
Academic Editor: Arman Sargolzaei

Received: 29 November 2024

Revised: 20 December 2024

Accepted: 24 December 2024

Published: 27 December 2024

Citation: Yusupov, A.; Park, S.; Kim, J.

Synchronized Delay Measurement of

Multi-Stream Analysis over Data

Concentrator Units. Electronics 2025,

14, 81. https://doi.org/10.3390/

electronics14010081

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Synchronized Delay Measurement of Multi-Stream Analysis
over Data Concentrator Units
Anvarjon Yusupov, Sun Park * and JongWon Kim

AI Graduate School, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea;
ayusupov@gm.gist.ac.kr (A.Y.); jongwon@gist.ac.kr (J.K.)
* Correspondence: sunpark@gist.ac.kr

Abstract: Autonomous vehicles (AVs) rely heavily on multi-modal sensors to perceive their
surroundings and make real-time decisions. However, the increasing complexity of these
sensors, combined with the computational demands of AI models and the challenges of
synchronizing data across multiple inputs, presents significant obstacles for AV systems.
These challenges of the AV domain often lead to performance latency, resulting in delayed
decision-making, causing major traffic accidents. The data concentrator unit (DCU) concept
addresses these issues by optimizing data pipelines and implementing intelligent control
mechanisms to process sensor data efficiently. Identifying and addressing bottlenecks
that contribute to latency can enhance system performance, reducing the need for costly
hardware upgrades or advanced AI models. This paper introduces a delay measurement
tool for multi-node analysis, enabling synchronized monitoring of data pipelines across
connected hardware platforms, such as clock-synchronized DCUs. The proposed tool traces
the execution flow of software applications and assesses time delays at various stages of
the data pipeline in clock-synchronized hardware. The various stages are represented with
intuitive graphical visualization, simplifying the identification of performance bottlenecks.

Keywords: delay measurement; connected autonomous vehicles; DCU; temporal synchronization;
multi-stream analysis; runtime visualization

1. Introduction
Nowadays, millions of self-driving cars are operating around the globe, which de-

creases the number of traffic accidents substantially [1]. The modern generation of au-
tonomous vehicles (AVs) enables driving automation that substitutes human drivers to
control vehicles with superior perception, recognition, decision-making, and driving skills.
Perception information in AVs relies on using one or more sensor modules, such as cam-
era, radar, and light detection and ranging (LiDAR) [2]. Although it is possible to take
advantage of these sensors in terms of providing a robust and complete description of the
surrounding area, there are still various open problems related to multiple sensor operation,
including increased failure of detection, data synchronization, adverse weather, etc. V2X
communication techniques are also mentioned, which are specially designed for connected
AVs [3]. As AVs rely on various sensors to understand their environment, the sheer volume
of data generated by multiple sensors poses a considerable computational burden [4]. The
concept of DCUs (data concentrator units) [5] is being studied to efficiently process various
sensor data collected in autonomous vehicles. DCUs play a significant role in intelligent
decision-making of AVs. By acting as information hubs, DCUs collect and process data
from various sensors, including cameras, LiDAR systems, radars, and ultrasonic detectors.

Electronics 2025, 14, 81 https://doi.org/10.3390/electronics14010081

https://doi.org/10.3390/electronics14010081
https://doi.org/10.3390/electronics14010081
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-7371-2661
https://doi.org/10.3390/electronics14010081
https://www.mdpi.com/article/10.3390/electronics14010081?type=check_update&version=1

Electronics 2025, 14, 81 2 of 34

As the number of sensors increases, the demand on onboard computing systems in-
tensifies, leading to delays in real-time decision-making and responsiveness. This becomes
particularly problematic in complex environments, where quick reactions are essential
for safety [3]. Additionally, managing sensor fusion, where data from multiple sources
such as cameras, LiDAR, and radar are combined, becomes more intricate as the sensor
array grows. One of the main challenges of increasing the quantity of sensors is devel-
oping an accurate system that is capable of extracting all of the relevant data from each
sensor while minimizing potential errors [6]. Although multiple sensors’ input increases
safety through redundant data, there are still challenges in increased continuous sensory
inputs because of various constraints coming from the implementation and cost of those
sensors [7]. The overall cost and complexity of the autonomous vehicle system escalate as
more sensors are added, which could slow down the widespread adoption and affordability
of autonomous technology.

Another issue is that aligning and synchronizing data from various sensors accurately
becomes a daunting task, and any synchronization errors can lead to inaccurate or incom-
plete environmental understanding (i.e., the vehicle’s external environment). As Liangkai
Liu et al. states, multi-sensor data synchronization is still one of the open challenges in
AV development [3]. In the realm of AVs, sensor synchronization emerges as an important
architectural element essential for achieving accurate and coherent perception. As AVs
navigate complex environments, data from diverse sensors must harmoniously align to
create a comprehensive and unified representation of the surroundings [4]. This synchro-
nization ensures temporal consistency and enhances the AV’s ability to navigate safely and
autonomously by providing a reliable foundation for perceiving dynamic scenarios and
responding with precision to changing road conditions [8].

To summarize, this study addresses three primary challenges in AV systems: the
growing complexity of sensor systems, increasing computational demands, and data syn-
chronization issues. While upgrading hardware or deploying advanced AI models may
improve performance, these approaches are costly and not always practical. Instead,
optimizing the current system by identifying bottlenecks within the data pipeline, from
sensor data collection to processing, can enhance system responsiveness and accuracy
more cost-effectively. Numerous studies have tackled these issues by focusing on profiling,
runtime verification, and real-time monitoring tools. Profiling tools such as Callgrind [9],
DTrace [10], DCU-CHK [11], and Autoware_Perf [12] help identify inefficiencies in CPU
and memory usage but are typically limited to single-machine environments and introduce
significant overhead. Runtime verification tools, including Java PathExplorer (JPAX) [13],
JavaMOP [14], Bro/Zeek [15], BusMOP [16], ROS 2 Tracing [17], Las-Casas’s Anomalous
Trace Detection [18], ensure system correctness but emphasize fault detection over perfor-
mance optimization. Real-time monitoring tools such as LTTng [19], Tigris Framework [20],
Software Runtime Monitoring Tool (SRMT) [21], Jhonny Mertz et al.’s Adaptive Runtime
Monitoring [22]. provide low-latency performance monitoring but lack multi-node syn-
chronization and visualization capabilities. To address these limitations, we previously
proposed a delay measurement concept [23–25], to monitor and optimize real-time, multi-
node systems. In this paper, we implement this conceptual method and validate it through
experiments and use cases, demonstrating its potential for improving the efficiency of AV
data pipelines.

This paper proposes a delay measurement tool to analyze the performance of AI-
powered data pipelines in multiple connected DCUs. Designed for multi-node envi-
ronments, the tool synchronizes performance metrics across distributed hardware units,
enabling comprehensive delay analysis across distributed systems in real time. The tool
comprises three components: a software tracing module to capture execution flow and

Electronics 2025, 14, 81 3 of 34

runtime behavior, a delay calculation module to quantify and analyze latency in data
pipelines, and a delay visualization module to graphically represent latency, enabling
intuitive identification of performance bottlenecks. The tool is designed to reduce the
overhead of software tracing, enable precise latency measurement, and provide real-time
visualization across connected nodes. In our use case, the tool successfully measured and
visualized delays in sensor data processing across multiple DCUs, ensuring synchronized
and accurate delay analysis. Temporal synchronization aligns performance metrics across
distributed hardware, enabling accurate latency tracking and addressing even minor delays.
These capabilities aim to improve the efficiency and responsiveness of AI data pipelines by
enabling better performance monitoring, facilitating the identification of bottlenecks, and
supporting more informed real-time decision-making.

The remainder of the paper is organized as follows. Section 2 describes the related
studies on the delay measurements and DCUs; Section 3 presents the proposed delay
measurement tool for multi-stream analysis. Then, Section 4 shows the experimental
results, and Section 5 concludes the paper.

2. Related Works
2.1. Delay Measurement

In this subsection, we will describe and explain in detail the related works of delay
measurements, which are divided into three categories: profiling, runtime verification,
and real-time monitoring. The profiling tools are to profile the system performance and
detect the bottleneck. Valgrind/Callgrind is widely used for detailed memory profiling
and function call tracking, helping developers identify bottlenecks by simulating cache
behavior and tracing execution paths [9]. Its advantage lies in providing in-depth insights
into memory management, though it suffers from significant performance overhead, which
limits its suitability for real-time systems. DTrace offers a dynamic tracing framework
for both kernel and user-level applications, allowing for real-time diagnostics without
requiring a system restart [10]. However, it lacks support for distributed system tracing and
is predominantly used for single-system environments. DCU-CHK focuses on detecting
bottlenecks in large-scale CPU-DCU systems, offering a more specialized approach for AV
environments [11], but it is limited to high-level checkpointing and may not offer detailed
bottleneck analysis. Lastly, Autoware_Perf addresses performance bottlenecks in ROS
2-based AV systems, particularly by monitoring communication latency and execution
delays [12]. Its disadvantage is its specific focus on ROS 2 systems, limiting its generaliz-
ability to other autonomous systems. These tools provide in-depth performance insights,
helping to optimize system resources and identify inefficiencies. But they are limited to
single-machine environments and can introduce performance overhead, making them less
effective for real-time, multi-node, sensor-heavy environments like AVs.

The runtime verification ensures system correctness and detection of anomalies by
verifying software behavior during runtime. The JPAX monitors Java applications for
concurrency issues and data races through runtime verification techniques, ensuring system
correctness in multithreaded environments [13]. However, its primary limitation is that it
is Java-specific, reducing its applicability in non-Java systems. JavaMOP allows developers
to specify properties that must hold during execution, offering real-time feedback on any
violations [14], but its reliance on aspect-oriented programming (AOP) increases complexity
in system integration. Bro/Zeek focuses on real-time network traffic monitoring, detecting
security anomalies [15], though it is less suited for general-purpose runtime verification.
BusMOP applies runtime verification to PCI peripherals, monitoring hardware behavior
to detect faults [16], but its hardware focus limits its flexibility for broader applications.
ROS 2 tracing provides detailed tracing of callbacks and communication events in ROS

Electronics 2025, 14, 81 4 of 34

2-based systems, offering valuable insights for AV applications [17], but its scope is limited
to ROS 2 environments. Finally, Las-Casas’s anomalous trace detection provides a method
for capturing outliers in trace logs, enhancing system fault detection [18], though its focus
on anomaly detection may not cover broader performance issues. These tools ensure robust
system correctness, detecting outliers and faults that could compromise system integrity,
which is essential for safety-critical systems like AVs. However, they tend to be domain-
specific and are more focused on correctness than on real-time performance optimization
or data handling across distributed systems, which is critical in autonomous systems.

Real-time monitoring ensures real-time performance monitoring while using adaptive
sampling and monitoring techniques to minimize system overhead. The LTTng provides
low-overhead tracing in Linux environments, offering detailed performance monitoring
with minimal resource consumption [19], though it does not focus on multi-node delay mea-
surement in distributed systems. The Tigris Framework introduces goal-specific adaptive
monitoring, dynamically adjusting the sampling rate based on performance goals [20], but
this also means that less granular data may be collected. SRMT provides dynamic runtime
monitoring for C/C++ applications, offering adaptive monitoring to reduce performance
overhead [21], though it is aimed only for C/C++ applications and was mainly tested in
Windows OS. Jhonny Mertz et al. propose a dynamically adjustable sampling rate based on
system workload, optimizing real-time performance [22], but the approach lacks real-time
visualization capabilities and synchronization across multiple nodes. These tools ensure
low-latency performance by dynamically adjusting to system conditions, making them use-
ful for distributed, real-time systems. However, they may lack multi-node synchronization
and advanced visualization features, limiting their ability to detect detailed bottlenecks
and synchronize data across distributed nodes.

The comparative analysis presented in Table 1 highlights the key capabilities of the
proposed delay measurement tool in the context of existing solutions. Unlike profiling
tools such as Valgrind, DTrace, and DCU-CHK, which focus on memory tracking, function
call profiling, or specific system checkpoints, the proposed tool provides comprehensive
multi-node delay measurement and visualization capabilities. This specialization is crit-
ical for distributed systems where real-time performance and synchronization between
hardware units are essential. Similarly, runtime verification tools like JPAX, JavaMOP, and
Bro/Zeek, while effective in identifying anomalies or ensuring system properties, lack the
scalability and real-time analysis features necessary for handling high-throughput video
and sensor data.

A distinguishing feature of the proposed tool is its support for multi-node visualiza-
tion and synchronization, enabling delay measurement across multiple streams in real-time
scenarios. This is particularly important for applications requiring synchronized operations
across distributed hardware, such as autonomous systems and sensor networks. In contrast,
real-time monitoring tools like LTTng and SRMT, while capable of low-overhead tracing or
dynamic monitoring, fall short in handling multiple nodes or providing interactive visu-
alization. The proposed tool addresses these gaps by integrating real-time delay analysis
with advanced visualization capabilities, making it a robust solution for optimizing system
performance in latency-sensitive environments. Our tool leverages and modifies certain
capabilities of LTTng to enable multi-node analysis. The findings emphasize the tool’s
unique position in advancing the field of delay measurement and real-time monitoring.

Electronics 2025, 14, 81 5 of 34

Table 1. Comparative analysis of proposed tool and related work.

Tool Category Strengths Limitations Multi-Node
Visualization

Multi-Node
Analysis Synchronization

Valgrind
/Callgrind Profiling

Detailed memory
profiling and function

call tracking

High performance
overhead No No No

DTrace Profiling
Real-time diagnostics

without requiring
system restart

Limited to
single-system
environments

No No No

DCU-CHK Profiling Specialized for AV
environments

High-level
checkpointing, lacks

detailed analysis
No No No

Autoware_Perf Profiling

Monitors
communication
latency in ROS 2

systems

Specific to ROS 2
systems No No No

JPAX Runtime
verification

Concurrency issue
detection in Java

applications

Java-specific, limited
applicability No No No

JavaMOP Runtime
verification

Real-time feedback on
property violations

Complexity in system
integration No No No

Bro/Zeek Runtime
verification

Real-time network
traffic monitoring

Focuses on network
traffic only No No No

BusMOP Runtime
verification

Monitors PCI
peripherals for faults

Limited to hardware
monitoring No No No

ROS 2 tracing Runtime
verification

Detailed tracing of
callbacks in ROS 2

systems

Scope limited to
ROS 2 No No No

Las-Casas’s
anomalous trace

detection

Runtime
verification

Detects outliers in
trace logs

Focused on anomaly
detection only No No No

LTTng Real-time
monitoring

Low-overhead tracing
in Linux

environments

Lacks multi-node
delay measurement No No No

Tigris Framework Real-time
monitoring

Adaptive monitoring
with goal-specific

sampling

Granularity trade-offs
in adaptive sampling No No No

SRMT Real-time
monitoring

Dynamic monitoring
for C/C++

applications

Limited to Windows
OS, lacks

visualization
No No Partial

Proposed delay
measurement tool

Multi-module
delay analysis

Multi-node
synchronization and

visualization

Requires hardware
synchronization;
domain-specific

Yes Yes Yes

2.2. Data Concentrator Unit

The data concentrator unit (DCU) in our research plays an essential role in man-
aging, processing, and analyzing data flows from various sensors inside autonomous
vehicles (AVs). Acting as information hubs, DCUs collect and process data from vari-
ous sensors, including cameras, LiDAR systems, radar, and ultrasonic detectors. Such
functionalities are similar to one of the key functionalities of Domain Controllers in AVs.
The transition from traditional electronic control units (ECUs) to domain controllers is
being increasingly adopted in modern AV architectures to handle the complex data flows
generated by sensors such as LiDAR, radar, and cameras. Domain controllers, just like our
DCUs, serve as centralized hubs to process and fuse sensor data in real time [26].

The perception module in the vehicle design proposed by Wenfu Wang et al. [27]
exhibits functionalities similar to our DCUs, particularly in its object-detection capabilities.
Specifically, our DCU is designed to collect synchronized frames from multiple cameras
and perform object-detection analysis. This approach aligns with the concept of a domain

Electronics 2025, 14, 81 6 of 34

controller in AVs as described in the domain-based architecture by Onur Alparslan et al. [28],
where data collection and processing from multiple sensors are key functionalities. Our
DCU acts as a domain hub for multiple video sensors. Additionally, the trend towards
connecting multiple domain controllers to an Electronic System Unit (ESU) via topology
zones, as discussed in Alparslan’s work [28], is becoming more popular and is predicted to
be a standard in the future. In our research, we also test the proposed tool across multiple
DCUs connected to sensors, a common architecture in modern AVs, as highlighted in the
paper by Arya G. Nair et al. [29]. Sensor synchronization, a vital component of our design, is
also emphasized as an important aspect in autonomous vehicle design by Gustavo Velasco-
Hernandez et al. [30]. Furthermore, a software-based sensor synchronization solution is
presented by Hang Hu et al. [31]; however, our design integrates both software and hardware
synchronization, where the DCUs are synchronized via software and cameras via hardware.

In our previous paper [5,25], we proposed a design for DCUs with synchronized
cameras. However, in the current paper, the DCU setup is enhanced using hardware
clock synchronization among DCUs. The added hardware clock synchronization ensures
that all devices in a multi-hardware system operate on a consistent time reference, which
is important for accurate delay measurement. By synchronizing clocks across different
hardware, the proposed delay measurement tool can precisely compare timestamps from
various sources, allowing for reliable calculation of delays between processes occurring
on different devices. This synchronization is essential for maintaining the integrity and
accuracy of the delay data, particularly in distributed systems, where timing discrepancies
could otherwise lead to incorrect or inconsistent results. The DCU initially was a part
of our previous works [24,25], where we proposed the Conceptual AI-integrated V2X-
Car Edge Cloud, as shown in Figure 1, which can efficiently manage an edge cloud for
V2X-car services that can provide efficient cloud services based on large amounts of V2X
communication information. The legend in Figure 1 shows the connection ports of each
hardware in the diagram. The figure’s hardware can be divided as follows: AI+X Post,
K8S Worker for AI Computing and Storage, K8S Worker for Data IO, Hybrid-V2X Mobile
Station, SmartX Pole, SiLS with PreScan. The delay measurement tool was applied to
intuitively understand the process of the internal analysis model between the computing
and storage worker, data IO worker, and SiLS of the V2X-car edge cloud.

Electronics 2025, 14, x FOR PEER REVIEW 6 of 33

functionalities. Our DCU acts as a domain hub for multiple video sensors. Additionally,
the trend towards connecting multiple domain controllers to an Electronic System Unit
(ESU) via topology zones, as discussed in Alparslan’s work [28], is becoming more popu-
lar and is predicted to be a standard in the future. In our research, we also test the pro-
posed tool across multiple DCUs connected to sensors, a common architecture in modern
AVs, as highlighted in the paper by Arya G. Nair et al. [29]. Sensor synchronization, a vital
component of our design, is also emphasized as an important aspect in autonomous ve-
hicle design by Gustavo Velasco-Hernandez et al. [30]. Furthermore, a software-based
sensor synchronization solution is presented by Hang Hu et al. [31]; however, our design
integrates both software and hardware synchronization, where the DCUs are synchro-
nized via software and cameras via hardware.

In our previous paper [5,25], we proposed a design for DCUs with synchronized
cameras. However, in the current paper, the DCU setup is enhanced using hardware clock
synchronization among DCUs. The added hardware clock synchronization ensures that
all devices in a multi-hardware system operate on a consistent time reference, which is
important for accurate delay measurement. By synchronizing clocks across different hard-
ware, the proposed delay measurement tool can precisely compare timestamps from var-
ious sources, allowing for reliable calculation of delays between processes occurring on
different devices. This synchronization is essential for maintaining the integrity and accu-
racy of the delay data, particularly in distributed systems, where timing discrepancies
could otherwise lead to incorrect or inconsistent results. The DCU initially was a part of
our previous works [24,25], where we proposed the Conceptual AI-integrated V2X-Car
Edge Cloud, as shown in Figure 1, which can efficiently manage an edge cloud for V2X-
car services that can provide efficient cloud services based on large amounts of V2X com-
munication information. The legend in Figure 1 shows the connection ports of each hard-
ware in the diagram. The figure’s hardware can be divided as follows: AI+X Post, K8S
Worker for AI Computing and Storage, K8S Worker for Data IO, Hybrid-V2X Mobile Sta-
tion, SmartX Pole, SiLS with PreScan. The delay measurement tool was applied to intui-
tively understand the process of the internal analysis model between the computing and
storage worker, data IO worker, and SiLS of the V2X-car edge cloud.

Figure 1. Conceptual diagram of AI-integrated V2X-Car Edge Cloud. Figure 1. Conceptual diagram of AI-integrated V2X-Car Edge Cloud.

Electronics 2025, 14, 81 7 of 34

3. Delay Measurement Tool
This section describes the design and implementation of the proposed delay measure-

ment tool. Figure 2 shows the conceptual diagram of the delay measurement tool and
presents the key functionalities of the three software modules: software tracing in Figure 2a,
delay calculations in Figure 2b, and delay visualization in Figure 2c. Additionally, Figure 2
shows the hardware unit distribution for operating our software modules. The hardware
units are labeled “target system” and “monitoring system.” These system terms will be used
often in this paper to define the role of hardware in operation design for the proposed delay
measurement tool. “Target systems” refers to one or many pieces of hardware, monitored
by our proposed tool (i.e., monitored for delay measurement). The “monitoring system”
term describes hardware that overviews multiple target systems, creating a centralized
latency analyzing unit. We designed the tool to have one single monitoring system that
overviews various target systems.

The software tracing module in Figure 2a runs on the target system, while the DCU
(i.e., target system) performs the sensor’s data analysis. The software tracing module
is a significant component that collects trace data that contain a comprehensive view
of the program’s behavior and performance. The delay calculation in Figure 2b and
delay visualization modules in Figure 2c both run directly in the monitoring system. The
delay calculation module collects trace data from multiple target systems and calculates
the runtime for each target hardware. After calculations, the delay calculation module
performs pre-processing and sends the result of the calculations to the delay visualization
module. The delay visualization module runs the GUI-based representation of the delay
for the sensor’s data analysis on DCUs. The visualization updates constantly as the delay
calculation module sends the delay data. The visualization module allows us to visualize
the delay measurement of data analysis from the multiple DCUs using a user-friendly
graphical interface. The GUI allows us to compare and observe the performance of several
data analyses from the DCUs simultaneously. In further subsections, we present a detailed
description of the software module with a deeper explanation of the functionalities of our
proposed delay measurement software tool.

Electronics 2025, 14, x FOR PEER REVIEW 7 of 33

3. Delay Measurement Tool
This section describes the design and implementation of the proposed delay meas-

urement tool. Figure 2 shows the conceptual diagram of the delay measurement tool and
presents the key functionalities of the three software modules: software tracing in Figure
2a, delay calculations in Figure 2b, and delay visualization in Figure 2c. Additionally, Fig-
ure 2 shows the hardware unit distribution for operating our software modules. The hard-
ware units are labeled “target system” and “monitoring system.” These system terms will
be used often in this paper to define the role of hardware in operation design for the pro-
posed delay measurement tool. “Target systems” refers to one or many pieces of hard-
ware, monitored by our proposed tool (i.e., monitored for delay measurement). The “mon-
itoring system” term describes hardware that overviews multiple target systems, creating
a centralized latency analyzing unit. We designed the tool to have one single monitoring
system that overviews various target systems.

The software tracing module in Figure 2a runs on the target system, while the DCU
(i.e., target system) performs the sensor’s data analysis. The software tracing module is a
significant component that collects trace data that contain a comprehensive view of the
program’s behavior and performance. The delay calculation in Figure 2b and delay visu-
alization modules in Figure 2c both run directly in the monitoring system. The delay cal-
culation module collects trace data from multiple target systems and calculates the
runtime for each target hardware. After calculations, the delay calculation module per-
forms pre-processing and sends the result of the calculations to the delay visualization
module. The delay visualization module runs the GUI-based representation of the delay
for the sensor’s data analysis on DCUs. The visualization updates constantly as the delay
calculation module sends the delay data. The visualization module allows us to visualize
the delay measurement of data analysis from the multiple DCUs using a user-friendly
graphical interface. The GUI allows us to compare and observe the performance of several
data analyses from the DCUs simultaneously. In further subsections, we present a detailed
description of the software module with a deeper explanation of the functionalities of our
proposed delay measurement software tool.

Figure 2. Conceptual diagram of the delay measurement tool.

Figure 2. Conceptual diagram of the delay measurement tool.

Electronics 2025, 14, 81 8 of 34

3.1. Software Tracing Module

The software tracing module is the first module that is executed by the delay mea-
surement software tool. The primary purpose of the module is to gather the information
on the performance of the data analysis on DCUs. The software tracing module includes
the insertion of specialized code, known as tracepoints, at strategic locations within the
codebase to collect detailed information about the program’s execution runtime. These
tracepoints act as markers that, when triggered, generate trace data containing a timestamp,
the codebase location, and other relevant details. Thus, the main objective of the software
tracing module is to generate accurate trace data. The trace data offer insights into the
runtime behavior of the sensor’s data analysis, enabling us to identify bottlenecks in the
software. Our proposed tool is aimed at identifying latency during data analysis. The
proposed tool can be applied on any sort of analysis. However, having intentions to test
our tool in practice, we pick a specific sensor data analysis for testing. In this paper, we
used the object-detection analysis use case as an example to show the interaction between
each module of our proposed delay measurement software tool. The use case of data
analysis is object-detection analysis over multiple synchronized video streams. In this
subsection, we explain the implementation of the software tracing module. Our proposed
software tracing module is implemented by leveraging and modifying certain capabilities
of the LTTng version 2.12 [19] and the Nvidia DeepStream software version 6.2 [32] to
show internal function interactions and architecture, as shown in Figure 3. LTTng (Linux
Trace Toolkit: next generation) was chosen as the primary tracing tool for this study due
to its scalability, low overhead, and robust support for both live and offline analysis. In
contrast to alternative tracing tools such as SystemTap or strace, which often introduce
significant performance degradation during operation, LTTng provides high-efficiency
tracing capabilities, making it particularly suitable for real-time environments where low
latency and minimal interference are critical. Additionally, LTTng’s ability to capture
detailed performance metrics across both kernel and user-space levels proved invaluable
for instrumenting the DeepStream pipelines. This allowed for comprehensive monitoring
of runtime performance, including critical events at various stages of the pipeline.

Electronics 2025, 14, x FOR PEER REVIEW 9 of 33

called instrumentation of the software. Figure 3 shows the design of the conceptual dia-
gram of the software tracing module and includes an instrumentation diagram which con-
sists of the functionality of the software tracing module and the architecture of the soft-
ware tracing module.

Figure 3. Design of software tracing module.

Figure 3a shows the basic functionality of the software tracing module, specifically
the tracing of the use case sensor’s data analysis (e.g., object detection using the video data
analysis pipeline). The software tracing module, as shown in Figure 3, was carefully de-
signed to capture delays at critical points within the NVIDIA DeepStream pipeline. This
module’s primary objective is to gather accurate and granular trace data to analyze delays
and identify bottlenecks across the data pipeline components. To achieve this, the tracing
process relies on tracepoints as the core mechanism for capturing runtime execution de-
tails. Tracepoints were strategically placed at both the entry and exit points of each pipe-
line component, enabling precise measurement of delays introduced by the system. Spe-
cifically, the DeepStream pipeline in our implementation comprises five main compo-
nents—frame collection, neural network application, collage of frames, post-inference
processing, and tracking objects. As a result, a total of 10 tracepoints (2 for each compo-
nent) were deployed. This design decision ensures that delays are captured both at the
level of individual components and across the entire pipeline, offering fine-grained visi-
bility into runtime performance. Each tracepoint captures two critical parameters essential
for delay calculation: the component name and timestamps. The component name serves
as a unique identifier for each pipeline section, enabling accurate mapping of trace data
to specific points in the code. The timestamps, on the other hand, are hardware-assisted
UNIX timestamps synchronized using Precision Time Protocol (PTP). PTP ensures sub-
microsecond accuracy across nodes, making it a highly reliable mechanism for delay
measurement in distributed systems. The choice to use hardware-assisted timestamps, ra-
ther than software-based clocks, was guided by the need to minimize software-induced
overhead and ensure precise real-time performance monitoring. Delays in this study are
defined as the time difference between an entry and exit tracepoint for an individual pipe-
line component or cumulatively as the total time required for a frame to pass through the
entire pipeline. The design decisions underlying the software tracing module—such as
the placement of tracepoints, the use of hardware-assisted timestamps, and the adoption

Figure 3. Design of software tracing module.

Electronics 2025, 14, 81 9 of 34

The integration of LTTng with Babeltrace further enhanced its utility, facilitating
seamless trace data parsing and enabling the efficient transformation of raw trace events
into structured, interpretable formats. This feature was essential for calculating delays,
identifying performance bottlenecks, and visualizing system behavior in a distributed
environment. By leveraging these capabilities, we were able to implement a highly granular
tracing framework that provided insights into the timing and synchronization of processes
across multiple nodes. To adapt LTTng for multi-node setups involving data concentrator
units (DCUs), modifications were introduced to its relay mechanism, enabling synchronized
tracing across distributed hardware. These enhancements ensured that trace data from
multiple nodes could be gathered concurrently while maintaining temporal alignment, a
critical requirement for analyzing delays in heterogeneous hardware architectures. This
adaptation effectively bridged the gap between traditional single-node tracing and the
requirements of multi-node environments, aligning the tool’s functionality with the real-
time demands of autonomous systems and other distributed infrastructures.

Moreover, LTTng’s inherent scalability allowed for its deployment across various
hardware configurations, providing a robust foundation for future expansion to larger,
more complex multi-node setups. These characteristics underscore its suitability as the
backbone of the delay measurement tool and highlight its advantages over alternative
solutions in real-time, distributed monitoring scenarios.

The modified tracing tool (i.e., LTTng) has been integrated into DeepStream pipeline
to collect trace data on the object-detection performance. The process of integration is
also called instrumentation of the software. Figure 3 shows the design of the conceptual
diagram of the software tracing module and includes an instrumentation diagram which
consists of the functionality of the software tracing module and the architecture of the
software tracing module.

Figure 3a shows the basic functionality of the software tracing module, specifically
the tracing of the use case sensor’s data analysis (e.g., object detection using the video
data analysis pipeline). The software tracing module, as shown in Figure 3, was carefully
designed to capture delays at critical points within the NVIDIA DeepStream pipeline. This
module’s primary objective is to gather accurate and granular trace data to analyze delays
and identify bottlenecks across the data pipeline components. To achieve this, the tracing
process relies on tracepoints as the core mechanism for capturing runtime execution details.
Tracepoints were strategically placed at both the entry and exit points of each pipeline
component, enabling precise measurement of delays introduced by the system. Specifically,
the DeepStream pipeline in our implementation comprises five main components—frame
collection, neural network application, collage of frames, post-inference processing, and
tracking objects. As a result, a total of 10 tracepoints (2 for each component) were de-
ployed. This design decision ensures that delays are captured both at the level of individual
components and across the entire pipeline, offering fine-grained visibility into runtime per-
formance. Each tracepoint captures two critical parameters essential for delay calculation:
the component name and timestamps. The component name serves as a unique identifier
for each pipeline section, enabling accurate mapping of trace data to specific points in
the code. The timestamps, on the other hand, are hardware-assisted UNIX timestamps
synchronized using Precision Time Protocol (PTP). PTP ensures sub-microsecond accuracy
across nodes, making it a highly reliable mechanism for delay measurement in distributed
systems. The choice to use hardware-assisted timestamps, rather than software-based
clocks, was guided by the need to minimize software-induced overhead and ensure precise
real-time performance monitoring. Delays in this study are defined as the time difference
between an entry and exit tracepoint for an individual pipeline component or cumulatively
as the total time required for a frame to pass through the entire pipeline. The design

Electronics 2025, 14, 81 10 of 34

decisions underlying the software tracing module—such as the placement of tracepoints,
the use of hardware-assisted timestamps, and the adoption of synchronized frame rates—
were made to ensure precision, modularity, and real-world applicability. This systematic
approach provides the flexibility to extend the tool to other types of pipelines or distributed
frameworks, further validating its utility for delay measurement and performance analysis
in complex multi-node systems.

Figure 3b shows the architecture of the software tracing module, which is the LTTng
(i.e., use case). The figure presents two main steps of the software tracing architecture of
leveraged and modified LTTng [19]: (1) the consumer step and (2) the relay step. Both
steps are part of the architecture of LTTng, and our research leverages and further modifies
certain LTTng functionalities. While the consumer step retains its core functionality of
extracting trace data from the kernel, the relay step is significantly enhanced to enable
simultaneous software tracing across multiple hardware units. This adaptation is critical
for experiments involving multiple data concentrator units (DCUs), allowing synchronized
analysis of trace data from distributed systems. In the modified setup, the relay step runs
on monitoring hardware, acting as a centralized hub for receiving trace data from multiple
DCUs concurrently. By specifying the destination IP address of the monitoring system,
trace data from each DCU is routed directly to the relay. The relay handles multiple TCP
connections simultaneously, ensuring real-time synchronization and data integrity. These
enhancements enable accurate delay calculations by capturing trace data from all hardware
nodes in parallel. This architecture extends LTTng’s capabilities, bridging the gap between
single-node tracing and the demands of distributed, multi-node environments, and is
particularly suited for real-time delay measurement and performance analysis.

3.2. Delay Calculation Module

The delay calculation module is designed to measure the latency of the sensor data
analysis based on the trace data generated from the software tracing module in Figure 3.
Delay calculation at its core is an algorithm that takes trace data as input and generates the
delay data, which is information on the delay of various components of data analysis (in our
use case, we leverage the components of the DeepStream pipeline). Delay calculation run
on the monitoring hardware receiving trace data of multiple DCUs (i.e., target hardware).
The delay calculation module is closely linked to the delay visualization module, which we
will also describe in Section 3.3.

Figure 4 shows the conceptual design of the delay calculation module. The relay step
Figure 4 (3) is process that constantly receives and saves all trace data sent from target
systems. The relay step categorizes received trace data by the hardware name of the sender
(i.e., target system). While trace data are being received by the relay step, as shown Figure 4,
we launch our delay calculations and delay visualization components. Delay calculation
constantly measures delay, pre-processes the result, and sends the results to the delay
visualization module, which constantly updates the visualization based on the received
delay data. Both modules are running in independent loops separately, but they also share
data (i.e., delay calculation sends delay data to delay visualization). In order to implement
such concept, we carried out the multiprocessing with the Python library. Multiprocessing
in Python version 3.8.10 refers to the capability of running multiple processes concurrently
to achieve parallel execution. It also allows for sharing of data between processes. In
our case, the processes were delay calculation and delay visualization modules. The pipe
launches both modules at the same time and creates pipe connection, through which we
send the delay data.

Electronics 2025, 14, 81 11 of 34
Electronics 2025, 14, x FOR PEER REVIEW 11 of 33

Figure 4. Processing design of delay calculation and visualization module.

As we can see in Figure 4, the delay calculation part of the module runs in the loop
and performs tasks labeled (1) multiprocessing pipe, (2) trace data acquire, (3) relay step,
(4) delay calculation, and (5) data organizing. First, we run the multiprocessing pipe that
has been previously explained, which will launch both modules. Next, in the trace data
acquire task, as in Figure 4 (2), we send requests to the relay step to send us the trace data.
Each time, we request trace data by the hardware name of the target system (as already
stated, the relay step categorizes trace data by the name of target system). After receiving
requested trace data, we perform the extraction of trace data parameters. Such manipula-
tions, as requested from the relay step and the extraction of trace data parameters, are
implemented using the Babeltrace2 [33] Python API. The combination of Babeltrace and
LTTng is a common practice for trace analysis, particularly in scenarios requiring efficient
tracing of single systems. However, the approach proposed in this paper introduces a
novel enhancement by enabling the simultaneous gathering of trace data from multiple
hardware units. This is achieved by employing a modified relay mechanism in the LTTng
architecture that concurrently requests and streams trace data from multiple sources to a
centralized monitoring system. Unlike traditional setups where relay steps handle se-
quential or isolated traces, the proposed method ensures synchronization and reduces po-
tential bottlenecks in multi-node environments. In the enhanced design, the LTTng relay
is adapted to handle multiple concurrent TCP connections, each corresponding to an in-
dividual hardware unit. One of the keys of achieving this is Babeltrace-based message
iterators. By utilizing these message iterators simultaneously, the monitoring system can
aggregate trace data in real time, maintaining temporal coherence across the nodes.
Babeltrace, traditionally used for post-processing and conversion of trace data, is em-
ployed here to efficiently filter and organize the incoming streams into a unified format,
enabling downstream analysis and visualization. This adaptation is critical for applica-
tions where latency and synchronization are paramount, such as in distributed sensor net-
works or multi-camera video analysis systems. Furthermore, the proposed approach lev-
erages timestamp alignment and metadata encoding within each trace packet, ensuring
that trace events from different hardware units are accurately correlated. This is particu-
larly advantageous in environments where hardware components operate at different
clock speeds or where data processing involves heterogeneous systems. The combination
of this multi-node trace gathering with the LTTng and Babeltrace framework not only
enhances scalability but also provides a robust foundation for real-time delay measure-
ment and bottleneck identification across distributed systems. By extending the function-
ality of established tools, this method bridges the gap between traditional single-node
tracing and the growing demand for comprehensive, synchronized multi-node analysis.

Figure 4. Processing design of delay calculation and visualization module.

As we can see in Figure 4, the delay calculation part of the module runs in the loop
and performs tasks labeled (1) multiprocessing pipe, (2) trace data acquire, (3) relay step,
(4) delay calculation, and (5) data organizing. First, we run the multiprocessing pipe
that has been previously explained, which will launch both modules. Next, in the trace
data acquire task, as in Figure 4 (2), we send requests to the relay step to send us the
trace data. Each time, we request trace data by the hardware name of the target system
(as already stated, the relay step categorizes trace data by the name of target system).
After receiving requested trace data, we perform the extraction of trace data parameters.
Such manipulations, as requested from the relay step and the extraction of trace data
parameters, are implemented using the Babeltrace2 [33] Python API. The combination of
Babeltrace and LTTng is a common practice for trace analysis, particularly in scenarios
requiring efficient tracing of single systems. However, the approach proposed in this paper
introduces a novel enhancement by enabling the simultaneous gathering of trace data from
multiple hardware units. This is achieved by employing a modified relay mechanism in the
LTTng architecture that concurrently requests and streams trace data from multiple sources
to a centralized monitoring system. Unlike traditional setups where relay steps handle
sequential or isolated traces, the proposed method ensures synchronization and reduces
potential bottlenecks in multi-node environments. In the enhanced design, the LTTng
relay is adapted to handle multiple concurrent TCP connections, each corresponding
to an individual hardware unit. One of the keys of achieving this is Babeltrace-based
message iterators. By utilizing these message iterators simultaneously, the monitoring
system can aggregate trace data in real time, maintaining temporal coherence across the
nodes. Babeltrace, traditionally used for post-processing and conversion of trace data, is
employed here to efficiently filter and organize the incoming streams into a unified format,
enabling downstream analysis and visualization. This adaptation is critical for applications
where latency and synchronization are paramount, such as in distributed sensor networks
or multi-camera video analysis systems. Furthermore, the proposed approach leverages
timestamp alignment and metadata encoding within each trace packet, ensuring that
trace events from different hardware units are accurately correlated. This is particularly
advantageous in environments where hardware components operate at different clock
speeds or where data processing involves heterogeneous systems. The combination of this
multi-node trace gathering with the LTTng and Babeltrace framework not only enhances
scalability but also provides a robust foundation for real-time delay measurement and
bottleneck identification across distributed systems. By extending the functionality of
established tools, this method bridges the gap between traditional single-node tracing and

Electronics 2025, 14, 81 12 of 34

the growing demand for comprehensive, synchronized multi-node analysis. In Figure 4,
we can see that next task is the delay calculation task, as in Figure 4 (4). The task is a fairly
easy process: We temporarily create empty variables of timestamps and component names.
When we receive initial trace data, we skip the calculation process and store first trace data
in our empty timestamp and component name variable (they were empty at first, but now
they contain data of first received trace data). After acquiring the second round of trace
data, with a second timestamp and component name, we start the calculation of the time
difference. The calculation is simply finding the difference between the first and second
timestamp. We make sure that we are calculating the time difference of the timestamps
with the same component name. After calculations, we dump the initially stored timestamp
and component name, and instead we temporarily store in the buffer the second timestamp
and component name. The first timestamp and component name are no longer needed.
Now, when the third round of timestamps and component name arrives, we proceed with
the same procedure of calculating the time difference between the third and the second
timestamps. All of that is happening in a loop. In such a way, we can calculate the delay
for each component and the time between components.

The data organization in Figure 4 (5) involves structuring calculated delay and sending
it to the delay visualization module that is running in parallel. First, we are storing entry
point and exit point timestamps for each component in the data structure. The data
structure also stores the component name and hardware name. After all the necessary
calculations and delay data processing, the delay calculation module sends the delay data
over to the delay visualization script using a “pipe” multiprocessing connection.

3.3. Delay Visualization Module

The delay visualization module is designed to enhance the comprehension of delay
measurement results by converting complex, raw data into intuitive visual representations.
In dynamic environments where prompt decision-making is critical, this module provides
real-time insights by visually representing time lags or latency in the sensor data analysis
process. By making delays more accessible and understandable, the module enables users
to quickly grasp the impact of delays on system behavior and performance, ultimately
facilitating better human comprehension and more informed decision-making.

The operation of the delay visualization module, as shown in part of Figure 4b, begins
with launching the server in Figure 4 (6), which establishes the necessary communication
infrastructure for real-time data transfer. A WebSocket [34] connection is then established in
Figure 4 (7) to ensure continuous and efficient communication between the delay calculation
module and the visualization client. This real-time data pipeline allows for immediate
transmission and updating of delay data without noticeable latency, providing an accurate
and up-to-date reflection of the system’s performance. Once the data are processed and
organized by the delay calculation module, they are sent to the client (Figure 4 (8)) for
visualization (Figure 4 (9)). The client, typically a web-based interface, then graphically
represents the delay data, enabling users to intuitively analyze and interpret performance
metrics. This process ensures that complex data are translated into actionable insights,
offering a user-friendly interface that supports real-time monitoring and analysis.

The visualization module GUI is designed as a horizontal bar chart, where each bar
represents a specific process within the sensor data analysis pipeline. The width of each
bar corresponds to the duration of the process, determined by the starting and ending
timestamps on the horizontal axis, which is represented in milliseconds. The GUI must
update constantly as new delay calculation data arrive, ensuring that the visualization
remains accurate and responsive. To achieve this, the module utilizes a combination of
WebSockets and JavaScript, technologies that support the fast, real-time processing required

Electronics 2025, 14, 81 13 of 34

for handling large-scale data. WebSockets enable ongoing interactive communication
between the client and server, while JavaScript facilitates the creation of dynamic and
interactive visualizations.

The visualization module is tightly integrated with the delay calculations script. Upon
launching, the server runs on a designated port (e.g., 3000), and a WebSocket connection is
established using simple functions from the “socketio” library. The server then waits for
structured trace data from the delay calculation module. Once the data are received, they
are transmitted to the client, where the JavaScript-based GUI updates the visualization in
real time. The bars on the interface represent individual processes in sensor data analysis,
with their widths dynamically adjusted based on the current data. The time axis also
updates to reflect the most recent timestamps, ensuring that the visualization remains
synchronized with the ongoing data analysis.

3.4. Algorithms of Delay Measurement Tool

This subsection describes the delay measurement tool’s algorithms. The algorithms
focus on the three software modules: software tracing, delay calculation, and delay visual-
ization modules. The provided algorithms represent a high-level operation order of each
software module of the proposed software tool.

Algorithm 1 illustrates the refined implementation of the software tracing module
within our delay measurement tool, designed to operate seamlessly in the target system
based on the DeepStream pipeline [32]. The target application represents a simplified
sensor data analysis process using synchronized video streams, which serves as a use
case for this study. However, the tracing methodology can be generalized to other sensor
data-processing applications as long as the source code is accessible. The tracing process
begins in Software_Tracing() (line 1), where the Target_Application() function is called
to initiate the sensor data analysis while enabling the tracing mechanism. The key func-
tionality of the tracing module lies in the Record_Tracepoint() and Tracepoint() methods,
which are designed to log component timestamps and send trace data to monitoring hard-
ware with minimal system interference. Within Target_Application() (lines 5–15), the total
number of frames to process is defined based on the input sensor data, controlling the
execution loop. Each iteration (line 6) processes a frame by sequentially executing two
main tasks (Application_Task_1() and Application_Task_2()), which represent abstract
sensor analysis operations utilizing the DeepStream SDK API [32]. At the start and end
of each task (lines 7–9 and 11–13), Record_Tracepoint() is invoked to log the component
name (e.g., “start_application_task_1”) and a precise hardware timestamp captured using
get_current_timestamp(). These parameters are packaged into a tracepoint object, which is
passed to the Tracepoint() method to generate a TCP_packet containing component names,
timestamps, and hardware identifiers. The TCP_packet is then transmitted over ethernet to
the monitoring system (lines 23–24) for delay measurement and further analysis. The mod-
ular design of the algorithm ensures that the tracing mechanism operates in parallel with
the target application without interfering with its execution flow. Record_Tracepoint() en-
capsulates the tracepoint creation logic, while Tracepoint() prepares and transmits the trace
data for monitoring. This modularity enhances clarity, minimizes overhead, and ensures
efficient logging of runtime behavior. By analyzing the timestamps of multiple tracepoints,
delays between various tasks or components within the target application can be accurately
measured, providing insights into the system’s performance and potential bottlenecks.

Electronics 2025, 14, 81 14 of 34

Algorithm 1. Software Tracing Module

Input: DA (Data_Array): Array of data for analysis in target software
TP (trace parameters): Component name and timestamp

Output: TCP_packet: Trace data sent to monitoring hardware (over ethernet)
RDA (result of data analysis): Output of target application (non-integral to the tracing
module)

Method:

01: Software_Tracing(DA):
02: RDA, TCP_packet← Target_Application(DA);
03: Return (RDA, TCP_packet);

04: Target_Application(DA):
05: frame_count← number_of_frames(DA);//Total frames in video file or stream
06: For i← 1 to frame_count do:
07: Record_Tracepoint(“start_application_task_1”);
08: Intermediate_Result← Application_Task_1(DA[i]);//DeepStream SDK
Task 1
09: Record_Tracepoint(“end_application_task_1”);
10:
11: Record_Tracepoint(“start_application_task_2”);
12: RDA← Application_Task_2(Intermediate_Result);//DeepStream SDK
Task 2
13: Record_Tracepoint(“end_application_task_2”);
14: End For
15: Return (RDA, TCP_packet);

16: Record_Tracepoint(component_name):
17: timestamp← get_current_timestamp();
18: TP← (component_name, timestamp);
19: TCP_packet← Tracepoint(TP);
20: Return (TCP_packet);

21: Tracepoint(TP):
22: component_name, tracepoint← TP;
23: TCP_packet← (component_name, tracepoint, hardware_name);
24: sendToMonitoringHW(TCP_packet, monitoringHW_IPaddress);
25: Return (TCP_packet);

The computational complexity of the proposed algorithms was analyzed to evaluate
their scalability and efficiency in real-time, multi-node environments. Algorithm 1, which
pertains to the software tracing module, inserts tracepoints at critical locations within
the target application to capture timestamps and component names for each data frame.
Let n represent the number of tracepoints and t the number of iterations (i.e., in our
case, this corresponds to the number of processed frames). The time complexity of this
algorithm is O(n× t), as tracepoints are executed for each frame, and its space complexity is
O(n × t), reflecting the storage requirements for trace data until transmission. This linear
complexity ensures minimal computational overhead while maintaining efficiency for

Electronics 2025, 14, 81 15 of 34

real-time processing. The goal of Tracepoint() is to prepare and transmit data for delay
calculation, as outlined in Algorithm 2.

Algorithm 2. Delay Calculation & Visualization Modules

Input: TCP_Packets: A dictionary containing trace data packets from multiple hardware
nodes, keyed by
Hardware_Name. Example: TCP_Packets = {“ENDBOX1”: TCP_Packet1, “ENDBOX2”:
TCP_Packet2, . . .}
Delay Data–results of delay calculation, that are used for visualization
Output: Status: The status of delay visualization.

Method:
01: Delay_Calculation(Hardware_Names):
02: Previous_Component← {};//Store previous components for each hardware node
03: Previous_Timestamp← {};//Store previous timestamps for each hardware node
04: TCP_Packets← {};//Initialize empty packet storage for all nodes
05:
06: //Step 1: Collect packets using babeltrace message iterators
07: For Hardware_Name in Hardware_Names:
08: TCP_Packets[Hardware_Name]←
Receive_Packets(Hardware_Name);//Synchronous, sequential
message retrieval
09: End For
10:
11: //Step 2: Process packets for delay calculation
12: For Hardware_Name in TCP_Packets:
13: For Packet in TCP_Packets[Hardware_Name]:
14: Component_Name, Timestamp← Extract(Packet);
15: If Previous_Component[Hardware_Name] == Component_Name:
16: Delay← Timestamp-Previous_Timestamp[Hardware_Name];
17: Delay_Data←Hardware_Name,Component_Name,
Previous_Timestamp[Hardware_Name], Timestamp, Delay;
18: Status← Delay_Visualization(Delay_Data);
19: End If
20:
21: Previous_Component[Hardware_Name]← Component_Name;
22: Previous_Timestamp[Hardware_Name]← Timestamp;
23: End For
24: End For
25:
26: Return (Status);

27: Delay_Visualization(Delay_Data)://Visualizes delays using horizontal bars
28: Hardware_Name, Component_Name, Previous_Timestamp, Timestamp, Delay
←
Extract(Delay_Data);
29: Horizontal_Bar← Draw_Bar(Hardware_Name, Component_Name);
30: Status← Horizontal_Bar.Latency.Update(Previous_Timestamp, Timestamp);

31: Return (Status);

Electronics 2025, 14, 81 16 of 34

The delay calculation and visualization modules algorithm, outlined in Algorithm 2,
describes the process of calculating and visualizing delays in a multi-node environment.
The input to this algorithm, Hardware_Names, represents the list of hardware nodes being
monitored, and TCP_Packets is the trace data collected from each node. The algorithm
employs Babeltrace-based message iterators to retrieve trace packets in a synchronous
and sequential manner for each node. At the beginning (lines 2–4), two empty dictio-
naries, Previous_Component and Previous_Timestamp, are initialized to store the last
observed component name and its corresponding timestamp for each hardware node.
Additionally, an empty dictionary TCP_Packets is prepared to collect trace data. In Step
1 (lines 6–9), the algorithm iterates through all Hardware_Names and uses the function
Receive_Packets(Hardware_Name) to retrieve trace data. This function utilizes the Babel-
trace message iterator, which efficiently processes trace events in a stream-like fashion. The
iterator reads events from trace files, extracting component names and their corresponding
timestamps with nanosecond precision. This synchronous retrieval ensures that trace pack-
ets for all hardware nodes are collected without loss or misalignment. Step 2 (lines 12–24)
processes the retrieved packets to calculate delays. For each hardware node, the algorithm
iterates through its trace packets (line 13). The function Extract(Packet) unpacks the trace
data, extracting the Component_Name and Timestamp. At line 15, the algorithm checks if
the current Component_Name matches the previous component stored for the correspond-
ing hardware node. If it does, the delay is calculated (line 16) by subtracting the previously
stored timestamp (Previous_Timestamp) from the current timestamp. This calculated delay,
along with metadata such as the hardware name, component name, previous timestamp,
and current timestamp, is bundled into Delay_Data (line 17). The packaged delay data
is then sent to the delay visualization module for graphical representation (line 18). The
delay visualization module (lines 27–31) extracts the delay data and updates a horizontal
bar graph using the Draw_Bar function, where each bar corresponds to a specific hard-
ware node and its components. The function Latency.Update dynamically updates the
visualization, incorporating the previous and current timestamps to accurately reflect the
measured delays. By combining Babeltrace-based message iterators for trace retrieval and
efficient delay processing, the algorithm ensures a clear, synchronized analysis of delays
across multiple nodes. This method provides system administrators with an intuitive and
continuous representation of performance bottlenecks, enabling real-time identification
and resolution of delays. For Algorithm 2, which pertains to the delay calculation and
visualization module, the key operations include receiving trace data from multiple hard-
ware nodes, extracting timestamps, calculating delays, and updating the visualization
module. Let h represent the number of hardware nodes, n the number of tracepoints, and
t the number of iterations or time steps (i.e., in our case, this corresponds to the number
of processed frames). The time complexity of this algorithm is O(h × n × t), as delays are
calculated for each node and tracepoint over time, while the space complexity is O(h × n),
corresponding to the storage of trace data and calculated delays. This linear scaling across
nodes and tracepoints ensures the modular design of the visualization module can handle
real-time scenarios efficiently. These analyses demonstrate that the algorithms are compu-
tationally efficient and scalable, making them well suited for distributed systems requiring
synchronized monitoring and delay measurement. This comprehensive approach not only
enhances the visibility of system performance but also facilitates proactive management of
system delays.

3.5. Temporal Synchronization

Hardware clock synchronization is critical in distributed computing systems to ensure
accurate and consistent timing across devices, which is essential for the proposed delay

Electronics 2025, 14, 81 17 of 34

measurement tool. The tool relies on synchronized hardware clock timestamps to calculate
delays accurately. Without synchronization, discrepancies between device clocks can lead
to errors in delay measurements, misrepresenting the sequence or timing of events. For
instance, if one clock is ahead, events may appear to have occurred earlier than they actually
did, while a lagging clock may record events as delayed or miss them altogether.

Precision Time Protocol (PTP) [35] is widely used to achieve high-precision clock
synchronization. PTP synchronizes device clocks with sub-microsecond accuracy by desig-
nating a master clock as the network’s time reference and aligning slave clocks through
timestamp exchanges and correction mechanisms. This process compensates for network
latency and clock drift, ensuring consistent timestamps across devices. Implementing
PTP requires specialized hardware, including PTP-capable network interface cards and
switches, as well as proper software configuration. By leveraging PTP, the delay measure-
ment tool ensures reliable synchronization, enabling precise delay analysis and enhancing
the performance of distributed systems.

Figure 5 depicts the architecture of two data concentrator units (DCUs) within a syn-
chronized video frame data-processing system. The use of dual DCUs—(a) DCU1 and
(b) DCU2, shown in Figure 5—ensures high availability (HA) [36], a crucial feature in
autonomous vehicle systems. This redundancy allows the system to maintain continuous
operation by enabling one DCU to take over if the other fails, ensuring safety and reliability.
Each DCU interfaces with a base board that manages data flow from multiple synchronized
cameras. The cameras are arranged to capture video data from different angles, provid-
ing comprehensive environmental coverage. The base boards ensure time alignment of
video frames, enabling accurate sensor fusion and data analysis, which is essential for
real-time decision-making.

Electronics 2025, 14, x FOR PEER REVIEW 17 of 33

providing comprehensive environmental coverage. The base boards ensure time align-
ment of video frames, enabling accurate sensor fusion and data analysis, which is essential
for real-time decision-making.

Figure 5. Design of synchronized cameras and DCU connection diagram for high availability (HA).

In Figure 5, blue arrows trace the synchronized video frame data flow from the cam-
eras to the DCUs, emphasizing the importance of precise timing in multi-camera setups.
The Jetson AGX Orin Developer Kit, shown in both DCUs, provides high-performance
computing with low power consumption, suitable for autonomous vehicle solutions. The
e-con Systems multi-camera setup (e.g., e-CAM20_CUOAGX) is connected via base
boards to the DCUs, with external trigger support for synchronization. Synchronization
across DCUs is achieved using the phc2sys program [37], which aligns the system clock
with the PTP hardware clock (PHC) on the NIC (network interface card). By combining
PTP-based clock synchronization and e-con Systems’ multi-camera synchronization, the
architecture achieves precise temporal alignment, enhancing object detection and overall
performance for autonomous vehicle applications.

Precision Time Protocol (PTP) synchronization was configured and validated using
a Supermicro SYS-210P server configured as the grandmaster clock (i.e., monitoring sys-
tem) and two NVIDIA Jetson AGX Orin devices as slave clocks (i.e., target systems). All
devices were interconnected via a PTP-capable ethernet switch to ensure accurate com-
munication for time synchronization. The SYS-210P was configured with the ptp4l tool
operating in grandmaster mode, which allowed the local clock (3cecef.fffe.bbd305) to be
selected as the best master clock. This configuration enabled the grandmaster to broadcast
synchronization messages, such as Sync and Follow_Up packets, to all connected devices.
The successful initialization and transition of the SYS-210P to the grandmaster role are
depicted in Figure 6, confirming its capability to maintain a centralized timing reference
for the system.

Figure 6. PTP master clock initialization on the monitoring system.

Figure 5. Design of synchronized cameras and DCU connection diagram for high availability (HA).

In Figure 5, blue arrows trace the synchronized video frame data flow from the
cameras to the DCUs, emphasizing the importance of precise timing in multi-camera setups.
The Jetson AGX Orin Developer Kit, shown in both DCUs, provides high-performance
computing with low power consumption, suitable for autonomous vehicle solutions. The
e-con Systems multi-camera setup (e.g., e-CAM20_CUOAGX) is connected via base boards
to the DCUs, with external trigger support for synchronization. Synchronization across
DCUs is achieved using the phc2sys program [37], which aligns the system clock with the
PTP hardware clock (PHC) on the NIC (network interface card). By combining PTP-based
clock synchronization and e-con Systems’ multi-camera synchronization, the architecture
achieves precise temporal alignment, enhancing object detection and overall performance
for autonomous vehicle applications.

Electronics 2025, 14, 81 18 of 34

Precision Time Protocol (PTP) synchronization was configured and validated using a
Supermicro SYS-210P server configured as the grandmaster clock (i.e., monitoring system)
and two NVIDIA Jetson AGX Orin devices as slave clocks (i.e., target systems). All devices
were interconnected via a PTP-capable ethernet switch to ensure accurate communication
for time synchronization. The SYS-210P was configured with the ptp4l tool operating in
grandmaster mode, which allowed the local clock (3cecef.fffe.bbd305) to be selected as the
best master clock. This configuration enabled the grandmaster to broadcast synchronization
messages, such as Sync and Follow_Up packets, to all connected devices. The successful
initialization and transition of the SYS-210P to the grandmaster role are depicted in Figure 6,
confirming its capability to maintain a centralized timing reference for the system.

Electronics 2025, 14, x FOR PEER REVIEW 17 of 33

providing comprehensive environmental coverage. The base boards ensure time align-
ment of video frames, enabling accurate sensor fusion and data analysis, which is essential
for real-time decision-making.

Figure 5. Design of synchronized cameras and DCU connection diagram for high availability (HA).

In Figure 5, blue arrows trace the synchronized video frame data flow from the cam-
eras to the DCUs, emphasizing the importance of precise timing in multi-camera setups.
The Jetson AGX Orin Developer Kit, shown in both DCUs, provides high-performance
computing with low power consumption, suitable for autonomous vehicle solutions. The
e-con Systems multi-camera setup (e.g., e-CAM20_CUOAGX) is connected via base
boards to the DCUs, with external trigger support for synchronization. Synchronization
across DCUs is achieved using the phc2sys program [37], which aligns the system clock
with the PTP hardware clock (PHC) on the NIC (network interface card). By combining
PTP-based clock synchronization and e-con Systems’ multi-camera synchronization, the
architecture achieves precise temporal alignment, enhancing object detection and overall
performance for autonomous vehicle applications.

Precision Time Protocol (PTP) synchronization was configured and validated using
a Supermicro SYS-210P server configured as the grandmaster clock (i.e., monitoring sys-
tem) and two NVIDIA Jetson AGX Orin devices as slave clocks (i.e., target systems). All
devices were interconnected via a PTP-capable ethernet switch to ensure accurate com-
munication for time synchronization. The SYS-210P was configured with the ptp4l tool
operating in grandmaster mode, which allowed the local clock (3cecef.fffe.bbd305) to be
selected as the best master clock. This configuration enabled the grandmaster to broadcast
synchronization messages, such as Sync and Follow_Up packets, to all connected devices.
The successful initialization and transition of the SYS-210P to the grandmaster role are
depicted in Figure 6, confirming its capability to maintain a centralized timing reference
for the system.

Figure 6. PTP master clock initialization on the monitoring system. Figure 6. PTP master clock initialization on the monitoring system.

The NVIDIA Jetson AGX Orin devices (NVIDIA Corporation, Santa Clara, CA, USA)
were configured in slave-only mode using the ptp4l tool to synchronize their hardware
clocks (/dev/ptp0) with the grandmaster clock. Logs from one of the slave devices, shown
in Figure 7, demonstrate the detection and selection of the grandmaster clock, with the port
transitioning to the SLAVE state. The master offset values steadily converged to small values
(e.g., ~100 ns), indicating precise alignment with the grandmaster. Additionally, consistent
path delays (e.g., ~5900–6500 ns) validated stable network conditions, essential for reliable
round-trip time measurements. Dynamic frequency adjustments were observed as the slave
device continuously corrected its clock drift, ensuring sub-microsecond accuracy. Similar
configurations and validation steps were performed on the second NVIDIA Jetson AGX
Orin device, with comparable results confirming its synchronization with the master clock.

To further refine synchronization, the phc2sys tool was employed to align the system
clock (CLOCK_REALTIME) with the PTP hardware clock on the NVIDIA Jetson device.
The results, captured in Figure 8, reveal offsets between the system clock and hardware
clock remaining consistently within a narrow range (e.g., −209 to 322 ns). Dynamic
frequency corrections minimized drift, while stable path delays (~2600 ns) confirmed
reliable communication between the system and hardware clocks. Overall, the combination
of PTP clock synchronization and e-con Systems’ multi-camera synchronization ensures
temporal alignment that enhances object detection for AV.

Electronics 2025, 14, 81 19 of 34

Electronics 2025, 14, x FOR PEER REVIEW 18 of 33

The NVIDIA Jetson AGX Orin devices (NVIDIA Corporation, Santa Clara, CA, USA)
were configured in slave-only mode using the ptp4l tool to synchronize their hardware
clocks (/dev/ptp0) with the grandmaster clock. Logs from one of the slave devices, shown
in Figure 7, demonstrate the detection and selection of the grandmaster clock, with the
port transitioning to the SLAVE state. The master offset values steadily converged to small
values (e.g., ~100 nanoseconds), indicating precise alignment with the grandmaster. Ad-
ditionally, consistent path delays (e.g., ~5900–6500 nanoseconds) validated stable network
conditions, essential for reliable round-trip time measurements. Dynamic frequency ad-
justments were observed as the slave device continuously corrected its clock drift, ensur-
ing sub-microsecond accuracy. Similar configurations and validation steps were per-
formed on the second NVIDIA Jetson AGX Orin device, with comparable results confirm-
ing its synchronization with the master clock.

Figure 7. PTP slave clock initialization on the target system.

To further refine synchronization, the phc2sys tool was employed to align the system
clock (CLOCK_REALTIME) with the PTP hardware clock on the NVIDIA Jetson device.
The results, captured in Figure 8, reveal offsets between the system clock and hardware
clock remaining consistently within a narrow range (e.g., −209 to 322 nanoseconds). Dy-
namic frequency corrections minimized drift, while stable path delays (~2600 nanosec-
onds) confirmed reliable communication between the system and hardware clocks. Over-
all, the combination of PTP clock synchronization and e-con Systems’ multi-camera syn-
chronization ensures temporal alignment that enhances object detection for AV.

Figure 7. PTP slave clock initialization on the target system.
Electronics 2025, 14, x FOR PEER REVIEW 19 of 33

Figure 8. Synchronization between the hardware clock and the system clock on the target system.

4. Experiment and Evaluation
This section details the experimental environments, evaluation methods, and results.

The primary aim of the experiment is to demonstrate the capability of the delay measure-
ment tool in monitoring multiple data concentrator units (DCUs) simultaneously. The first
subsection provides an in-depth overview of the experimental environments, including
the hardware and software configurations. The second subsection describes the experi-
ments data and evaluation measure for the evaluation methods. The final subsection pre-
sents a detailed discussion of the experiment’s results, highlighting the tool’s performance
and effectiveness in real-time monitoring and data analysis across multiple DCUs.

4.1. Experiment Environments

This subsection details the experimental setup, including the hardware and software
environments used to evaluate the delay measurement tool’s performance. The primary
objective of the experiment is to demonstrate the tool’s ability to simultaneously monitor
multiple DCUs, a task requiring substantial computational resources. To accurately test
and validate the delay measurement tool, the tool’s functionality involves real-time mon-
itoring and analysis of sensor data, which are inherently computationally intensive pro-
cesses.

The experiment setup consists of a monitoring system and a target system, with the
Supermicro SYS-210P and Nvidia Jetson AGX Orin used, respectively. The Supermicro
SYS-210P offers powerful dual-processor performance and extensive memory capacity in
a compact 2U design, making it ideal for space-constrained data centers that require high
efficiency without sacrificing computational capabilities. Meanwhile, the Nvidia Jetson
AGX Orin is a compact device that is designed for edge computing and AI inferencing
applications, offering compact yet powerful processing capabilities. It is suited very well
as the target system that performs sensor data analysis. The specific hardware configura-
tions are detailed in Table 2, showcasing the differences between the monitoring and tar-
get systems used in the experiment.

Table 2. Hardware specification for experimental environments.

 Monitoring System Target System

Hardware model
Supermicro SYS-210P
(server-grade system)

Nvidia Jetson AGX Orin

Processor Intel Xeon Silver 4310, 12-Dual core, 2.1 GHz
12-core Arm® Cortex®-A78AE v8.2 64-bit CPU 3 MB L2 + 6

MB L3, 2.2 GHz
CPU cores 12-Dual core 12-core

CPU architecture x86-64 Architecture ARMv8-A architecture
GPU model Nvidia Tesla T4 2048-Core NVIDIA Ampere GPU 64 Tensor Cores, 1.3 GHz

Memory (RAM) 32 GB DDR4 memory 32 GB 256-bit LPDDR5
Operating system Linux Ubuntu 20.04 Linux Ubuntu 20.04

Figure 8. Synchronization between the hardware clock and the system clock on the target system.

4. Experiment and Evaluation
This section details the experimental environments, evaluation methods, and results.

The primary aim of the experiment is to demonstrate the capability of the delay measure-
ment tool in monitoring multiple data concentrator units (DCUs) simultaneously. The first
subsection provides an in-depth overview of the experimental environments, including the
hardware and software configurations. The second subsection describes the experiments
data and evaluation measure for the evaluation methods. The final subsection presents a
detailed discussion of the experiment’s results, highlighting the tool’s performance and
effectiveness in real-time monitoring and data analysis across multiple DCUs.

Electronics 2025, 14, 81 20 of 34

4.1. Experiment Environments

This subsection details the experimental setup, including the hardware and software
environments used to evaluate the delay measurement tool’s performance. The primary
objective of the experiment is to demonstrate the tool’s ability to simultaneously monitor
multiple DCUs, a task requiring substantial computational resources. To accurately test and
validate the delay measurement tool, the tool’s functionality involves real-time monitoring
and analysis of sensor data, which are inherently computationally intensive processes.

The experiment setup consists of a monitoring system and a target system, with the
Supermicro SYS-210P and Nvidia Jetson AGX Orin used, respectively. The Supermicro
SYS-210P offers powerful dual-processor performance and extensive memory capacity in a
compact 2U design, making it ideal for space-constrained data centers that require high
efficiency without sacrificing computational capabilities. Meanwhile, the Nvidia Jetson
AGX Orin is a compact device that is designed for edge computing and AI inferencing
applications, offering compact yet powerful processing capabilities. It is suited very well as
the target system that performs sensor data analysis. The specific hardware configurations
are detailed in Table 2, showcasing the differences between the monitoring and target
systems used in the experiment.

Table 2. Hardware specification for experimental environments.

Monitoring System Target System

Hardware model Supermicro SYS-210P
(server-grade system) Nvidia Jetson AGX Orin

Processor Intel Xeon Silver 4310,
12-Dual core, 2.1 GHz

12-core Arm® Cortex®-A78AE
v8.2 64-bit CPU 3 MB L2 + 6

MB L3, 2.2 GHz

CPU cores 12-Dual core 12-core

CPU architecture x86-64 Architecture ARMv8-A architecture

GPU model Nvidia Tesla T4 2048-Core NVIDIA Ampere
GPU 64 Tensor Cores, 1.3 GHz

Memory (RAM) 32 GB DDR4 memory 32 GB 256-bit LPDDR5

Operating system Linux Ubuntu 20.04 Linux Ubuntu 20.04

Software components are another crucial part in our environment. In our experiment,
we used a high-performance data pipeline to perform the object-detection analysis over
multiple synchronized video streams, and those analyses would be the target our proposed
delay measurement tool to monitor. The proposed tool itself has been built using multiple
software components. Figure 9 shows the software configuration in detail, which presents
the configurations of the modified open-source tools (i.e., LTTng [19] and Babeltrace2 [33])
used to build the delay measurement tool. The software tracing module in Figure 9a
employs modified LTTng (Linux Trace Toolkit: next generation) as its core component,
offering robust real-time tracing capabilities for analyzing sensor data. Software tracing
module analyzes the execution of data analysis. In our case, for testing and experiments,
we used Nvidia DeepStream to perform object-detection analysis. The collected trace
data are transmitted to the delay calculation module, as shown in Figure 9b, managed
by lttng-relayd, which ensures efficient data transmission and storage across the network.
Following this, Babeltrace is used to process and convert the trace data, extracting essential
performance metrics such as timestamps, which are then used for delay calculations. The
results of these calculations are transmitted via WebSockets, enabling real-time data flow to
the delay visualization module, as shown in Figure 9c. This visualization is rendered using

Electronics 2025, 14, 81 21 of 34

JavaScript, providing an interactive and comprehensible visual representation of the delays,
allowing users to easily interpret the system’s performance metrics. The entire system is
deployed on an embedded platform powered by NVIDIA’s JetPack 5.1 and runs on Ubuntu
20.04 as the operating system. The platform is supported by the Linux kernel version 5.10,
CUDA 11.4 for GPU acceleration, and cuDNN 8.6.0 for deep learning optimizations. This
configuration ensures the system’s high performance and reliability, making it a powerful
tool for measuring and visualizing system delays in performance-critical applications.

Electronics 2025, 14, x FOR PEER REVIEW 20 of 33

Software components are another crucial part in our environment. In our experiment,
we used a high-performance data pipeline to perform the object-detection analysis over
multiple synchronized video streams, and those analyses would be the target our pro-
posed delay measurement tool to monitor. The proposed tool itself has been built using
multiple software components. Figure 9 shows the software configuration in detail, which
presents the configurations of the modified open-source tools (i.e., LTTng [19] and
Babeltrace2 [33]) used to build the delay measurement tool. The software tracing module
in Figure 9a employs modified LTTng (Linux Trace Toolkit: next generation) as its core
component, offering robust real-time tracing capabilities for analyzing sensor data. Soft-
ware tracing module analyzes the execution of data analysis. In our case, for testing and
experiments, we used Nvidia DeepStream to perform object-detection analysis. The col-
lected trace data are transmitted to the delay calculation module, as shown in Figure 9b,
managed by lttng-relayd, which ensures efficient data transmission and storage across the
network. Following this, Babeltrace is used to process and convert the trace data, extract-
ing essential performance metrics such as timestamps, which are then used for delay cal-
culations. The results of these calculations are transmitted via WebSockets, enabling real-
time data flow to the delay visualization module, as shown in Figure 9c. This visualization
is rendered using JavaScript, providing an interactive and comprehensible visual repre-
sentation of the delays, allowing users to easily interpret the system’s performance met-
rics. The entire system is deployed on an embedded platform powered by NVIDIA’s Jet-
Pack 5.1 and runs on Ubuntu 20.04 as the operating system. The platform is supported by
the Linux kernel version 5.10, CUDA 11.4 for GPU acceleration, and cuDNN 8.6.0 for deep
learning optimizations. This configuration ensures the system’s high performance and re-
liability, making it a powerful tool for measuring and visualizing system delays in perfor-
mance-critical applications.

Figure 9 provides a comprehensive view of the prototype delay measurement envi-
ronment, showcasing both the hardware and the software components used in the testing
setup. The environment consists of several key elements, each labeled in the image. On
the left, the monitoring system (a) is highlighted, which is responsible for collecting and
processing data from the target systems. Adjacent to it, the target systems (b) are shown,
consisting of devices where the delay measurement tool is implemented and tested. In
front of the setup, the synchronized cameras (c) capture live video streams, simulating
real-world data input for the system. The setup also includes a large display showing the
result of object detection (d), demonstrating the tool’s application in analyzing visual data.
Additionally, a screen displaying the delay visualization (e) is visible, where processed
delay data are graphically represented, allowing for real-time monitoring and analysis.
This integrated environment effectively combines hardware and software to evaluate the
performance of the delay measurement tool in a realistic and controlled setting.

Figure 9. Leveraging open-source software for the delay measurement tool.

Figure 9 provides a comprehensive view of the prototype delay measurement envi-
ronment, showcasing both the hardware and the software components used in the testing
setup. The environment consists of several key elements, each labeled in the image. On
the left, the monitoring system (a) is highlighted, which is responsible for collecting and
processing data from the target systems. Adjacent to it, the target systems (b) are shown,
consisting of devices where the delay measurement tool is implemented and tested. In
front of the setup, the synchronized cameras (c) capture live video streams, simulating
real-world data input for the system. The setup also includes a large display showing the
result of object detection (d), demonstrating the tool’s application in analyzing visual data.
Additionally, a screen displaying the delay visualization (e) is visible, where processed
delay data are graphically represented, allowing for real-time monitoring and analysis.
This integrated environment effectively combines hardware and software to evaluate the
performance of the delay measurement tool in a realistic and controlled setting.

Figure 10 illustrates the research and development environment utilized in this paper.
The environment is designed to test and evaluate the delay measurement tool’s capabilities.
Figure 10a showcases the target systems that form the core of our hardware setup, vital for
executing the sensor data analysis. Adjacent to this, Figure 10b depicts the synchronized
cameras that are integral for capturing simultaneous video feeds, crucial for the accurate
analysis of object detection algorithms. Figure 10c presents the PreScan Virtual Simulator,
a key component that provides a simulated environment, aiding in the calibration and
testing of our delay measurement tool and sensor data analysis under controlled conditions.
The object detection results are displayed on the monitor in Figure 10d, where result from
multiple cameras reveal the outcomes of processing by data pipeline. Finally, Figure 10e
shows the delay visualization tool, a setup that graphically represents the processing
delays, providing a visual assessment and facilitating further optimization of the system’s
performance. This integrated environment not only supports the development of proposed
delay measurement tool but also ensures comprehensive testing across various scenarios.

Electronics 2025, 14, 81 22 of 34

Electronics 2025, 14, x FOR PEER REVIEW 21 of 33

Figure 9. Leveraging open-source software for the delay measurement tool.

Figure 10 illustrates the research and development environment utilized in this pa-
per. The environment is designed to test and evaluate the delay measurement tool’s capa-
bilities. Figure 10a showcases the target systems that form the core of our hardware setup,
vital for executing the sensor data analysis. Adjacent to this, Figure 10b depicts the syn-
chronized cameras that are integral for capturing simultaneous video feeds, crucial for the
accurate analysis of object detection algorithms. Figure 10c presents the PreScan Virtual
Simulator, a key component that provides a simulated environment, aiding in the calibra-
tion and testing of our delay measurement tool and sensor data analysis under controlled
conditions. The object detection results are displayed on the monitor in Figure 10d, where
result from multiple cameras reveal the outcomes of processing by data pipeline. Finally,
Figure 10e shows the delay visualization tool, a setup that graphically represents the pro-
cessing delays, providing a visual assessment and facilitating further optimization of the
system’s performance. This integrated environment not only supports the development
of proposed delay measurement tool but also ensures comprehensive testing across vari-
ous scenarios.

Figure 10. Prototype of the delay measurement environment with H/W and S/W.

4.2. Experiment Configuration and Evaluation Measure

In our experiments, we utilized two distinct types of video stream data to evaluate
the performance of the proposed tool. The first data type comprises multiple live, syn-
chronized video streams captured using synchronized cameras. This setup is designed to
closely mimic real-time applications where low latency and precise synchronization are
critical. The second dataset consists of the pre-recorded video streams stored in a target
system. While our primary focus is on assessing the tool’s performance with live stream-
ing data due to their relevance in real-time scenarios, we also conducted tests using stored
video streams. The experiment scenarios tested a range of streams, from one to six, for
each data type and frame size, allowing for a comprehensive evaluation of how the system
handles varying workloads. This systematic approach provides insights into the tool’s
ability to manage different data rates and stream counts, highlighting its robustness and
adaptability in diverse operating conditions. The structured comparison between live
video stream data and stored video file data also offers a valuable perspective on the tool’s
performance across different data sources, contributing to a thorough understanding of
its capabilities. This approach allows us to provide a comprehensive evaluation of the
tool’s versatility and effectiveness across different types of data. By doing so, we aim to

Figure 10. Prototype of the delay measurement environment with H/W and S/W.

4.2. Experiment Configuration and Evaluation Measure

In our experiments, we utilized two distinct types of video stream data to evaluate the
performance of the proposed tool. The first data type comprises multiple live, synchronized
video streams captured using synchronized cameras. This setup is designed to closely
mimic real-time applications where low latency and precise synchronization are critical.
The second dataset consists of the pre-recorded video streams stored in a target system.
While our primary focus is on assessing the tool’s performance with live streaming data
due to their relevance in real-time scenarios, we also conducted tests using stored video
streams. The experiment scenarios tested a range of streams, from one to six, for each data
type and frame size, allowing for a comprehensive evaluation of how the system handles
varying workloads. This systematic approach provides insights into the tool’s ability to
manage different data rates and stream counts, highlighting its robustness and adaptability
in diverse operating conditions. The structured comparison between live video stream
data and stored video file data also offers a valuable perspective on the tool’s performance
across different data sources, contributing to a thorough understanding of its capabilities.
This approach allows us to provide a comprehensive evaluation of the tool’s versatility
and effectiveness across different types of data. By doing so, we aim to offer insights
into how the tool performs under varying conditions, thereby highlighting its robustness
and adaptability.

We used the MOT17 dataset [38] and the MOT20-02 sequence [39] for testing, chosen
for their established use in object tracking and diverse urban scene complexity. Both
datasets provide high-resolution (1920 × 1080) images, suitable for evaluating system
performance under real-world conditions. Using FFmpeg [40], the images were converted
into 30 FPS videos, with sequences concatenated into continuous clips to ensure seamless
transitions and consistent quality. Only unique 1920× 1080 frames were included, avoiding
duplication. To simulate higher throughput, the videos were upsampled to 60 FPS via
frame interpolation, maintaining consistent durations (e.g., 30 s for both 30 and 60 FPS)
and normalized bitrates. This allowed for a fair comparison of system performance under
different frame rates, focusing on processing efficiency. The rationale for interpolating
30 FPS videos to 60 FPS was to align testing conditions for delay measurement between
video files and synchronized streams. Our synchronized cameras operate exclusively at
30 and 60 FPS, ensuring consistency between video data and real-time processing. While
this study utilized JPEG images and their derived video streams to ensure clean and
standardized inputs, the incorporation of advanced video compression techniques presents

Electronics 2025, 14, 81 23 of 34

an opportunity for future work. Methods such as those described by Wiseman Y. [41], which
prioritize machine vision requirements over human perception, could enable seamless
integration of real-time video streams while maintaining computational efficiency. Future
developments could address challenges such as compression latency and adaptation to
synchronized multi-sensor setups.

The Table 3 outlines the experiment’s data types, specifying parameters for video
stream and video file data, both maintaining a resolution of 1920 × 1080 pixels. Frame
rates of 30 and 60 FPS were tested, each processed for 250 s across one to six streams. The
frames from cameras were YUV422 [42] 16-bit image format with UYVY [43] ordering,
making a single frame size approximating 4.15 MB. Consequently, 30 FPS and 60 FPS
streams amounted to 124.5 MB and 249 MB, respectively. For video files, the 30 FPS
video was encoded at a consistent bitrate of 3986 kbps to ensure uniform data rates with a
60 FPS counterpart, isolating the effect of frame rate on performance. Additionally, 60 FPS
files were evaluated at two bitrates (3986 kbps and 4971 kbps) to study the impact of
data rates on system delay. Using the NVIDIA DeepStream SDK, a simple data pipeline
with the YOLOv3 model was implemented for object detection on 80 COCO classes. The
pipeline output was configured as a fakesink to focus on runtime monitoring and delay
measurement. While object detection was verified visually, the primary goal remained
runtime performance evaluation rather than accuracy testing.

Table 3. Data types used in the experiment.

Data Type Resolution Frames Bit Rate (kbps)
/Size (MB)

Duration
(Seconds)

Number of
Streams

Video stream data 1920 × 1080 30
60

124.5
249 250 From 1 to 6

Video file data 1920 × 1080
30
60
60

3982 (124.8)
3982 (124.8)
4971 (155.7)

250 From 1 to 6

To measure the overall delay in our system, we employed a straightforward yet
effective method, as represented by the formula shown below:

S =
n

∑
i=1

(Ti − Ti−1) (1)

where the S denotes the total accumulated delay. The delay for each interval is calculated
by subtracting the preceding timestamp (Ti−1) from the current timestamp (Ti). The
summation is then performed over all time intervals from i = 1 to n, where n represents the
total number of timestamps considered in the measurement. This approach allows us to
accurately quantify the cumulative delay over a sequence of events or data points, providing
a clear metric for assessing the temporal performance of the system. The simplicity of
this method ensures that it can be easily applied across various scenarios, making it a
versatile tool for delay measurement. However, to effectively present the results of our
delay measurement, we utilized Formula (2).

A =
S
n
=

∑ n
i=1(Ti − Ti−1)

n
(2)

where A represents the arithmetic mean of the accumulated delay per frame. Specifically,
the mean delay is calculated by dividing the total sum of delays, denoted as S from
Formula (1). By computing the arithmetic mean, we are able to concisely summarize

Electronics 2025, 14, 81 24 of 34

the average delay encountered during the sensor data analysis process. This metric is
particularly useful, as it provides a clear measure of the overall delay performance, making
it easier to assess the system’s efficiency in handling time-sensitive data. The use of the
arithmetic mean allows us to convey the typical delay experienced per frame, offering
valuable insight into the temporal characteristics of the system. The experimental setup
emulated the challenges of autonomous vehicle (AV) navigation in urban environments,
such as high traffic density, dynamic obstacles, and frequent interactions with road users.
Frame rates of 30 FPS and 60 FPS were chosen to reflect industry standards: 30 FPS for
general perception tasks in moderate traffic and 60 FPS for high-speed object detection and
decision-making in dynamic scenarios. Synchronized cameras ensured temporal coherence,
aligning data streams from sensors like cameras, LiDAR, and radar for accurate sensor
fusion and trajectory planning. Misaligned or delayed streams can lead to errors in object
detection and obstacle avoidance, especially in unpredictable scenarios like pedestrian
crossings or sudden lane changes. This study evaluated the delay measurement tool’s
ability to analyze latency and temporal alignment in synchronized video pipelines for real-
time AV applications. While focused on video streams, the methodology is adaptable to
other sensor modalities, like LiDAR and radar, which face challenges such as asynchronous
data acquisition. Future work will extend the tool’s capabilities to evaluate multi-sensor
AV systems comprehensively.

4.3. Experimental Results

In this section, we present the results of our delay measurement tool designed to
assess the latency during sensor data analysis, specifically focused on synchronized video
and camera streams. The tool was developed to measure the delay introduced during
the processing of multiple video streams under varying frame rates and bitrates, offering
insights into how different factors impact system latency. In the first experiment, we
evaluated the performance of the DCU by analyzing delays when processing video files of
varying frame rates and bitrates (i.e., DCU load test). In the second phase, we extended the
experiments to include synchronized video streams at frame rates of 30 FPS and 60 FPS,
allowing us to compare the delay measurements between video streams and pre-recorded
video files. The number of streams was progressively increased from one to six, providing a
comprehensive view of how the system scales with additional computational load. Delays
were calculated as the arithmetic mean per frame using Formula (2), as referenced earlier
in the paper, providing a clear metric for understanding how the DCU handles increasing
workloads under different frame rate and bitrate conditions.

The experimental results are detailed across three tables: Figure 11 and Table 4 focus on
the delay measurements exclusively for video file data with respect to DCU load test, while
Tables 5 and 6 compare the latency of both video stream and video file data at different
frame rates. These tables illustrate the average delay per frame across various experimental
setups, highlighting key trends and factors that influence system performance. This analysis
is essential for evaluating the effectiveness of the delay measurement tool in real-time
applications, where minimizing latency is critical to maintaining high responsiveness and
system efficiency.

Electronics 2025, 14, 81 25 of 34

Electronics 2025, 14, x FOR PEER REVIEW 24 of 33

while Tables 5 and 6 compare the latency of both video stream and video file data at dif-
ferent frame rates. These tables illustrate the average delay per frame across various ex-
perimental setups, highlighting key trends and factors that influence system performance.
This analysis is essential for evaluating the effectiveness of the delay measurement tool in
real-time applications, where minimizing latency is critical to maintaining high respon-
siveness and system efficiency.

Figure 11. DCU load test by increasing the number of video files.

Table 4. Average delay (ms) per frame analysis for video file data.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Video file data

30 FPS (3982 kbps)
43 73 102 140 171 192 226 257 290 322 353 381 411 434 0

Video file data
60 FPS (3982 kbps)

42 74 103 143 174 194 230 258 293 325 356 384 414 0 0

Video file data
60 FPS (4971 kbps)

43 76 104 144 176 195 229 260 297 328 360 388 421 0 0

Video file data
60 FPS (7955 kbps)

45 80 107 147 179 199 232 262 299 331 364 399 427 0 0

Table 4 shows the average delay per frame analysis across multiple video file data
conditions. The table distinctly categorizes video file data into two types based on frame
rates of 30 FPS and 60 FPS but with varying bitrates: 3982 kbps, 4971 kbps, and a higher
bitrate of 7955 kbps. This differentiation allows for a detailed assessment of how each var-
iable, frame rate and bitrate, affects the latency performance of the DCU in processing
video file data. In Table 4, DCU load tests show that it can process 14 and 13 video files
simultaneously at 30 FPS and 60 FPS, respectively. For example, the video file data in the
experiment may have had the same bit rate but a different frame rate. The data illustrated
in Table 4 show a consistent pattern of increased delay with the augmentation of both the
frame rate and the bitrate. For instance, video file data at 30 FPS and 3982 kbps start at an
average delay of 43 ms for one video and escalate to 322 ms for ten videos. Similarly, at 60
FPS with the same bitrate, the delay commences at 42 ms, increasing to 325 ms, demon-
strating how higher frame rates intensify the processing delay even under constant bitrate
conditions. Notably, the impact of an increased bitrate at 60 FPS manifests in higher initial
and final delays, starting at 43 ms and peaking at 331 ms for 7955 kbps, underscoring the
additional processing overhead introduced by higher bitrates. The total average delays
for each setting are calculated to provide a comparative insight, with the 30 FPS configu-
ration at 3982 kbps exhibiting the least average delay, emphasizing the trade-offs involved

45
80 107

147 179 199 232 262
299 331 364

399 427

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
A

ve
ra

ge
 D

el
ay

 p
er

 F
ra

m
e

(m
s)

Number of Video Files

30 FPS (3982 Kbps) 60 FPS (3982 Kbps) 60 FPS (4971 Kbps) 60 FPS (7955 Kbps)

Figure 11. DCU load test by increasing the number of video files.

Table 4. Average delay (ms) per frame analysis for video file data.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Video file data
30 FPS (3982 kbps) 43 73 102 140 171 192 226 257 290 322 353 381 411 434 0

Video file data
60 FPS (3982 kbps) 42 74 103 143 174 194 230 258 293 325 356 384 414 0 0

Video file data
60 FPS (4971 kbps) 43 76 104 144 176 195 229 260 297 328 360 388 421 0 0

Video file data
60 FPS (7955 kbps) 45 80 107 147 179 199 232 262 299 331 364 399 427 0 0

Table 4 shows the average delay per frame analysis across multiple video file data
conditions. The table distinctly categorizes video file data into two types based on frame
rates of 30 FPS and 60 FPS but with varying bitrates: 3982 kbps, 4971 kbps, and a higher
bitrate of 7955 kbps. This differentiation allows for a detailed assessment of how each
variable, frame rate and bitrate, affects the latency performance of the DCU in processing
video file data. In Table 4, DCU load tests show that it can process 14 and 13 video files
simultaneously at 30 FPS and 60 FPS, respectively. For example, the video file data in the
experiment may have had the same bit rate but a different frame rate. The data illustrated
in Table 4 show a consistent pattern of increased delay with the augmentation of both
the frame rate and the bitrate. For instance, video file data at 30 FPS and 3982 kbps
start at an average delay of 43 ms for one video and escalate to 322 ms for ten videos.
Similarly, at 60 FPS with the same bitrate, the delay commences at 42 ms, increasing to
325 ms, demonstrating how higher frame rates intensify the processing delay even under
constant bitrate conditions. Notably, the impact of an increased bitrate at 60 FPS manifests
in higher initial and final delays, starting at 43 ms and peaking at 331 ms for 7955 kbps,
underscoring the additional processing overhead introduced by higher bitrates. The total
average delays for each setting are calculated to provide a comparative insight, with the
30 FPS configuration at 3982 kbps exhibiting the least average delay, emphasizing the trade-
offs involved when escalating frame rates and bitrates. This systematic analysis reveals
that while increasing frame rates and bitrates can potentially improve video quality and
detail, they correspondingly impose greater burdens on system latency, thus necessitating
a balanced approach in real-time applications where low latency is crucial.

Electronics 2025, 14, 81 26 of 34

Table 5. Average delay per frame for the 30 FPS case.

of Videos 1 2 3 4 5 6 Total Avg.

Video file data
(30 FPS–3982 kbps) 43 ms 73 ms 102 ms 140 ms 171 ms 192 ms 120.17 ms

Video stream data
(30 FPS) 41 ms 76 ms 107 ms 145 ms 174 ms 196 ms 123.16 ms

Table 5 presents a comparative analysis of average delay per frame for both video
file data and video stream data at 30 frames per second. The data are arranged to display
the incremental increase in delay as the number of video streams ranges from one to six.
For both types of data—video file and video stream—the table shows that as the number
of streams increases, there is a corresponding increase in delay, which is expected due to
higher data-processing demands. Specifically, the video file data start with a delay of 43 ms
for a single video and progress up to 192 ms for six videos, culminating in a total average
delay of 120.17 ms. Similarly, video stream data begin at 41 ms and increase to 196 ms, with
a total average of 123.83 ms. This slight difference in delay between file and stream data
may be attributed to the real-time processing demands placed on the system by streaming
data, which typically require more immediate decoding and rendering compared to file-
based processing. The consistency in incremental delay across both datasets reaffirms
the impact of increasing workload on system performance, emphasizing the need for
efficient data-handling mechanisms in high-throughput video-processing environments.
The total average delays give a quantitative baseline for evaluating the DCU’s performance
under varying operational stresses, providing insights critical for system optimization in
real-time applications.

Table 6. Average delay per frame for the 60 fps case.

of Videos 1 2 3 4 5 6 Total Avg.

Video file data
(60 FPS–3982 kbps) 42 ms 74 ms 103 ms 143 ms 174 ms 194 ms 121.67 ms

Video file data
(60 FPS–4971 kbps) 43 ms 76 ms 104 ms 144 ms 176 ms 195 ms 123 ms

Video file data
(60 FPS–7955 kbps) 45 ms 80 ms 107 ms 147 ms 179 ms 199 ms 126.12 ms

Video stream data
(60 FPS) 52 ms 82 ms 110 ms 149 ms 191 ms 206 ms 131.67 ms

Table 6 delivers an insightful exploration of average delays per frame for both video
file data and video stream data at a 60 FPS rate, highlighting the impact of different bit
rates on the system’s latency. Presented across three distinct conditions for video file data
with bit rates of 3982 kbps, 4971 kbps, and 7955 kbps, and a single consistent bitrate for
video stream data, the table elucidates how increased frame rates and bit rates escalate
processing demands within the DCU. With the number of video streams extending from
one to six, an ascending trend in delays is observed across all settings. This rise in delay
accentuates how the DCU copes with augmented processing loads, with the maximum
delay observed at the highest bitrate of 7955 kbps for video file data, reaching up to 199 ms
for six streams, illustrating a pronounced influence of bitrate on delay. In contrast, video
stream data demonstrate a steady increase in delay, peaking at 206 ms for six streams, albeit
less pronounced than the highest bitrate video file data condition. The total average delay

Electronics 2025, 14, 81 27 of 34

serves as a crucial metric, delineating the DCU’s operational efficiency under varying data
conditions. The 7955 kbps video file data condition records the highest total average delay
at 126.12 ms, clearly indicating that higher bitrates significantly elevate latency. Conversely,
video stream data, processed under a uniform bitrate, show a marginally higher total
average delay of 131.67 ms, reflecting its consistent operational strain under continual data
streaming. This analysis is vital for fine-tuning the DCU’s performance in scenarios where
low latency is paramount.

Figure 12 presents a comprehensive visualization of the average delay per frame, as
influenced by variations in frame rate, bitrate, and the number of video streams. This bar
chart clearly delineates the effects of different configurations across six incremental video
stream counts, ranging from one to six streams. The colors differentiate the conditions: blue
and green for video streaming data at 30 and 60 FPS, respectively, and shades of orange
to yellow representing video file data across three different bitrates at 60 FPS. The graph
elucidates a trend where delays generally escalate with the increase in the number of video
streams, highlighting the system’s increasing load. Notably, the transition from video file
data at lower bitrates to higher reveals a progressive increase in delay, underscoring the
impact of bitrate on processing times. This visual comparison aids in understanding how
each variable frame rate, bitrate, and number of streams affects the performance of the delay
measurement tool, providing critical insights for optimizing real-time video-processing
applications where minimizing delay is crucial.

Electronics 2025, 14, x FOR PEER REVIEW 26 of 33

video stream data demonstrate a steady increase in delay, peaking at 206 ms for six
streams, albeit less pronounced than the highest bitrate video file data condition. The total
average delay serves as a crucial metric, delineating the DCU’s operational efficiency un-
der varying data conditions. The 7955 kbps video file data condition records the highest
total average delay at 126.12 ms, clearly indicating that higher bitrates significantly elevate
latency. Conversely, video stream data, processed under a uniform bitrate, show a mar-
ginally higher total average delay of 131.67 ms, reflecting its consistent operational strain
under continual data streaming. This analysis is vital for fine-tuning the DCU’s perfor-
mance in scenarios where low latency is paramount.

Figure 12 presents a comprehensive visualization of the average delay per frame, as
influenced by variations in frame rate, bitrate, and the number of video streams. This bar
chart clearly delineates the effects of different configurations across six incremental video
stream counts, ranging from one to six streams. The colors differentiate the conditions:
blue and green for video streaming data at 30 and 60 FPS, respectively, and shades of
orange to yellow representing video file data across three different bitrates at 60 FPS. The
graph elucidates a trend where delays generally escalate with the increase in the number
of video streams, highlighting the system’s increasing load. Notably, the transition from
video file data at lower bitrates to higher reveals a progressive increase in delay, under-
scoring the impact of bitrate on processing times. This visual comparison aids in under-
standing how each variable frame rate, bitrate, and number of streams affects the perfor-
mance of the delay measurement tool, providing critical insights for optimizing real-time
video-processing applications where minimizing delay is crucial.

Figure 12. Comparing the results of delay measurement times.

4.4. Visualization of Delay Measurement Use Cases

The delay visualization module is an important component of our delay measure-
ment tool, which designed to provide an intuitive and real-time representation of the sys-
tem’s delay performance. The purpose of this module is to offer users a clear and accessi-
ble way to understand the timing and latency characteristics of their system, enabling
them to identify performance bottlenecks and optimize configurations effectively. In this
paper, we presented two visualization versions: inner data pipeline task latency visuali-
zation and full data pipeline analysis visualization. The first visualization version shows
the latency of separate tasks performed by the data pipeline during a single iteration (in
this case, the batch is set at a single stream frame). For this specific version of visualization,
we built an Nvidia data pipeline consisting of five Gstreamer plugins [44]. Those five
plugins were measured and named “frame collection”, which aggregates frames into a
batch using Gst-nvstreammux; “neural network application”, which processes the batch

52
82

110

149

191 206

0

50

100

150

200

250

1 2 3 4 5 6

A
ve

ra
ge

 D
el

ay
 p

er
 F

ra
m

e
(m

s)

Number of Video Streams

Video Streaming Data (30 fps)

Video File Data(30 fps)

Video Streaming Data (60 fps)

Video File Data (60 fps − 3982
kbps)

Video File Data (60 fps − 4971
kbps)

Video File Data (60 fps − 7955
kbps)

Figure 12. Comparing the results of delay measurement times.

4.4. Visualization of Delay Measurement Use Cases

The delay visualization module is an important component of our delay measurement
tool, which designed to provide an intuitive and real-time representation of the system’s
delay performance. The purpose of this module is to offer users a clear and accessible
way to understand the timing and latency characteristics of their system, enabling them
to identify performance bottlenecks and optimize configurations effectively. In this paper,
we presented two visualization versions: inner data pipeline task latency visualization
and full data pipeline analysis visualization. The first visualization version shows the
latency of separate tasks performed by the data pipeline during a single iteration (in this
case, the batch is set at a single stream frame). For this specific version of visualization,
we built an Nvidia data pipeline consisting of five Gstreamer plugins [44]. Those five
plugins were measured and named “frame collection”, which aggregates frames into a
batch using Gst-nvstreammux; “neural network application”, which processes the batch
through a neural model with Gst-nvinfer; “collage of frames”, which creates a collage image
from processed frames using Gst-nvmultistreamtiler; “post-inference processing”, which

Electronics 2025, 14, 81 28 of 34

handles post-inference tasks like color conversion using Gst-nvvideoconvert; and “tracking
objects”, which performs visual tracking by drawing bounding boxes using Gst-nvdsosd.
All of these data pipeline functions were traced and visualized. The second version of
visualization shows the execution time for the whole iteration of the data pipeline. Instead
of showing the execution time of separate processes within the pipeline, the GUI visualizes
the execution runtime for a single batch of frames to be processed. The visualization
module is implemented by using Websockets and JavaScript, and it displays delay results
dynamically, allowing for immediate feedback across multiple hardware platforms. This
flexibility ensures that the tool can be used in various environments, making it an essential
feature for real-time performance monitoring and analysis.

Figure 13 presents the results of the delay measurement visualized through the graph-
ical user interface of the delay visualization module. The interface is structured as a
horizontal bar chart, where the vertical axis lists the hardware units being monitored,
and the horizontal axis represents time, with each unit marking one millisecond. The
time axis is formatted as “HH:MM:ss.mmm”, indicating hours, minutes, seconds, and
milliseconds. The chart displays five types of colored horizontal bars, each representing a
distinct component of the monitoring process within the DeepStream pipeline with respect
to the legend at the top of the graph, which identifies these components: red for “frame
collection”, blue for “inference”, yellow for “collage frames”, green for “post processing”,
and purple for “tracking objects.” These bars provide a visual representation of the delay
associated with each process. The width of each bar corresponds to the duration of the
process it represents, with wider bars indicating longer delays and narrower bars indicating
shorter processing times. Each bar is defined by two key parameters: the entry point (start
time) and the exit point (end time), both marked by precise timestamps. For instance, a bar
with a starting timestamp of 02:14:03.505 and an ending timestamp of 02:14:03.511 would
span six milliseconds on the time axis, representing the delay incurred during that process.
This visualization allows users to quickly assess the performance of different components
within the pipeline and identify potential bottlenecks based on the length of the delays. In
summary, Figure 12 provides a detailed, time-based visualization of delay measurements
across multiple hardware units, making it a valuable tool for analyzing and optimizing the
performance of real-time data-processing systems.

Electronics 2025, 14, x FOR PEER REVIEW 27 of 33

through a neural model with Gst-nvinfer; “collage of frames”, which creates a collage im-
age from processed frames using Gst-nvmultistreamtiler; “post-inference processing”,
which handles post-inference tasks like color conversion using Gst-nvvideoconvert; and
“tracking objects”, which performs visual tracking by drawing bounding boxes using Gst-
nvdsosd. All of these data pipeline functions were traced and visualized. The second ver-
sion of visualization shows the execution time for the whole iteration of the data pipeline.
Instead of showing the execution time of separate processes within the pipeline, the GUI
visualizes the execution runtime for a single batch of frames to be processed. The visuali-
zation module is implemented by using Websockets and JavaScript, and it displays delay
results dynamically, allowing for immediate feedback across multiple hardware plat-
forms. This flexibility ensures that the tool can be used in various environments, making
it an essential feature for real-time performance monitoring and analysis.

Figure 13 presents the results of the delay measurement visualized through the
graphical user interface of the delay visualization module. The interface is structured as a
horizontal bar chart, where the vertical axis lists the hardware units being monitored, and
the horizontal axis represents time, with each unit marking one millisecond. The time axis
is formatted as “HH:MM:ss.mmm”, indicating hours, minutes, seconds, and milliseconds.
The chart displays five types of colored horizontal bars, each representing a distinct com-
ponent of the monitoring process within the DeepStream pipeline with respect to the leg-
end at the top of the graph, which identifies these components: red for “frame collection”,
blue for “inference”, yellow for “collage frames”, green for “post processing”, and purple
for “tracking objects.” These bars provide a visual representation of the delay associated
with each process. The width of each bar corresponds to the duration of the process it
represents, with wider bars indicating longer delays and narrower bars indicating shorter
processing times. Each bar is defined by two key parameters: the entry point (start time)
and the exit point (end time), both marked by precise timestamps. For instance, a bar with
a starting timestamp of 02:14:03.505 and an ending timestamp of 02:14:03.511 would span
six milliseconds on the time axis, representing the delay incurred during that process. This
visualization allows users to quickly assess the performance of different components
within the pipeline and identify potential bottlenecks based on the length of the delays. In
summary, Figure 12 provides a detailed, time-based visualization of delay measurements
across multiple hardware units, making it a valuable tool for analyzing and optimizing
the performance of real-time data-processing systems.

Figure 13. Task delay visualization GUI. Figure 13. Task delay visualization GUI.

The visualization chart depicted in Figure 14 shows another version of the visualization
GUI of our proposed tool. The figure shows the delay of the entire processing of a single

Electronics 2025, 14, 81 29 of 34

frame, where a single bar is single pipeline process iteration. The GUI is designed to display
data-processing delays handled by designated units DCU-1 and DCU-2. Each of these
processes is visually represented by a horizontal bar on the chart, where the length of
the bar is directly proportional to the duration of the pipeline executing a single frame,
effectively plotted against a time scale on the x-axis. Embedded within this visualization
are several dynamic features designed to enhance user interaction and data analysis efficacy.
A prominent feature is the adjustable limit indicator, a stark red vertical line within each
bar, denoting a predefined threshold limit of 50 ms. This threshold is not static; users can
dynamically modify it using an input box and a “Set Limit” button strategically placed
adjacent to the chart. This interactivity allows users to adapt the threshold based on
evolving real-time requirements or operational benchmarks, thereby tailoring the analysis
to current system performance. Moreover, the bars on the chart change color based on
whether the duration of the task stays within or exceeds the adjusted limit. Bars that adhere
to the set limit retain their original coloration, while those surpassing the limit transition
to a deeper shade of red, providing a vivid visual cue of performance lag. This feature
is crucial for immediately identifying tasks that compromise system efficiency and may
require further investigation or optimization. Integrating these responsive data interaction
capabilities allows the visualization tool not only to present comprehensive data but also to
enable dynamic analysis. This adaptability makes it an invaluable asset for performance
management in environments where efficient real-time data processing is crucial, such as
in network operations centers or during complex data-intensive operations. The tool’s
ability to provide immediate visual feedback on system performance, coupled with its
interactive features, enhances operational oversight and supports proactive management
of computational resources.

Electronics 2025, 14, x FOR PEER REVIEW 28 of 33

The visualization chart depicted in Figure 14 shows another version of the visualiza-
tion GUI of our proposed tool. The figure shows the delay of the entire processing of a
single frame, where a single bar is single pipeline process iteration. The GUI is designed
to display data-processing delays handled by designated units DCU-1 and DCU-2. Each
of these processes is visually represented by a horizontal bar on the chart, where the length
of the bar is directly proportional to the duration of the pipeline executing a single frame,
effectively plotted against a time scale on the x-axis. Embedded within this visualization
are several dynamic features designed to enhance user interaction and data analysis effi-
cacy. A prominent feature is the adjustable limit indicator, a stark red vertical line within
each bar, denoting a predefined threshold limit of 50 ms. This threshold is not static; users
can dynamically modify it using an input box and a “Set Limit” button strategically placed
adjacent to the chart. This interactivity allows users to adapt the threshold based on evolv-
ing real-time requirements or operational benchmarks, thereby tailoring the analysis to
current system performance. Moreover, the bars on the chart change color based on
whether the duration of the task stays within or exceeds the adjusted limit. Bars that ad-
here to the set limit retain their original coloration, while those surpassing the limit tran-
sition to a deeper shade of red, providing a vivid visual cue of performance lag. This fea-
ture is crucial for immediately identifying tasks that compromise system efficiency and
may require further investigation or optimization. Integrating these responsive data in-
teraction capabilities allows the visualization tool not only to present comprehensive data
but also to enable dynamic analysis. This adaptability makes it an invaluable asset for
performance management in environments where efficient real-time data processing is
crucial, such as in network operations centers or during complex data-intensive opera-
tions. The tool’s ability to provide immediate visual feedback on system performance,
coupled with its interactive features, enhances operational oversight and supports proac-
tive management of computational resources.

Figure 14. Frame-processing delay visualization GUI.

5. Conclusions
In this paper, we proposed the delay measurement tool to measure and visualize

latency of AI analysis processes and identify bottlenecks in data pipelines. The design of
the proposed tool has three software modules, consisting of the software tracing module,
the delay calculation module, and the delay visualization module. The software tracing
module captures and records the execution of processes within the system in real time,

Figure 14. Frame-processing delay visualization GUI.

5. Conclusions
In this paper, we proposed the delay measurement tool to measure and visualize

latency of AI analysis processes and identify bottlenecks in data pipelines. The design of
the proposed tool has three software modules, consisting of the software tracing module,
the delay calculation module, and the delay visualization module. The software tracing
module captures and records the execution of processes within the system in real time,
which provides essential data for subsequent delay calculations by logging precise times-
tamps and process sequences. The delay calculation module filters and organizes the

Electronics 2025, 14, 81 30 of 34

trace data into meaningful metrics, such as timestamps and delays, which are essential
for identifying bottlenecks with respect to processing or components in data analysis
applications. The delay visualization module plays an important role in the proposed
tool, translating complex delay data into intuitive graphical representations that allow
users to easily interpret and respond to latency issues. The proposed delay measurement
tool addresses critical challenges in autonomous systems and distributed applications,
particularly in autonomous vehicle (AV) navigation within urban settings. Synchronized
video streams are essential for detecting and tracking moving objects, such as vehicles
and pedestrians, in real time. Delays in these streams can cause temporal misalignments,
leading to inaccuracies in object recognition or trajectory prediction. By measuring delays
at critical pipeline stages, the tool helps identify bottlenecks, align data streams, and reduce
latency, enhancing the AV’s ability to make accurate, split-second decisions in dynamic
environments. Beyond navigation, the tool is valuable for managing sensor failures or
interruptions in distributed systems. For instance, in AVs equipped with multiple data
concentrator units (DCUs), synchronization delays or failures can disrupt the system, espe-
cially during high-speed maneuvers. The tool can detect such issues in real time and trigger
fault-tolerant strategies, such as activating backup sensors or redistributing tasks, ensuring
operational continuity. Its adaptability extends to robotics, where real-time performance
is critical for tasks like object manipulation, and to smart infrastructure systems, such as
distributed sensor networks in smart cities. By ensuring synchronized data streams, it can
improve traffic flow, pedestrian safety, and urban responsiveness. While this study focuses
on synchronized video streams, the modular design allows for future integration with other
sensor modalities, like LiDAR and radar, enabling broader applications in AV systems,
robotics, and smart cities. The results obtained from the proposed delay measurement tool
provide valuable insights into latency and bottlenecks within AI-powered data pipelines,
offering practical applications for improving autonomous vehicle systems. First, the tool
allows for pinpointing delays or bottlenecks at specific pipeline components, which can
then be further analyzed and addressed to enhance system performance. By identifying
critical sections where delays occur, the tool facilitates targeted improvements to reduce la-
tency and optimize responsiveness. Additionally, the tool provides a baseline performance
analysis, serving as a reference for testing and validating future optimization strategies or
system upgrades. These delay insights also offer guidance for resource tuning, enabling
the redistribution of computational workloads across available hardware to balance system
efficiency. Furthermore, the tool supports continuous performance monitoring over time,
allowing developers to identify patterns or trends in system behavior that may affect long-
term performance. A notable outcome is the potential for automatic parameter adjustments
based on identified bottlenecks, such as dynamically prioritizing specific sensor data or
tuning system configurations to ensure timely processing and responsiveness. Lastly, the
tool lays the foundation for future automation strategies, such as integrating AI-driven
resource scheduling or dynamic optimizations to further streamline system performance.
Collectively, these capabilities demonstrate the versatility of the delay measurement tool in
addressing critical performance challenges, supporting ongoing system refinement, and
enhancing the responsiveness and reliability of autonomous vehicle operations.

Our experiment results showed that the tool is effective in handling a variety of
data types and scenarios, providing clear insights into the impact of different operational
parameters on system delays. We were able to verify the delay in the object recognition
experiment scenario by increasing the number of cameras and the number of video files as
follows. The results showed that the total average delay per video (ADV) for video file data
at 60 FPS with a bit rate of 7955 kbps is considerably higher by 4.45 ms when compared
to the same frame rate at 4971 kbps, and 5.45 ms higher compared to 3982 kbps. Video

Electronics 2025, 14, 81 31 of 34

stream data at 60 FPS consistently exhibit a lower total average delay, reaching 131.67 ms,
compared to the 121.67 ms seen with video file data at the same bitrate of 3982 kbps.
Overall, it is clear that the ADV of all types of scenarios increases as the number of inputs
increases. These results highlight the pronounced effect of higher bitrates on processing
delays and effect of the input number and type.

The proposed delay measurement tool, while currently focused on synchronized video
data streams, is inherently modular and adaptable to other sensor modalities commonly
used in autonomous systems, such as LiDAR and radar. These sensors introduce unique
challenges due to their asynchronous data acquisition and distinct data formats. For in-
stance, LiDAR generates high-frequency, three-dimensional spatial data, often requiring
precise synchronization with other sensors, while radar typically operates with varying
sampling rates and outputs data streams with lower spatial resolution but higher reliability
under adverse conditions. The tool’s reliance on synchronized timestamps provides a
strong foundation for handling such modalities. Through extensions to its preprocessing
modules, the tool can incorporate dynamic time alignment techniques, such as times-
tamp interpolation and real-time clock drift correction, to synchronize asynchronous data
streams. Additionally, the visualization module can be customized to accommodate the
unique characteristics of LiDAR and radar data, providing insights into delay patterns and
bottlenecks specific to these sensors. Future work will focus on integrating these modalities
into the tool’s framework and conducting tests with both synthetic and real-world datasets.
This will enable comprehensive evaluations of the tool’s performance in heterogeneous,
multi-sensor environments, further validating its applicability to autonomous systems and
distributed infrastructures.

While the proposed delay measurement tool demonstrates significant potential for
synchronized multi-node environments, several limitations highlight areas for future
improvement. First, the current study focuses on a dual-node configuration, serving as
a proof of concept. Although this approach effectively demonstrates high availability
and synchronization, it does not address the challenges of scalability in larger systems.
Extending the tool to accommodate more nodes may introduce synchronization overhead,
increased computational demands, and potential network bottlenecks, all of which require
further optimization. Additionally, the study predominantly evaluates video data streams,
limiting its applicability to other sensor modalities commonly used in autonomous systems,
such as LiDAR, radar, and audio. These data types present unique characteristics, including
higher data rates and asynchronous sampling, that could complicate synchronization
and delay measurement. Moreover, the reliance on synchronized cameras operating at
fixed frame rates (30 FPS and 60 FPS) constrains the tool’s applicability to systems with
variable or asynchronous frame rates, which are often encountered in real-world scenarios.
Another limitation is the potential overhead introduced by real-time monitoring, which,
while minimized in the current design, may still pose challenges in resource-constrained
environments, affecting overall system performance.

Future work will focus on addressing these limitations to enhance the tool’s scalability,
versatility, and efficiency. To support larger multi-node systems, advanced synchronization
protocols such as hierarchical PTP or clock drift compensation mechanisms will be explored.
Expanding the tool’s scope to integrate additional sensor modalities will enable comprehen-
sive evaluations of multi-sensor autonomous systems. Moreover, incorporating support for
asynchronous data streams and dynamic frame rates will enhance its adaptability to diverse
real-world conditions. Efforts will also be directed towards optimizing the tool’s resource
utilization by leveraging lightweight tracing mechanisms or hardware-assisted profiling to
reduce computational overhead. Finally, enhancing the visualization module with features
such as real-time bottleneck detection, predictive analytics, and adaptive parameter tuning

Electronics 2025, 14, 81 32 of 34

will improve usability and provide actionable insights for system optimization. These
advancements aim to ensure the tool’s applicability to a broader range of scenarios while
maintaining its accuracy and efficiency in delay measurement.

Author Contributions: Writing—original draft, A.Y.; writing—review and editing, S.P.; supervision,
J.K. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National IT Industry Promotion Agency (NIPA) by the
Korean government (MSIT) (S1503-24-1002) and the Institute of Information & Communications
Technology Planning & Evaluation (IITP) grant funded by the Korean government (MSIT) (Artificial
Intelligence Graduate School Program (GIST)) (No. 2019-0-01842).

Data Availability Statement: The data used to support the findings of this study are included within
the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Fleetwood, J. Public health, ethics, and autonomous vehicles. Am. J. Public Health 2017, 107, 532–537. [CrossRef] [PubMed]
2. Pandharipande, A.; Cheng, C.; Dauwels, J.; Gurbuz, S.Z.; Ibanez-Guzman, J.; Li, G.; Piazzoni, A.; Wang, P.; Santra, A. Sensing and

machine learning for automotive perception: A review. IEEE Sens. J. 2023, 23, 11097–11115. [CrossRef]
3. Liu, L.; Liu, S.; Zhong, R.; Wu, B.; Yao, Y.; Zhang, Q.; Shi, W. Computing systems for autonomous driving: State of the art and

challenges. IEEE Internet Things J. 2021, 8, 6469–6486. [CrossRef]
4. Yeong, D.J.; Velasco-Hernandez, G.; Barry, J.; Walsh, J. Sensor and sensor fusion technology in autonomous vehicles: A review.

Sensors 2021, 21, 2140. [CrossRef]
5. Anvarjon, Y.; Park, S.; Kim, J. Design and implementation of data concentrator unit supported with multiple synchronized

cameras for object-detection. In Proceedings of the 2023 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia),
Busan, Republic of Korea, 1–2 June 2023; pp. 1–2. [CrossRef]

6. Campbell, S.; O’Mahony, N.; Krpalkova, L.; Riordan, D.; Walsh, J.; Murphy, A.; Ryan, C. Sensor technology in autonomous
vehicles: A review. In Proceedings of the 2018 29th Irish Signals and Systems Conference (ISSC), Belfast, UK, 21–22 June 2018; pp.
1–4. [CrossRef]

7. Giacalone, J.-P.; Bourgeois, L.; Ancora, A. Challenges in aggregation of heterogeneous sensors for autonomous driving systems.
In Proceedings of the 2019 IEEE Sensors Applications Symposium (SAS), Sophia Antipolis, France, 11–13 March 2019; pp. 1–5.
[CrossRef]

8. Gu, J.; Lind, A.; Chhetri, T.R.; Bellone, M.; Sell, R. End-to-end multimodal sensor dataset collection framework for autonomous
vehicles. Sensors 2023, 23, 6783. [CrossRef] [PubMed]

9. Weidendorfer, J. Sequential performance analysis with Callgrind and KCachegrind. Tools High Perform. Comput. 2008, 4939,
93–113. [CrossRef]

10. Cantrill, B.M.; Shapiro, M.; Leventhal, A.H. Dynamic instrumentation of production systems. In Proceedings of the 2004 USENIX
Annual Technical Conference, Boston, MA, USA, 27 June–2 July 2004.

11. Jia, J.; Lin, X.; Lin, F.; Liu, Y. DCU-CHK: Checkpointing for large-scale CPU-DCU heterogeneous computing systems. CCF Trans.
High Perform. Comput. 2024, 6, 519–532. [CrossRef]

12. Li, Z.; Hasegawa, A.; Azumi, T. Autoware_Perf: A tracing and performance analysis framework for ROS 2 applications. J. Syst.
Archit. 2021, 123, 102341. [CrossRef]

13. Havelund, K.; Roşu, G. An Overview of the Runtime Verification Tool Java PathExplorer. Form. Methods Syst. Des. 2004, 24,
189–215. [CrossRef]

14. Chen, F.; Rosu, G. Java-MOP: A monitoring-oriented programming environment for Java. In Lecture Notes in Computer Science;
Springer: Berlin/Heidelberg, Germany, 2005; Volume 3440, pp. 546–550. [CrossRef]

15. Paxson, V. Bro: A system for detecting network intruders in real time. In Proceedings of the 7th USENIX Security Symposium,
San Antonio, TX, USA, 26–29 January 1999.

16. Pellizzoni, R.; Meredith, P.; Caccamo, M.; Rosu, G. Hardware runtime monitoring for dependable COTS-based real-time
embedded systems. In Proceedings of the Real-Time System Symposium (RTSS’08), Barcelona, Spain, 30 November–3 December
2008; pp. 481–491. [CrossRef]

17. Bédard, C.; Lütkebohle, I.; Dagenais, M. ros2_tracing: Multipurpose low-overhead framework for real-time tracing of ROS 2.
arXiv 2022, arXiv:2201.00393. [CrossRef]

https://doi.org/10.2105/AJPH.2016.303628
https://www.ncbi.nlm.nih.gov/pubmed/28207327
https://doi.org/10.1109/JSEN.2023.3262134
https://doi.org/10.1109/JIOT.2020.3043716
https://doi.org/10.3390/s21062140
https://doi.org/10.1109/ICCE-Asia59966.2023.10326437
https://doi.org/10.1109/ISSC.2018.8585340
https://doi.org/10.1109/SAS.2019.8706005
https://doi.org/10.3390/s23156783
https://www.ncbi.nlm.nih.gov/pubmed/37571566
https://doi.org/10.1007/978-3-540-68564-7_7
https://doi.org/10.1007/s42514-023-00178-4
https://doi.org/10.1016/j.sysarc.2021.102341
https://doi.org/10.1023/B:FORM.0000017721.39909.4b
https://doi.org/10.1007/978-3-540-31980-1_36
https://doi.org/10.1109/RTSS.2008.37
https://doi.org/10.1109/LRA.2022.3174346

Electronics 2025, 14, 81 33 of 34

18. Las-Casas, P.; Mace, J.; Guedes, D.; Fonseca, R. Weighted sampling of execution traces: Capturing more needles and less hay.
ACM SIGCOMM Comput. Commun. Rev. 2018, 48, 326–332. [CrossRef]

19. Desnoyers, M.; Dagenais, M. The LTTng tracer: A low impact performance and behavior monitor for GNU/Linux. In Proceedings
of the Ottawa Linux Symposium (OLS), Ottawa, ON, Canada, 19–22 July 2006.

20. Mertz, J.; Nunes, I. Tigris: A DSL and framework for monitoring software systems at runtime. arXiv 2021, arXiv:2103.15986.
[CrossRef]

21. Kong, S.; Lu, M.; Li, L.; Gao, L. “Runtime Monitoring of Software Execution Trace: Method and Tools. IEEE Access 2020, 8,
114020–114036. [CrossRef]

22. Mertz, J.; Nunes, I. Software runtime monitoring with adaptive sampling rate. J. Syst. Softw. 2023, 202, 111708. [CrossRef]
23. Yusupov, A.; Park, S.; Kim, J.W. Data concentrator unit supported with intelligent video analytical data pipeline for autonomous

vehicles. In Proceedings of the 9th International Conference on Advanced Engineering and ICT-Convergence, Jeju Island,
Republic of Korea, 13–15 July 2022; pp. 264–268.

24. Park, S.; Ku, D.H.; Yusupov, A.; Kim, J.W. Design of cloud-native edge-based software framework for AI-DCU employing
hybrid-V2X connectivity. In Proceedings of the 11th International Conference on Advanced Engineering and ICT-Convergence,
Jeju Island, Republic of Korea, 12–14 July 2023; pp. 1–4.

25. Park, S.; Ji, K.H.; Ku, D.H.; Yusupov, A.; Kim, J.W. Design of virtual road driving test environment with driving simulator and
DCU for bad weather SiLS data collection and verification. In Proceedings of the 10th International Conference on Advanced
Engineering and ICT-Convergence, Bangkok, Thailand, 7–10 February 2023; pp. 101–105.

26. Wang, W.; Guo, K.; Cao, W.; Zhu, H.; Nan, J.; Yu, L. Review of electrical and electronic architectures for autonomous vehicles:
Topologies, networking, and simulators. Automot. Innov. 2024, 7, 82–101. [CrossRef]

27. Wang, W.; Deng, H.; Sun, M.; Pan, Z. A cloud-connected autonomous driving system. In Proceedings of the 2020 IEEE 5th
International Conference on Cloud Computing and Big Data Analytics (ICCCBDA), Chengdu, China, 25–27 April 2020; pp.
96–102. [CrossRef]

28. Alparslan, O.; Arakawa, S.; Murata, M. Next generation intra-vehicle backbone network architectures. In Proceedings of the 2021
IEEE 22nd International Conference on High Performance Switching and Routing (HPSR), Paris, France, 7–9 June 2021; pp. 1–7.
[CrossRef]

29. Nair, A.G.; Seema, P.N.; Nair, M.G. Gateway DCU for backbone network communication architecture in a vehicle or in
LAN network. In Proceedings of the 2023 World Conference on Communication & Computing (WCONF), Raipur, India,
15–17 February 2023; pp. 1–10. [CrossRef]

30. Velasco-Hernandez, G.; Yeong, D.J.; Barry, J.; Walsh, J. Autonomous driving architectures, perception and data fusion: A review.
In Proceedings of the 2020 IEEE 16th International Conference on Intelligent Computer Communication and Processing (ICCP),
Cluj-Napoca, Romania, 3–5 September 2020; pp. 315–321. [CrossRef]

31. Hu, H.; Wu, J.; Xiong, Z. A soft time synchronization framework for multi-sensors in autonomous localization and navigation.
In Proceedings of the 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Auckland, New
Zealand, 9–12 July 2018; pp. 694–699. [CrossRef]

32. NVIDIA Corporation. DeepStream SDK 6.2. Available online: https://developer.nvidia.com/deepstream-sdk (accessed on
12 September 2024).

33. EfficiOS Inc. Babeltrace 2 (Version 2.0). Available online: https://babeltrace.org/ (accessed on 12 September 2024).
34. Websockets (Version 10.3). Available online: https://websockets.readthedocs.io/en/stable/ (accessed on 12 September 2024).
35. Precision Time Protocol (PTP) (Version 3.1). Available online: https://linuxptp.sourceforge.net/ (accessed on 12 September 2024).
36. High-Availability Concept. TechTarget. Available online: https://www.techtarget.com/searchdatacenter/definition/high-

availability (accessed on 12 September 2024).
37. phc2sys (Clock Synchronization). Linux PTP. Available online: https://linuxptp.nwtime.org/documentation/phc2sys/

(accessed on 12 September 2024).
38. Milan, A.; Leal-Taixé, L.; Reid, I.D.; Roth, S.; Schindler, K. Mot16: A benchmark for multi-object tracking. arXiv 2016,

arXiv:1603.00831.
39. Dendorfer, P.; Osep, A.; Milan, A.; Schindler, K.; Cremers, D.; Reid, I.; Roth, S.; Leal-Taixé, L. Motchallenge: A benchmark for

single-camera multiple target tracking. Int. J. Comput. Vis. 2021, 129, 845–881. [CrossRef]
40. Tomar, S. Converting video formats with FFmpeg. Linux J. 2006, 146, 10.
41. Wiseman, Y. Video compression prototype for autonomous vehicles. Smart Cities 2024, 7, 758–771. [CrossRef]
42. YUV Image Format. Videobolt. Available online: https://videobolt.net/motion-graphics-glossary/yuv-color-space (accessed on

12 September 2024).

https://doi.org/10.1145/3267809.3267841
https://doi.org/10.1016/j.jss.2021.110963
https://doi.org/10.1109/ACCESS.2020.3003087
https://doi.org/10.1016/j.jss.2023.111708
https://doi.org/10.1007/s42154-023-00266-9
https://doi.org/10.1109/ICCCBDA49378.2020.9095597
https://doi.org/10.1109/HPSR52026.2021.9481803
https://doi.org/10.1109/WCONF58270.2023.10235214
https://doi.org/10.1109/ICCP51029.2020.9266268
https://doi.org/10.1109/AIM.2018.8452384
https://developer.nvidia.com/deepstream-sdk
https://babeltrace.org/
https://websockets.readthedocs.io/en/stable/
https://linuxptp.sourceforge.net/
https://www.techtarget.com/searchdatacenter/definition/high-availability
https://www.techtarget.com/searchdatacenter/definition/high-availability
https://linuxptp.nwtime.org/documentation/phc2sys/
https://doi.org/10.1007/s11263-020-01393-0
https://doi.org/10.3390/smartcities7020031
https://videobolt.net/motion-graphics-glossary/yuv-color-space

Electronics 2025, 14, 81 34 of 34

43. UYVY Format. The Imaging Source. Available online: https://www.theimagingsource.com/en-us/documentation/
icimagingcontrolcpp/PixelformatUYVY.htm (accessed on 12 September 2024).

44. GStreamer. GStreamer: Open Source Multimedia Framework. Available online: https://gstreamer.freedesktop.org/ (accessed on
12 September 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.theimagingsource.com/en-us/documentation/icimagingcontrolcpp/PixelformatUYVY.htm
https://www.theimagingsource.com/en-us/documentation/icimagingcontrolcpp/PixelformatUYVY.htm
https://gstreamer.freedesktop.org/

	Introduction
	Related Works
	Delay Measurement
	Data Concentrator Unit

	Delay Measurement Tool
	Software Tracing Module
	Delay Calculation Module
	Delay Visualization Module
	Algorithms of Delay Measurement Tool
	Temporal Synchronization

	Experiment and Evaluation
	Experiment Environments
	Experiment Configuration and Evaluation Measure
	Experimental Results
	Visualization of Delay Measurement Use Cases

	Conclusions
	References

