supporting Information.

To determine the suitability of MLP as a DL model for the
produced sensor, a performance comparison was conducted with
MobileNet-V2 and MobileNet-V3. MobileNet is a widely used
neural network that can be employed in limited environments,
such as mobile devices, by significantly reducing model size and
computational complexity through inverted residuals and bottle-
neck structures. As the MobileNet model uses the same bottle-
neck structure as the MLP model presented, we deemed it
appropriate as a comparison group. We made several modifica-
tions to enable MobileNet to learn 1D array data and train loca-
tion estimation accordingly. We then compared its performance
by training it on the 9-section dataset, 81-section dataset, and
Summation dataset of the unloaded state. After conducting a
study on separation learning, it was found that the MLP model
outperformed MobileNets. Specifically, the MLP model showed
7.1% and 8.4% higher accuracy on the 9-section dataset and 2.2%
and 3.9% higher accuracy on the 81-section dataset, respectively,
when compared to the MobileNet-V2 and V3 models. However,
on the Summation dataset, the MLP model had an accuracy of
1.9% higher than MobileNet-V3, but 0.6% lower than V2. The
Supplementary Materials display Figure S9 and Table S1,
Supporting Information, which present detailed learning out-
comes. In conclusion, we confirmed that the MLP structure

Table 1. Performances of the location determination and force measurement (force calculation) models. For determining localization performance, the 9-
section model and 81-section model are evaluated based on the accuracy of area discrimination, while the summation model is evaluated based on its
accuracy to simultaneously match the node type and contacted area.

Parameters [DL model] Area discrimination accuracy [%] Force calculation accuracy [%] Force calculation MSE [kgf2]

9-section loaded 99.712� 0.271 93.919� 0.641 0.0331� 0.0017

9-section unloaded 99.504� 0.304 95.071� 1.072 0.0245� 0.0018

9-section nondivided 99.644� 0.343 89.699� 0.501 0.0483� 0.0037

81-section loaded 96.857� 0.116 96.418� 0.976 0.0259� 0.0044

81-section unloaded 96.496� 0.082 96.508� 0.725 0.0245� 0.0029

81-section nondivided 96.747� 0.094 94.971� 0.775 0.0322� 0.0014

– Area discrimination and contact – –

– Node classification accuracy [%] – –

Summation model loaded 91.759� 0.194 96.357� 0.815 0.0244� 0.0007

Summation model unloaded 91.763� 0.211 95.642� 0.725 0.0280� 0.0012
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exhibited superior overall performance and deemed it appropri-
ate for the proposed sensor.

4. Adoption in a Robotic Gripper

4.1. Experimental Setting

The proposed tactile sensor can measure force magnitude and
position while classifying the force as point contact or surface

contact. In particular, the ability to classify the force as point
contact or surface contact is a unique feature not available in pre-
vious sensors. An additional experiment was conducted to dem-
onstrate the potential applications of this feature, as shown in
Figure 7a.

To evaluate the performance of the developed sensors when
attached to a real robotic gripper, two sensors were attached to
the gripper of an OpenMANIPULATOR-X (ROBOTIS) to pick
up screws, as shown in Figure 7b. The screw was selected due to

Figure 5. Visualization of the performance of the classification model to determine the location of the external force through the confusion matrix.
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its head and tail, which are similar to the cylindrical and conical
indenters utilized for DL neural network training. Identifying
the positions of these ends allows the screw configuration to be
tracked. The summation DL neural network for the two sensors
was trained prior to testing. The gripper held the head and
tail of the screw at a relatively high speed (20 mm s�1), and

all magnetic flux data generated during this process were
collected. The data were then postprocessed into a summation
DL model. The resulting GUI is shown in Figure 7c,d. The
purpose of the experiment was to demonstrate the novel
ability of the sensor to classify force as point contact or surface
contact.

Figure 6. Comparing the predicted values of the trained force measurement models with the ground truth values obtained from the measured data when
an external force is applied to the center of the proposed sensor. The figure on the left compares the force values predicted by the “9-section”models and
the “Summation”models with the actual F value measured by the load cell when the center of the sensor is pressed by a cylinder indenter. In the case of
the “9-section”models, the “9-section loaded” and “Summation loaded”models were employed when the cylinder indenter was in the process of loading,
while the “9-section unloaded” and “Summation unloaded” models were applied when it was unloading. The figure on the right depicts the same
environment using a cone-shpae indenter to press the sensor with “81-section” models instead of “9-section” models.

Figure 7. a) Flowcharts showing and sensor performance verification process. b) A view of the soft tactile sensor attached to the gripper of the
OpenMANIPULATOR-X for functional verification experiments. c) Experiment for verification of section-classifying function. When the gripper grips
the screw horizontally, the sensor on the left and the sensor on the right recognize the tail and head of the screw. Recognition of point contact is
indicated by orange circles, and recognition of face contact is indicated by blue circles. d) Experiment for verification of the force-sensing function.
The force value was measured by the soft tactile sensor (attached on the left) and the digital scale (attached on the right) while the gripper gripped
the screw. The force value predicted by the force calculation model showed 91% accuracy compared with the force value measured by the digital scale.
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4.2. Experimental Results

In Figure 7c, the blue circle at the center of the sensor indicates
surface contact, while the slightly skewed orange circle repre-
sents point contact. This approach allows the conclusion that
the screw is placed near the center of the gripper in a slightly
twisted shape, which is consistent with the actual screw configu-
ration. Therefore, when the sensor is used to grip a nonuniform
object, the user can obtain information about the object’s posi-
tion in the gripper and the magnitude of the gripping force, as
well as the current object configuration. The effectiveness of the
soft tactile sensor’s ability to measure force when integrated with
the gripper was confirmed in an additional experiment. The
experimental setup involved attaching the soft tactile sensor to
one side of the gripper while attaching a force sensor to the other
side; a screw was gripped in this configuration, as shown in
Figure 7d. The measurements obtained from the soft tactile sen-
sor and the summation model were compared with the measure-
ments obtained from the force sensor (I2000 digital scale,
minimum unit of measurement: 0.01 g). The resulting force
accuracy of the DL summation model in the validation experi-
ment (91.9%) was lower than the accuracy validated in
Table 1. The observed discrepancy is attributed to the variation
in the indenter material used during the experiment. The DL
model was trained using nonconductive plastic indenters, while
the validation experiments utilized metal screws that affect the
magnetic flux. However, the area discrimination function
estimated the exact location. These results successfully demon-
strated the advantages of the MRE sensor over previously devel-
oped sensors. Unlike thin sensors with limited force
measurement capabilities, our MRE sensor design has a wide
measurement range and is able to more accurately determine
object posture in practical applications. Further details on the
experimental setup and results can be found in Figure S10,
Supporting Information.

5. Conclusion

Table 2 compares the performance of the proposed sensor with
various soft sensors. The new sensor is designed to maintain
high measurement accuracy while withstanding high payloads
in real-world environments. When comparing the maximum
measurable force with the thickness of the sensor, the proposed

sensor recorded 3.67 Nmm�1, while refs. [20,89] recorded 1.5
and 1.43 Nmm�1, respectively, and the rest of the sensors per-
formed below 0.83 Nmm�1. Notably, ref. [90], which has a simi-
lar thickness to the proposed sensor, showed a performance of
0.06 Nmm�1, confirming that this new sensor has a high force
measurement range (≈3.73 kgf ) relative to its thickness. The pro-
posed sensor uses hysteresis analysis and DL to achieve high spa-
tial resolution (2.5 mm, with over 96% accuracy), reliability for
over 1000 deformations, and a unique touch area classification
capability that can compete with other soft sensors. However,
the design of the sensor to measure large forces reduces its tem-
poral resolution. The circuit was designed with a low temporal
resolution of 20 Hz to ensure more stable data values. Future
modifications will improve the temporal resolution by introducing
more effective data filtering. The proposed sensor has a dynamic
range of 1:370, which is an acceptable level of accuracy for a robot
picking up a bolt or nut. Future work will focus on developing the
sensor for multiple contact and shear force sensing, miniaturiza-
tion, and higher accuracy. The utilization of advanced MRE sen-
sors in robotic manipulators will enable stable adjustment of the
gripping posture, allowing for more precise movement of objects
without the need for additional sensors or equipment.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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Table 2. Comparison of the proposed and previously developed sensors.

Localization acc. Force acc. Force range Sensor size [mm]

Capacitance based K. Kim[10] – – 1.6 N 5� 5� 2.2

T. Yao[90] – ≈1.62% error 0.7 N 20� 11.5

Y. Zhang[89] – 0.02 N 3 N 8� 2

Optic based R. Li[7,9] 0.14� 0.055 mm RMSE= 0.668–1.856 N 1.4 N 13� 17� 30

V. KaKani[91] 0.109–0.1396 mm 0.022 N 1 N 44� 72

Hall sensor based Y. Yan[43] 0.1–0.06 mm RMSE= 0.15–0.01 N 2≈ 8 N 20� 20� 5.6

R. Bhirangi[20] 99.58� 0.34%–87.00� 11.81% MSE= 0.005� 0.002 N2� 0.142� 0.025 N2 2.5 N 20� 20� 3

Ours 99.62� 0.34%–91.76� 0.20% MSE= 0.0331� 0.004 kgf2–0.0244� 0.001 kgf2 3.73 kgf 30� 30� 10
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