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A B S T R A C T

This paper presents a novel approach for predicting various feedstock higher heating values 
(HHV) using a voting ensemble machine-learning model. The proposed model, referred to as 
VSGB, combines Support Vector Regression (SR), Gaussian Process Regression (GR), and Boosting 
(BO) using a weighted sum technique. The Invasive Weed Optimization (IWO) algorithm is 
employed to estimate hyperparameter values of the VSGB model. Moreover, comparative per-
formance analysis is conducted using several models, such as linear regression (LR), generalized 
additive model (GAM), bagging (BAG), decision tree (DT), and neural network (NN). The simu-
lation findings demonstrate that the VSGB has a high level of accuracy in predicting the HHV 
derived from biomass waste. This is evidenced by the lower Root Mean Square Error (RMSE) and 
Average Absolute Relative Difference (AARD%) values (0.813 and 2.827%, respectively) 
compared to other Machine Learning (ML) predictive models. Additionally, the present study 
establishes an empirical correlation between the higher heating value (HHV) and the input 
characteristics carbon (C), hydrogen (H), oxygen (O), nitrogen (N), and sulphur (S) through the 
utilization of the IWO algorithm.

1. Introduction

There has been a growing interest in exploring environmentally sustainable alternatives to traditional methods of energy gener-
ation, driven by concerns over the impending energy crisis and the detrimental impact of fossil fuel combustion on the environment 
(Vargas-Moreno et al., 2012; Adeniyi et al., 2019). The primary advantages of utilizing biomass as an energy source include its sus-
tainability, easy accessibility, and cost-effectiveness (Zhu et al., 2024; Fei et al., 2023; Chen et al., 2023; Guo et al., 2023; Guo et al., 
2023). Simultaneously, the issue of biomass disposal will be simplified (Demiral, 2009; Adeniyi and Ighalo, 2020). Biofuels obtained 
from biomass release CO₂ after combustion, but carbon in biochar remains sequestered due to stabilization via pyrolysis. Moreover, 
biochar substantially enhances soil health by augmenting water retention, nutrient accessibility, and microbial activity. It will help to 
diminish the dependence on chemical fertilizers and foster agricultural sustainability. Biochar also reduces methane and nitrous oxide 
emissions from soils, which are potent greenhouse gases. Biochar production is versatile, as feedstock is obtained from many agri-
cultural and forestry residues. This enhances waste management. Biochar formation reduces greenhouse gas emissions, especially 
when employing a closed-loop system, making it a more sustainable option than biofuel production. Recent reports from the 
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International Biochar Initiative (IBI) [biochar-international.org/fy24-impact-snapshot]. predict global biochar production of 
approximately 350,000 metric tons yearly, estimated at 0.5–1 million tons. It indicates substantial prospects for development in the 
forthcoming years. Further, a report published by the International Renewable Energy Agency (IRENA) states that biochar is utilized to 
produce briquettes as a substitute for wood coal. Mandulis Energy has commenced 8 MW (16 locations of 500 kW each) of off-grid 
electricity and manufacturing of briquettes [www.irena.org/media/Files/IRENA/Agency/Publication/2019/Jun/IR-
ENA_G20_climate_sustainability_2019.pdf]. It is crucial to know the heating value of the biomass under consideration before its uti-
lization in any thermochemical energy system. The higher heating value is commonly referred to as HHV. It is a metric utilized to assess 
the overall energy content of fuel (Ahmaruzzaman, 2008; Channiwala and Parikh, 2002). Furthermore, HHV is essential in optimizing 
biomass conversion processes across various conditions. Different tools based on mathematical frameworks, simulations, and opti-
mization are developed to analyze and advance intricate biomass conversion technology (Puig-Arnavat et al., 2010). It is imperative to 
ensure the availability of methods that facilitate the assessment of biomass potential energy and determining decentralization product 
formulations for apprehensive fuels without empirical data (Wen et al., 2017). This can be achieved by experimenting with a bomb 
calorimeter, which is time-consuming and costly compared to mathematical and simulation-based methods. Therefore, it is necessary 
to develop cost-effective and easy-to-implement strategies for designing biomass energy systems (Xing et al., 2019). The progress made 
in artificial intelligence, machine learning, and deep learning has enabled engineers to create predictive models that establish a 
correlation between higher heating value (HHV) and input data derived from both ultimate and proximate analysis. Table 1 shows the 
literature surveyed related to the algorithms used to predict the biochar of different biomass.

(Zhu and Yang, 2022) have proposed ANN and PSO-optimized ML models to forecast municipal solid waste’s heating values. The 
ANN model that integrates both proximate and ultimate analyses of municipal solid waste (ANN-4) achieved the highest accuracy, 
with an error rate below 10 %. (Timilsina et al., 2024) employ a machine learning model to determine the HHV as a critical predictive 
tool for assessing waste-to-energy systems. Six models were employed, demonstrating exceptional predictive accuracy with R² values 
between 0.83 and 0.98. The analysis indicates that carbon and hydrogen enhance HHV, but oxygen and ash content diminish it, 
providing comprehensive advice for decision-making regarding waste-to-energy utilization. (Kocer, 2024), proposed a multilinear 
regression algorithm to predict HHV for proximate and ultimate analysis. The highest value of R2 achieved is 0.997 for the regression 
model designed for ultimate analysis. (Liu et al., 2024), use random forest (RF) and extreme gradient boosting (XGboost) algorithms 
for bio-oil product yield and HHV prediction. Results suggested that the highest values of R2 are 0.942 and 0.940 for XGboost. (Brandić 
et al., 2024) suggested an artificial neural network model with a 2–12–1 architecture for predicting HHV, utilizing a dataset derived 
from biomass’s ultimate and structural analysis. The proposed ANN structure has attained a superior R2 value of 0.96 compared to 
previous ML models. (Wang et al., 2024), use an XGBoost and ANN for the HHV prediction based on the characteristics of biomass and 
pyrolysis conditions. Results show that XGboost attains R2 = 0.83–0.94. (Kandpal et al., 2024) employed three ensemble learning 
techniques (RF, XGboost, and Adaptive Boosting (AdaBoost)) to construct models for predicting biochar production and HHV. The RF 
model achieved a satisfactory R² of 0.86, whereas XGB produced the optimal model with an R² of 0.87 for HHV. SHAP analysis 
identified pyrolysis temperature and ash content as the two most significant features. A Bayesian-optimized Gaussian process regressor 
(GPR) was developed by Kaya et al. (2024), to predict the HHV based on biomass characteristics and process conditions. It achieves the 
lowest value of MAE (0.4435) compared to other designed ML models. (Ighalo et al., 2024) conducted a mini-review of synthesized 
research on biomass HHV prediction using MLP-ANN models, highlighting their accuracy, data dependence, and future potential.

1.1. Significant contribution and novelty

There is an increasing interest in discovering eco-friendly alternatives to conventional methods of energy generation, driven by 

Table 1 
A literature survey was conducted for an algorithm to predict biomass’s biochar.

Authors Algorithms Results claimed

(Onsree et al., 2022) Gradient boosting tree algorithm (GBT) The root mean square (RMSE) attained by GBT is 0.79 for HHV prediction compared to other 
ML algorithms.

(Güleç et al., 2022) Different ANN models based on Levenberg 
and Bayesian learning algorithm

Results suggested that the ANN models designed for combined ultimate and proximate 
analysis data sets attained a higher value of R2 (0.962 and 0.876) compared to other cases.

(Mu et al., 2022) Particle swarm optimized neural network 
(PS-NN)

PS- NN has a higher value of R2 (0.85) w.r.t. artificial neural network (ANN).

(Ighalo et al., 2020) Linear regression (LR) The RMSE achieved by the LR is 8.15, which is lower than other applied ML.
(Jakšić et al., 2023) ANN based on different learning 

algorithms
Levenberg–Marquardt predicts the HHV with the lowest value of MSE of 1.17.

(Brandić et al., 
2022)

Ten different ANN models are developed. Results revealed that Model 9 is the best among all the designed ANN models, with the 
highest R2 of 0.47.

(Dai et al., 2021) Extreme machine learning (EML) EML achieved the highest value of R2 (0.989) compared to ANN.
(Dubey and 

Guruviah, 
2023)

Random forest (RF) The result shows that the prediction accuracy of RF is better than other ML in terms of RMSE 
(1.4204).

(Kartal and 
Özveren, 2022)

ANN is designed for energy prediction Results show that ANN achieved 4 % less value of MAE.

(Katongtung et al., 
2022)

Extreme gradient boosting (XGboost) XGboost has a higher range of R2 (0.87–0.90) compared to other ML algorithms.
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concerns about the imminent energy crisis and the detrimental impact of burning fossil fuels on the environment. Biomass is an 
upcoming energy source due to its sustainability, accessibility, and cost-effectiveness. Furthermore, the process of managing biomass 
disposal becomes more straightforward. Before utilizing biomass in any thermochemical energy system, it is crucial to comprehend its 
heating value, commonly known as HHV. This statistic facilitates the assessment of the fuel’s energy content. Moreover, HHV is pivotal 
in enhancing biomass conversion processes under diverse situations. Researchers are now developing machine learning-based tools to 
study and improve complex biomass conversion technologies.

Research Gap: - The literature review indicates that multiple ML techniques have been employed to develop a predictive model for 
HHV estimation based on biochar’s ultimate and proximate analysis. However, every ML algorithm has pros and cons, as the predicting 
performance of the ANN depends on various factors, including learning rate, number of hidden layers, and neurons in each hidden 
layer. The XGBoost algorithm encounters challenges when applied to sparse and unstructured datasets. The performance of the 
techniques varies depending on the parametric and non-parametric applications. The choice of the number of trees and leaf nodes in 
each tree can influence the RF performance. This implies that the ideal selection of its hyperparameter values and applications 
significantly impacts every machine learning algorithm’s performance. Therefore, selecting an ML algorithm should be examined on a 
case-by-case basis (Pachauri and Ahn, 2023). The scalability of the ML models is critical in practical applications; machine learning 
models must efficiently manage varying operating circumstances and datasets from diverse feedstocks. Moreover, most models are 
optimized for a singular feedstock type. A model trained on diverse feedstock types is required. A single ML algorithm will only work 
efficiently in some applications. Therefore, this work designs and implements a voting ensemble model for better scalability and 
generalization.

Novelty and contribution: In this article, a voting ensemble ML algorithm-based predictive model is proposed to predict the HHV 
of biomass. The voting ensemble technique is designed by combining Gaussian process regression (GR), support vector regression (SR), 
and boosting (BO) algorithms, leading to VSGB. A voting ensemble will predict the HHV by taking the weighted average of the in-
dividual predictions of GR, SR, and BO. Furthermore, the hyperparameters of GR (sigma (σ)), SR (Box Constraint, Kernel Scale, 
Epsilon), BO (learning rate (ղ)), and three weighting functions (w1, w2, and w3) play a vital role in the accurate prediction of HHV. 
Estimation of the optimal values of these parameters is a complex task. Therefore, an optimization technique known as invasive weed 
optimization (IWO) (Mehrabian and Lucas, 2006) is utilized to estimate the optimal values of σ, Box Constraint, Kernel Scale, Epsilon, 
ղ, w1, w2, and w3, respectively. The IWO algorithm is more likely to avoid local minima positions compared to GA and PSO because the 
IWO methodology has a continuous dispersion architecture and is normally distributed across the search space. Additionally, the IWO 
algorithm contains a declining variance parameter that centers on each parent plant (Barisal and Prusty, 2015). The subsequent points 
encapsulate the principal contribution of the work. 

• A voting ensemble model, which is an amalgamation of GR, SR, and BO leads to VSGB, is recommended for the biochar HHV 
prediction of biomass. IWO calculates the optimum values Box Constraint, σ, Epsilon, ղ, Kernel Scale, w1, w2, and w3, respectively.

• A comprehensive comparative analysis was conducted to assess the predictive accuracy of the VSGB model in comparison to LR, 
GAM, BAG, DT, and NN. Further, the performance of VSGB is compared with that of ML models in the literature.

• Finally, the empirical relationship between the ultimate analysis components and HHV is estimated using IWO. The result is then 
compared with other empirical relationships specified in the literature.

The rest of the paper is organized as follows: method and material description are given in Section 2, results and discussion are 
discussed in Section 3, and Section 4 presents the article’s conclusion.

2. Method and material

In this section, a description of the dataset utilized for this work, along with the voting ensemble technique, will be discussed. 
Furthermore, the IWO optimization algorithm will also be discussed briefly.

2.1. Biochar dataset

The dataset employed in this study comprises five input parameters, namely carbon (C), hydrogen (H), oxygen (O), nitrogen (N), 
and sulfur (S), along with one output parameter, namely HHV (See the supplementary file, Table S1, for further details). A combined 
collection of specimens was grouped, with eighty-two specimens falling under the category of fruit by-products, one hundred eighty 
samples categorized as agriculture waste, one hundred sixty-eight specimens originating from wood or tree species, fifty-one speci-
mens obtained from leaves or fibrous material, and thirty-seven specimens classified as other forms of biomass waste such as animal 
waste, wastewater sludge, and aerobic digestion, among others. Thirty-three specimens are categorized as briquettes, charcoal, and 
pellets, nineteen as cereals, and seventeen as industrial waste. Furthermore, Agricultural farms involved in several categories of 
biomass products represent a spectrum of activity. Each generates distinct categories of waste. Citrus, banana, and mango plantations 
generate by-products, including peels and seeds. Agricultural operations cultivating staple crops such as rice, wheat, and maize 
produce agricultural byproducts post-harvest, including straw and husks. Wood waste comprises branches, bark, and sawdust from 
timber -forestry operations. Fiber crops, like cotton, jute, and hemp, generate fibrous material waste. Livestock farms that rear cattle, 
chickens, or pigs produce animal waste from manure and mixed bedding materials. Some farms with wastewater treatment or 
anaerobic digestion systems, particularly dairy and pig farms employing waste-to-energy systems, contain sludge and digestion res-
idue. Facilities that transform agricultural or wood waste into solid fuels produce briquettes, charcoal, and pellets, utilizing rice husks 
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or coconut shells. Conventional cereal crops, such as wheat, barley, and maize, provide by-products, including husks and straw. 
Diverse categories of farm waste are transformed into distinct biomass types, each possessing unique features, facilitating energy and 
material recovery for sustainable agriculture and efficient waste management. Table 2 shows the statistical information for the given 
dataset. Fig. 1 shows the histogram representation of the dataset

Fig. 2 shows the Pearson Correlation analysis between input and output attributes. A positive value of correlation shows the direct 
relationship between input and output. However, negative values describe the inverse relationship. It can be observed that the C 
(0.9439) and S (0.08304) have a positive correlation with HHV. On the other hand, O (-0.5504), H (-0.2173), and N (-0.1319) have a 
negative correlation. It is also observed that the correlation between input attributes is very low, which means there is no multi-
collinearity in the dataset. In addition, the correlation of attributes with HHV allows for calculating each feature’s contribution to final 
predictions, considerably improving interpretability. This is particularly beneficial in fields such as energy modeling, where com-
prehending the factors influencing energy content is essential.

2.2. Support vector regression

Support Vector Regression (SR) is a supervised machine learning algorithm that utilizes SVM’s principle to forecast distinct values. 
The fundamental principle underlying the concept of SR is to determine the optimal linear regression line (Taki and Rohani, 2022). The 
hyperplane, also known as the best-fit line, is characterized by having the maximum number of data points. The concept of SR 
generally encompasses two distinct categories of hyperplanes: positive and negative. The hyperplane is referred to as positive when it 
is located on the decision border’s positive side and negative when positioned on the negative side. Moreover, the boundaries of the 
hyperplanes correspond to the support vectors, which indicate the data points near the hyperplane. Estimating the direction and 
location of the hyperplane is beneficial. The mathematical representation of SR function is expressed as follows (Cao et al., 2016). 

f(x) = (c, ϛ(x) )+ d (1) 

ϛ(x)Nonlinear term
cweight vector
dbias vector
The optimization equation for SR can be written as follows. 

⎧
⎪⎪⎨

⎪⎪⎩

min
c,u,e

f(c, e) =
1
2
‖c‖2

+
1
2

γ
∑M

i=1
e2

i

s.t.zk = 〈c, ϛ(xi) 〉 + u + ei i = 1,2, 3, ...M

⎫
⎪⎪⎬

⎪⎪⎭

(2) 

where γ is a regulation factor, and ei is an error for the M training dataset. Moreover, the Lagrangian method is utilized to approximate 
the optimization problem. 

L(c, u, e,α) = 1
2
‖c‖2

+
1
2

γ
∑M

i=1
e2

i −
∑M

i=1
αi{〈c, ϛ(xi) 〉+ u+ ei − zi } (3) 

where αi is the Lagrange multiplier. A detailed description of SR is given in (Cao et al., 2016).

2.3. Gaussian process regression

GR is a collection of fixed quantities characterized by random traits following an ensemble Gaussian distribution. The primary 
objective of GR is to utilize the existing data to ascertain a substantial correlation between input and output attributes, thereby ful-
filling the following equation (Schulz et al., 2018). 

a = g(b)+ β (4) 

where a and b are the output and input attributes, β ϵ
(

M
(

0, ρ2
β

))
, it is supposed that g(b) is spread as a Gaussian distribution (GD). The 

GD description is facilitated by the utilization of a mean and covariance as follows: - 

Table 2 
Statistical Information of the Dataset.

Variables Average Kurtosis Standard deviations

C 48.205 15 5.909
H 5.468 7.806 0.744
O 38.648 11.016 7.119
N 1.075 9.829 1.170
S 0.232 6.419 0.193
HHV 19.159 13.571 2.524
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g(b) = GD(n(b), l(b, bʹ) ) (5) 

The average function, denoted as n(b), represents the mean value of all the functions within the given variations at the input b 
(Schulz et al., 2018). 

mean(b) = F[g(b) ] (6) 

The covariance l(b, b’) analyzes the interdependence of function values across input attributes b and b’. 

Fig. 1. Histogram representation of the dataset.

Fig. 2. Pearson Correlation analysis between input and output attributes.
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cova(b, bʹ) = F[(g(a) − n(b) )(g(bʹ) − l(bʹ) ) ] (7) 

where l is the kernel of the GR. A total of 5 kernels may be used for GR i.e., rational quadratic, squared exponential, exponential, matern 
3/2, and matern 5/2, respectively.

2.4. Boosting

The BO technique is an ensemble approach that aims to minimize biases rather than variance sequentially (Pachauri et al., 2022). 
The boosting technique involves constructing a forecasting model using the primary dataset and then iteratively enhancing the al-
gorithm to reduce the variance of previous models. BO employs multiple models characterized by low variance and substantial biases 
to enhance the accuracy of forecasts. It enhances the predictive capabilities of a weak learner. The BO used a tree-based technique to 
construct a robust regression model using a gradient-boosting strategy. BO output is achieved by combining forecasts generated by 
multiple models. The models are developed in a sequence, where each model is trained to minimize the residual error by incorporating 
the predictions of all preceding models (Pachauri and Ahn, 2023). Furthermore, a least square gradient-based BO algorithm is used in 
this work. The mathematical formulation of the algorithm is as follows.

Step 1. Least square boosting will reduce the error between the predicted ýi and actual value of the output yi for n number of 
samples. 

LOSS =
∑n

i=1

(
yi − yʹ

i
)2 (8) 

Step 2. The algorithm starts with a simple model with constant prediction. 

(
yʹ

i
)(0)

=
1
n
∑n

i=1
yi (9) 

(
yʹ

i

)(0) is the predicted value of each datapoint at i for 0th model.
Step 3. In iteration m, it builds a new model fm(x) to fit the error of the previous model and add it to the ensemble of models with the 

learning rate α 

• Calculate the error 

(ri)
(m)

=
(

yi −
(
yʹ

i
)(m− 1)

)
(10) 

• Fit a weak learner 

fm(x) ≈ (ri)
(m) (11) 

• Update the model
(
yʹ

i
)(m)

=
(
yʹ

i
)(m− 1)

+ afm(xi) (12) 

Step 4. After the M iteration, the final output is the sum of all the weak learners fm(x) for a given input xi 

yʹ
i =

∑M

m=0
αfm(xi) (13) 

2.5. Voting ensemble

The voting ensemble is an ML technique combining predictions from multiple methods. This approach is commonly utilized to 
enhance the system’s efficacy by incorporating multiple models rather than relying solely on one learning method. In essence, majority 
voting is employed in classification and regression problems, which involves aggregating the selections made by various ML ap-
proaches (Chen et al., 2022). The fundamental idea of voting regression is to take the average of all predictions made using different 
ML techniques. The disadvantage of this strategy is that it will reduce total prediction accuracy if one ML technique predicts with a 
higher error. Therefore, this work considers a weighted average of all the techniques’ predictions a final prediction. In this method, the 
weightage of the ML with higher error is less in the final prediction than in the other methods, thereby improving the overall 
prediction.

2.6. Invasive weed optimization

The IWO is a population-based technique that aims to identify the global optimum by simulating the interoperability and 
unpredictability observed in the colonies of weeds. They are potent botanical species whose aggressive growth patterns significantly 
threaten crops. They have demonstrated high resistance and adaptability in response to environmental changes. Hence, a robust 
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Fig. 3. Flowchart for the IWO optimizes VSGB predictive model.
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optimization algorithm is derived by considering their distinctive attributes. The algorithm developed aims to replicate the charac-
teristics of resistance, versatility, and unpredictability observed within a weed community specimen (Mehrabian and Lucas, 2006). The 
following steps are applied to simulate the colonizing behavior of invasive weeds. 

1. The first step is to initialize the population in each search space with dimensionality w.
2. The reproductive capacity of an individual plant within a population is determined by its health and the whole colony’s collective 

health. This is achieved through a gradual rise in seed generation, ranging from a minimum to the maximum number of seeds each 
plant produces. In essence, a plant’s reproductive output is determined by its level of adaptability, as well as the range of 
adaptability within the colony, to maintain a linear growth pattern. The inclusion of this step introduces a notable characteristic of 
the optimization technique. In applying optimization for a specific problem, it is commonly perceived that possible individuals, 
instead of infeasible individuals, possess superior fitness values (where "superior" denotes a higher likelihood of survival and 
reproduction). Consequently, the reproduction of infeasible individuals is typically prohibited.

3. This step, called spatial dispersal, encompasses the concepts of unpredictability and adjustment within the algorithm. The produced 
seeds are spread arbitrarily across the search space, which has d dimensions. This distribution is achieved using arbitrary numbers 
that follow a normal distribution, with a mean of zero and varying variances. This implies that seeds will be dispersed randomly 
near the parent vegetation. Furthermore, as the step of the algorithm proceeds, the value of the std. will be decreasing from its 
initial (µmin) to the final value (µfinal). 

µiter =

(
itrmax − itrmin)m

(itrmax)
m

(
µmin − µfinal)+ µfinal (14) 

where itr . is the no. of iterations, µiter is the standard deviation, and m is the nonlinear index value.
4. The next step is competitive elimination, in which the quantity of grasses surpasses the predetermined maximum threshold (Pmax) 

within the colony, and the grass exhibiting the lowest fitness level is eliminated, thereby ensuring a consistent population of herbs 
within the colony.

5. This optimization process will run until the stopping criteria of a maximum number of iterations will not be obtained.

Fig. 3 shows the detailed flowchart of the IWO-optimized voting ensemble (VSGB) ML technique for the biochar prediction. The 
preliminary phase in developing any ML technique involves the preprocessing of the dataset. The procedure begins with acquiring 
dataset samples from several sources (see supplementary material Table S1). Afterwards, missing values are addressed through either 
removal or interpolation; nonetheless, the dataset contains no missing entries. Consequently, the dataset guarantees data accuracy by 
removing duplicates, correcting outliers, and fixing inaccuracies. Ultimately, divide the dataset into training and testing subsets, 
utilizing cross-validation to evaluate the model’s efficacy. According to existing literature, there’s no universally applicable guideline 
for determining the appropriate ranges for data splitting. Multiple authors have examined the diverse spectrums of data., such as 
80–20 % (Parikh et al., 2005), 75–25 % (Xing et al., 2019), 83–17 % (Shi et al., 2016), etc., for HHV prediction. Hence, this study 
partitions the dataset into 80 % for training and cross-validation while allocating the remaining 20 % for testing the proposed ML 
technique. Furthermore, the hyperparameter of GR (sigma (σ)), SR (Box Constraint, Kernel Scale, Epsilon), BO (learning rate (ղ)), and 
three weighting functions (w1, w2, w3) are initialized as per the lower and upper ranges (See supplement material Table S2). The 
training set is utilized to train GR, SR, and BO in the next step. The 5-fold cross-validation method is commonly employed during 
training. Subsequently, a voting ensemble is implemented by assigning weights to the three outputs obtained from GR (PGR), SR (PSR), 
and BO (PBO), respectively. The voting ensemble refers to the process of combining multiple machine learning algorithms through a 
weighted aggregation mechanism, which can be defined as follows: 

Pfinal =
(w1 × PGR + w2 × PSR + w3 × PBO)

(w1 + w2 + w3)
(15) 

The successive step involves the computation of the objective function, specifically the AARD % expressed as a percentage, 
quantifying the disparity between the predicted and actual values. The process is iteratively executed until the stopping condition of 
the maximum number of iterations (Itr. = max. Itr) is met. The maximum iteration value (max. Itr) is taken as 100. The optimized 
values for the parameters σ, Box Constraint, Kernel Scale, Epsilon, ղ, w1, w2, and w3 are determined upon completion of the final 
iteration. Finally, the performance of the VSGB model will be assessed and compared to other machine learning models by utilizing 
metrics such as Mean Squared Error (MSE), RMSE, Mean Absolute Error (MAE), and AARD% for testing subsets. 

MSE =
1
M

∑M

j=1

(
Yj,predicted − Yj,actual

)2 (16) 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
M

∑M

j=1

(
Yj,predicted − Yj,actual

)2

√
√
√
√ (17) 
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MAE =
1
M

∑M

j=1

⃒
⃒
(
Yj,predicted − Yj,actual

) ⃒
⃒ (18) 

AARD% =
1
M

∑M

j=1

⃒
⃒
(
Yj,predicted − Yj,actual

) ⃒
⃒

Yj,actual
× 100 (19) 

3. Result and discussion

This study offers a voting ensemble (VSGB) for HHV prediction, the weighted average of SR, GR, and BO forecasts. IWO optimi-
zation is utilized to estimate the design parameters, σ, Box Constraint, Kernel Scale, Epsilon, ղ, w1, w2, and w3, of VSGB, respectively. 
Furthermore, the prediction accuracy comparison of VSGB with LR, GAM, BAG, DT, and NN regarding the MSE, RMSE, MAE, and 
AARD% values performance indices. In addition to this, IWO is also utilized to calculate the empirical relationship between input and 
output attributes. Fig. 4(a) and (b) show the convergence graphs obtained while optimizing the hyperparameters of VSGB (training 
process) and polynomial coefficients of the empirical equation. From Fig. 4(a) and (b), it is feasible to track the progression of the 
optimization algorithm and ascertain its convergence with the optimal solution. Moreover, it indicates the direction in which the 
objective function is trending in terms of minimizing its value. The data can be utilized to implement modifications and enhance the 
optimization process. The optimised parametric values of σ = 0.0001, Box Constraint = 67, Kernel Scale = 52, Epsilon = 0.1765, ղ 
= 0.3276, w1 = 0.9984, w2 = 0.9388, and w3 = 0.4301, respectively. Simulation studies were performed using MATLAB 2023 on an 
11th Gen Intel(R) Core (TM) i5–1135G7 processor operating at 2.40 GHz.

3.1. VSGB performance for HHV prediction

The performance of the VSGB algorithm is evaluated through a comparative analysis with several other single machine learning 
models, namely LR, GAM, BAG, DT, and NN. The scatter plots of all the designed ML techniques for the testing dataset are depicted in 
Fig. 5(a). This will establish a correlation between the anticipated and desired values of HHV. The figure demonstrates that the HHV 
values predicted by VSGB exhibit higher proximity to the target HHV. Furthermore, the correlation coefficient (R) value achieved by 
VSGB (0.946) is higher, followed by NN (0.933), BAG (0.930), GAM (0.923), DT (0.906), and LR (0.899), respectively. Fig. 5(b) shows 
the hydrographs representing the testing dataset’s predicted and actual HHV values. It can be concluded from the figure that the 
prediction accuracy of VSGB is higher than that of the other designed ML. Table 3 depicts the statistical comparison among all the ML 
models.

The MSE value attained by the VSGB (Table 3) is 0.662, which is 44.8 %, 28.37 %, 21.4 %, 36.9 %, and 22.2 % lower than LR, 
GAM, BAG, DT, and NN. Furthermore, the AARD value for VSGB (2.827 %) is the lowest, followed by BAG (3.127 %), NN (3.356 %), 
DT (3.547 %), GAM (3.753 %), and LR (3.769%). In addition to this, LR attains the highest value of MAE (0.719) and RMSE (1.096), 
and VSGB has the lowest values of MAE (0.536) and RMSE (0.813) among all the designed ML techniques. The

above analysis shows the effectiveness of combining SR, GR, and BO. In VSGB, SR exhibits considerable robustness in high- 
dimensional domains and demonstrates a reduced susceptibility to overfitting, particularly with smaller datasets. The kernel 
method enables the model to capture complicated connections without explicitly expanding the feature space. Consequently, it is an 
excellent option for identifying non-linear patterns in data. GR offers probabilistic predictions and accounts for uncertainty in model 
outputs, enhancing accuracy in scenarios where data distributions are intricate or highly noisy. This effectively identifies trends in 

Fig. 4. Convergence plot for (a). VSGB (b). empirical equation for HHV prediction.
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smaller datasets and addresses issues related to prediction uncertainty. It enhances the ensemble and aids the model in improving 
predictions by assessing the probability of each prediction’s accuracy. This excludes SVR and BO, whose confidence predictions are not 
inherently regarded as a natural combination by default method that minimizes least square loss to rectify errors at each iteration and 
reduce biases in the model. Furthermore, BO sequentially trains the weak learner on prior errors, significantly diminishing predicting 

Fig. 5. VSGB performance comparison on the testing dataset.
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inaccuracy. BO is effective for ensemble issues that exhibit complex relationships, where residual errors may be overlooked by either 
SVR or GR in the overall fit.

3.1.1. Relevancy factor (r)
Using r-analysis is a dependable methodology for assessing the influence of the input attribute on the output. This quantifies the 

degree of influence that every input attribute exerts on the output. A higher r-value signifies a greater magnitude of influence that the 
input has on the output. The formula measures the relevancy factor (Hemmati-Sarapardeh et al., 2020). 

r (xi, y) =

∑m

k=1

(
xi,k − xavg,i

)(
yk − yavg

)

∑m

k=1

(
xi,k − xavg,i

)2 ∑m

k=1

(
yk − yavg

)2 (20) 

where
xi,kkth values for the ith input
xavg,iAverage value of ith input
ykPredicted output kth value
yavgAverage output value
Fig. 6(a) shows the bar graph representation of the relevancy factor, calculated using Eq. (20). It is observed from the figure that the 

influence of C and N is higher on the HHV compared to H, O, and S. The r value estimated for C is 0.9600, followed by N (-0.5652), H 
(0.3297), S (0.1333) and O (0.0997), respectively. A precise prediction model of HHV derived from the final analysis is crucial for 
biochar producers, serving as a tool for informed decision-making, better production processes, cost savings, and improved envi-
ronmental benefits. Real-time HHV projections enable operators to swiftly modify fuel compositions, moisture management, and other 
operational factors. This helps to optimize combustion efficiency, reduce fuel waste, and adhere to environmental emissions standards. 
It can also facilitate improved forecasting and planning to enable optimal energy production. Furthermore, uncertainty analysis was 
performed on all the designed ML techniques (Fig. 6(b)). The figure demonstrates that VSGB exhibits the lowest value of the uncer-
tainty band, i.e., 3.1848, compared to other ML techniques for a 5 % significant level. Uncertainty analysis is essential for assessing the 
reliability of models forecasting the HHV generated by biochar from various biomass sources. The complete uncertainty interpretation 
of HHV value projections and its practicality in energy-generating projects justify its use. Significant feedstock variabilities in the 
energy generation project could discourage investors from returning to their conventional and predictable feedstocks, which are 
undoubtedly less sustainable and cost-effective for them. Energy generators may adopt a risk-averse approach, sustaining elevated 
biomass inventory levels, which escalates operational expenses and thus diminishes profitability. Since accurate and reliable HHV data 
is essential for regulatory compliance, considerable prediction discrepancies hinder compliance, leading to penalties. Project 

Table 3 
Comparative analysis of designed ML models based on performance indices.

Performance Indices LR GAM BAG DT NN VSGB

MSE 1.201 0.931 0.843 1.128 0.807 0.662
RMSE 1.096 0.965 0.918 1.062 0.898 0.813
MAE 0.719 0.713 0.602 0.691 0.620 0.536
AARD (%) 3.769 3.753 3.127 3.547 3.356 2.827

Fig. 6. (a). Relevancy factor. (b). Uncertainty band values for all the designed ML models.
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developers should ensure that plans are sufficiently adaptable to accommodate actual HHV data in significant uncertainty. They must 
also guarantee that the systems employed can accommodate various biomasses or engage with several suppliers to mitigate feedstock 
fluctuation. Furthermore, the violin plots (Fig. 7) utilized in the investigation indicate that the VSGB model produces accurate forecasts 
of the HHV compared to the other models. Each violin plot illustrates the distribution of error range and density, reflecting the 
alignment of the model’s predictions with the target values. The narrow error range of − 2.2426 to –3.6597 for the VSGB model in-
dicates limited variation and significant predictive accuracy. However, GAM ranges from − 2.9336 to –3.0419, and BAG ranges from 
− 1.9321 to –5.1184. In contrast, the other models have comparatively broader error distributions, suggesting more significant pre-
diction variability and diminished precision in aligning with target HHV values.

The performance of VSGB is further compared with the ML techniques designed in the literature (Ighalo et al., 2020; Dai et al., 
2021; Kotontung et al., 2022; Noushabdi et al., 2021; Yaka et al., 2022; Nieto et al., 2019; Samadi et al., 2021; Ighalo et al., 2022; 
Dashti et al., 2019), as shown in Fig. 8. The proposed VSGB has the lowest RMSE (0.813) and MSE (0.662) compared to the models 
developed in the literature. It can also be observed that the percentage of improvement achieved in the MSE is 6.7 %-84.5 % and in the 
RMSE is 3.4 %-90 %, respectively. The MAE attained by GARBF, ACO-ANFIS, and MNR are higher than the VSGB (0.536). In addition, 
the value of AARD% is lowest in the case of VSGB (2.827 %), which indicates the closeness of predicted HHV to the actual values. 
Moreover, it is crucial to recognize that the present comparison does not suggest the lack of effectiveness of the past research, as each of 
the preceding studies was carried out inside a particular environment, encompassing unique training and testing samples, among other 
variables. Policymakers and practitioners in the agricultural sector face numerous implications when applying machine learning 
models, such as VSGB, for biomass analysis and waste management. In conclusion, the enhanced accuracy is evidenced by reduced 
RMSE, MSE, MAE, and AARD% values in VSGB. It signifies potential reliability in forecasting the HHV of biomass, a critical aspect in 
assessing bioenergy potential. These findings indicate that VSGB may be pivotal for policymakers in formulating data-driven rec-
ommendations and standards for bioenergy production, facilitating enhanced utilization of agricultural by-products and waste

3.2. Empirical relationship estimation between input and output attributes using IWO

The preceding section proposes that VSGB predicts the HHV from the C, H, O, N, and S input attributes. The empirical relationship 
can also be used to estimate the HHV from inputs. In this work, an empirical equation is assumed which relates the C, H, O, N, and S to 
HHV as follows: 

HHV = a1 ∗ C+ a2 ∗ H+ a3 ∗ O+

(
a4 ∗ N
a5 ∗ S

)

(21) 

The IWO algorithm is used to calculate the values of the coefficients a1, a2, a3, a4, and a5. The convergence curve for the HHV 
empirical relationship with variations in the AARD% (on training samples) as the objective function is shown in Fig. 4(b). Table 4
compares the findings of the literature and the IWO-based empirical equation for HHV. Compared to others documented in the 
literature, the suggested equation yields the lowest value for the AARD%.

4. Conclusion

This article presents a design and implementation of VSGB for predicting HHV based on the elemental composition of C, H, O, N, 
and S obtained from the ultimate analysis. The VSGB is an aggregated sum of SR, GR, and BO-weighted values. In addition, the 
hyperparameter values of VSGB are evaluated using the IWO as follows: σ = 0.0001, Box Constraint = 67, Kernel Scale = 52, Epsilon 
= 0.1765, ղ = 0.3276, w1 = 0.9984, w2 = 0.9388, and w3 = 0.4301. The performance of the VSGB is evaluated and compared with 
several other models, including LR, GAM, DT, BAG, and NN, using several performance measures. The findings indicate that the VSGB 
technique achieves the lowest MSE value of 0.662 and AARD% of 2.827 when compared to other ML techniques that were imple-
mented. Moreover, an equation that predicts the HHV based on the elemental composition of C, H, O, N, and S is formulated using the 
IWO algorithm. The proposed relationship yielded a lower value of AARD% (3.59%) than other equations documented in the existing 
literature. In addition to this, research questions have been answered about the above work as follows:

Fig. 7. Error distribution using violin plot.
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Fig. 8. Comparative Analysis w.r.t different performance indices of VSGB with ML models given in the literature.

Table 4 
IWO-HHV predictive equation comparison with the literature.

Predictive Equations AARD 
%

Ref

HHV = − 0.0769C − 0.3110O + 35.8357 13.94 (Boumanchar et al., 
2019)

HHV = 0.6342H − 0.2142O + 0.8943S + 23.7283 11.33 (Boumanchar et al., 
2019)

HHV = C + H + S +
174

C − 63.3
+

0.399
O − 52

+
0.0727

C + H + 53.4S − HS − 1.1N
− 23.7 27.79 (Boumanchar et al., 

2019)
HHV = − 3.440 + 0.517(C+N) − 0.433(H+N) 6.16 (Xing et al., 2019)
HHV = − 5.290 + 0.493C + 5.052(H)

− 1 7.58 (Xing et al., 2019)
HHV = 5.736 + 0.0006C2 12.68 (Xing et al., 2019)
HHV =

(
1.59C2 +154.5C+7464

)
∗ 10− 3 4.76 (Callejon-Ferre et al., 

2011)
HHV = 3.55C2 − 232C − 2230H + 51.2C ∗ H + 131N + 20600 4.28 (García et al., 2014)

HHV = 0.367C +
53.883O

(
2.31C2 − 3.299

)+
(C ∗ H − 115.971)

(

10.472 ∗ H + 0.129C ∗ O
(

− 91.531
(35.299 + N)

))+
232.698

(77.545 + S)
3.65 (Friedl et al., 2005)

HHV = − 0.3516C + 1.1625H − 0.1109O + 0.0628N + 0.10465S 5.06 (Ghugare et al., 2014)
HHV = 357.8C + 1135.6H + 54.9N − 85.4O + 119.5S − 974 4.83 (Mason and Gandhi, 

1980)
HHV = 144.4C + 610.2H − 65.9O + 0.39C2 5.53 (Cordero et al., 2001)

HHV = 78.31C + 359.32
(

H −
O
8

)

+ 22.12S + 11.87O + 5.78N
5.95 (Kathiravale et al., 

2003)

HHV = − 0.8738 ∗ N ∗ H− 1.3101 − 0.1583 ∗ C ∗ O0.3497 + 0.3856 ∗ C(H ∗ O)
0.1462

+ 2.1436
(

H
O

)− 0.3846
+

0.1076 ∗ C ∗ H− 0.3846 + 0.1098 ∗ N ∗ S − 11.2794
(

H
C

)

3.61 (Noushabadi et al., 
2021)

HHV = 0.3716 ∗ C + 0.0586 ∗ H + 0.0207 ∗ O +

(
0.1850 ∗ N
0.9857 ∗ S

)
3.59 This Study
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What impact would accurate HHV prediction have on energy regulations and advancements in bioenergy?

Answer - The precise prediction of HHV, as achieved by the ML models, would facilitate the identification of the most efficient 
biomass sources for energy. Policymakers can utilize these projections to actively advocate for high-efficiency biomass feedstocks. 
Furthermore, it can optimize energy production to minimize waste in energy generation. This would help to make rules that encourage 
the long-term growth and processing of biomass to lower our reliance on fossil fuels.

In what ways do advanced machine learning models enhance the predictive accuracy of HHV in various biomass materials 
for sustainable energy applications?

Answer- Advanced ML algorithms can enhance biomass HHV predictions by analyzing data patterns. These models calculate HHV 
based on moisture, ash, and carbon content. They are adaptable and boost biomass reliability. Precise HHV prediction aids in assessing 
fuel quality, reducing waste, and optimizing energy production.

Future scope- The proximate analysis will be supplemented by the ultimate analysis for HHV predictions. Empirical validation 
using many biomass datasets from different categories will assess the model’s generalisability. A comparative analysis with new 
machine learning approaches will be conducted to evaluate the performance of the proposed model. The model will be enhanced for 
extensive bioenergy forecasting by integrating deep learning techniques. Deep learning models will identify intricate correlations and 
non-linear patterns in big datasets, enhancing predictive accuracy. Moreover, future studies may examine the economic and envi-
ronmental consequences of employing ML in bioenergy production. A detailed analysis of the relevancy factor will also be investigated 
for different biomass types based on their elemental composition.

Limitation- The complexity of the amalgamation of SR, GR, and BO values may restrict adaptability. The sensitivity of hyper-
parameters indicates that performance is dependent upon their configuration. Advanced approaches like IWO are computationally 
expensive; hence, executing real-time or large-scale implementations may be challenging. Variations in biomass outside the model’s 
parameters and environmental conditions may affect the model’s accuracy. The study focused on HHV prediction without considering 
other essential properties like ash content or lignin.
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Vargas-Moreno, J., Callejón-Ferre, A., Pérez-Alonso, J., Velázquez-Martí, B., 2012. A review of the mathematical models for predicting the heating value of biomass 

materials. Renew. Sustain Energy Rev. 16 (5), 3065–3083.
Wang, Minghong, Xie, Yingpu, Gao, Yong, Huang, Xiaohong, Chen, Wei, 2024. Machine learning prediction of higher heating value of biochar based on biomass 

characteristics and pyrolysis conditions. Bioresour. Technol. 395, 130364.
Wen, X., Luo, K., Jin, H.H., Fan, J.R., 2017. Large eddy simulation of piloted pulverized coal combustion using extended flamelet/progress variable model. Combust. 

Theor. Model 21, 925e53.
Xing, Jiangkuan, Luo, Kun, Wang, Haiou, Gao, Zhengwei, Fan, Jianren, 2019. A comprehensive study on estimating higher heating value of biomass from proximate 

and ultimate analysis with machine learning approaches. Energy 188, 116077.
Yaka, Havva, Insel, Mert Akin, Yucel, Ozgun, Sadikoglu, Hasan, 2022. A comparison of machine learning algorithms for estimation of higher heating values of biomass 

and fossil fuels from ultimate analysis. Fuel 320, 123971.
Zhu, C., Wang, M., Guo, M., Deng, J., Du, Q., Wei, W., Mohebbi, A., 2024. An innovative process design and multi-criteria study/optimization of a biomass digestion- 

supercritical carbon dioxide scenario toward boosting a geothermal-driven cogeneration system for power and heat. Energy 292, 130408.
Zhu, Xingwei, Yang, Guozhu, 2022. Study on HHV prediction of municipal solid wastes: a machine learning approach. Int. J. Energy Res. 46 (3), 3663–3673.

N. Pachauri et al.                                                                                                                                                                                                      Environmental Technology & Innovation 37 (2025) 104012 

16 

http://refhub.elsevier.com/S2352-1864(24)00488-7/sbref40
http://refhub.elsevier.com/S2352-1864(24)00488-7/sbref40
http://refhub.elsevier.com/S2352-1864(24)00488-7/sbref41
http://refhub.elsevier.com/S2352-1864(24)00488-7/sbref41
http://refhub.elsevier.com/S2352-1864(24)00488-7/sbref42
http://refhub.elsevier.com/S2352-1864(24)00488-7/sbref43
http://refhub.elsevier.com/S2352-1864(24)00488-7/sbref43
http://refhub.elsevier.com/S2352-1864(24)00488-7/sbref44
http://refhub.elsevier.com/S2352-1864(24)00488-7/sbref45
http://refhub.elsevier.com/S2352-1864(24)00488-7/sbref46
http://refhub.elsevier.com/S2352-1864(24)00488-7/sbref46
http://refhub.elsevier.com/S2352-1864(24)00488-7/sbref47
http://refhub.elsevier.com/S2352-1864(24)00488-7/sbref47
http://refhub.elsevier.com/S2352-1864(24)00488-7/sbref48
http://refhub.elsevier.com/S2352-1864(24)00488-7/sbref48
http://refhub.elsevier.com/S2352-1864(24)00488-7/sbref49
http://refhub.elsevier.com/S2352-1864(24)00488-7/sbref49
http://refhub.elsevier.com/S2352-1864(24)00488-7/sbref50
http://refhub.elsevier.com/S2352-1864(24)00488-7/sbref50
http://refhub.elsevier.com/S2352-1864(24)00488-7/sbref51
http://refhub.elsevier.com/S2352-1864(24)00488-7/sbref51
http://refhub.elsevier.com/S2352-1864(24)00488-7/sbref52
http://refhub.elsevier.com/S2352-1864(24)00488-7/sbref52
http://refhub.elsevier.com/S2352-1864(24)00488-7/sbref53
http://refhub.elsevier.com/S2352-1864(24)00488-7/sbref53
http://refhub.elsevier.com/S2352-1864(24)00488-7/sbref54
http://refhub.elsevier.com/S2352-1864(24)00488-7/sbref54
http://refhub.elsevier.com/S2352-1864(24)00488-7/sbref55
http://refhub.elsevier.com/S2352-1864(24)00488-7/sbref55
http://refhub.elsevier.com/S2352-1864(24)00488-7/sbref56
http://refhub.elsevier.com/S2352-1864(24)00488-7/sbref56
http://refhub.elsevier.com/S2352-1864(24)00488-7/sbref57

	Biochar energy prediction from different biomass feedstocks for clean energy generation
	1 Introduction
	1.1 Significant contribution and novelty

	2 Method and material
	2.1 Biochar dataset
	2.2 Support vector regression
	2.3 Gaussian process regression
	2.4 Boosting
	2.5 Voting ensemble
	2.6 Invasive weed optimization

	3 Result and discussion
	3.1 VSGB performance for HHV prediction
	3.1.1 Relevancy factor (r)

	3.2 Empirical relationship estimation between input and output attributes using IWO

	4 Conclusion
	What impact would accurate HHV prediction have on energy regulations and advancements in bioenergy?
	In what ways do advanced machine learning models enhance the predictive accuracy of HHV in various biomass materials for su ...
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgment
	Authorship confirmation
	Appendix A Supporting information
	Data availability
	References


