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Abstract

Oxford Nanopore Technology (ONT) sequencing is a third-generation sequencing technology that enables cost-effective long-read
sequencing, with broad applications in biological research. However, its high sequencing error rate in low-complexity regions hampers
its applications in short tandem repeat (STR)-related research. To address this, we generated a comprehensive STR error profile of
ONT by analyzing publicly available Nanopore sequencing datasets. We show that the sequencing error rate is influenced not only
by STR length but also by the repeat unit and the flanking sequences of STR regions. Interestingly, certain flanking sequences were
associated with higher sequencing accuracy, suggesting that certain STR loci are more suitable for Nanopore sequencing compared
to other loci. While base quality scores of substitution errors within the STR regions were lower than those of correctly sequenced
bases, such patterns were not observed for indel errors. Furthermore, choosing the most recent basecaller version and using the
super accuracy model significantly improved STR sequencing accuracy. Finally, we present NanoMnT, a lightweight Python tool that
corrects STR sequencing errors in sequencing data and estimates STR allele sizes. NanoMnT leverages the characteristics of ONT
when estimating STR allele size and exhibits superior results for 1-bp- and 2-bp repeat STR compared to existing tools. By integrating
our findings, we improved STR allele estimation accuracy for Ax10 repeats from 55% to 78% and up to 85% when excluding loci with
unfavorable flanking sequences. Using NanoMnT, we present the utility of our findings by identifying microsatellite instability status

in cancer sequencing data. NanoMnT is publicly available at https://github.com/18parkky/NanoMnT.
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Introduction

Short tandem repeats (STRs), also known as microsatellites, are
regions of DNA consisting of a repeated sequence of 1-6 bp [1]
and are routinely employed as “genetic fingerprints” in a variety
of fields, such as forensics [2] and population genetics [3]. Previous
research has shown that STRs are also involved in gene regulation
by modulating DNA methylation and providing binding sites for
transcription factors [4-6]. Moreover, owing to their high mutation
rate [7], STRs play critical roles in the pathogenesis of numerous
degenerative diseases, including fragile X syndrome, spinal and
bulbar muscular atrophy (SBMA), and Huntington disease [8]. The
major pathomechanisms of repeat expansions are diverse: loss of
function via transcriptional repression, gain of function of canon-
ically translated repeat-containing proteins, and RNA-mediated
gelation and sequestration of RNA-binding proteins, reflecting the
functional importance of STR [8]. In addition, the genomic insta-
bility of STRs in mismatch repair-deficient (AMMR) cancers mani-
fests as a molecular phenotype known as microsatellite instability
(MSI), which is generally associated with a favorable response to
cancer immunotherapy due to abundant generation of neoanti-
gens [9, 10]. The allele sizes of STRs, defined by the number of
repeats, are crucial for understanding their roles in these biolog-

ical contexts. Consequently, accurate quantification of STR allele
size is essential for assessing their functional roles and advancing
our understanding of their contributions to health and disease.

Although conventional PCR-based methods for analyzing STRs
have proven effective, they are limited by the number of STR
regions that can be analyzed simultaneously [11]. However, ad-
vancements in next-generation sequencing (NGS) have signifi-
cantly expanded the number of analyzable STR regions, to the
point where whole-genome sequencing (WGS) with sufficient se-
quencing depth can enable the analysis of most STR regions [12].
Long-read sequencing technologies are generally more advanta-
geous than short-read sequencing for characterizing STR regions
because they can span not only the STR sequences but also their
flanking sequences. This capability enables robust read align-
ments of STR regions, which is particularly valuable for analyz-
ing STR with complex structures, such as compound and im-
perfect STRs [13]. In contrast, short-read sequencing often fails
to sequence the flanking sequences of STR regions, which may
result in producing misalignments. Furthermore, the lengths of
some STR alleles exceed the read lengths of short-read sequenc-
ing, requiring longer reads for accurate STR allele identification
(14, 15].
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PacBio sequencing and Oxford Nanopore sequencing (also re-
ferred to as Oxford Nanopore Technologies or ONT) are 2 of the
most widely used long-read sequencing technologies, with exten-
sive applications in various research fields [16, 17]. Each technol-
ogy has distinct advantages. PacBio HiFi sequencing achieves im-
pressively high sequencing accuracy (99.8%, >Q30), comparable
to that of Illumina sequencing (99.9%), and provides an average
read length of 13.5 kb (although this varies depending on the frag-
mentation step) [18]. In contrast, ONT enables real-time analy-
sis, portability, cost-effectiveness, and “ultra-long” reads exceed-
ing 100 kb [19]. However, many studies have reported that ONT ex-
hibits higher sequencing error rates than other sequencing tech-
nologies [20, 21].

A previous comprehensive analysis reported that approxi-
mately half of all sequencing errors occur in STR regions [22],
which complicates downstream analyses that require accurate
assessments of STR lengths (i.e., number of repeats). For exam-
ple, indel errors in homopolymer regions can critically affect gene
calling and protein prediction by introducing false frameshift
events in coding sequences [23]. In an effort to improve sequenc-
ing accuracy, ONT has progressively updated flowcells, sequenc-
ing kits, and basecalling programs. One of the most notable im-
provements was seen after upgrading from the R9.4.1 flowcell
(read accuracy Q17) to the R10.4.1 flowcell (read accuracy Q21),
which greatly reduced the number of errors [24, 25]. Furthermore,
the recent introduction of the ligation sequencing kit V14, de-
signed to achieve single-pass modal accuracy of >Q20, has fur-
ther improved ONT sequencing accuracy [25]. Nevertheless, the
high sequencing error rate of ONT in low-complexity regions re-
mains a significant challenge, and a comprehensive study of ONT
error profiles in STR regions is still lacking.

Despite these challenges, numerous bioinformatic tools have
been developed to analyze STR regions from ONT data. These
tools can be grouped into 2 categories based on the type of in-
put file: electric signal-based tools, which analyze STRs directly
from the raw electric current data (e.g., FAST5 or PODS5 files), and
sequence-based tools, which analyze STRs from the basecalled
data (e.g., FASTQ or BAM files) [26]. Although each group of tools
has been successfully applied to its respective areas of interest,
many are no longer maintained or have certain limitations. For ex-
ample, electric signal-based tools such as WarpSTR [27], DeepRe-
peat [28], STRique [29], and NanoSatellite [30] require FASTS files,
which are often unavailable in public datasets. Additionally, many
electric signal-based tools are incompatible with the newly intro-
duced POD5 format, which is the current output format of ONT.
In contrast, while sequence-based tools are more versatile in this
aspect, many rely on discontinued dependencies. For instance,
NanoSTR [31] requires Porechop (RRID:SCR_016967), which was
officially discontinued as of October 2018, and PacmonSTR [32]
requires BLASR (RRID:SCR_000764), which is also no longer main-
tained. Furthermore, many sequence-based tools do not support
multithreading, severely limiting their scalability. Notably, none of
these tools, including well-maintained tools such as Straglr [33],
NanoRepeat [34], and tandem genotypes [35], have been tested
for estimating mononucleotide repeats, which are the most error-
prone regions in ONT [22].

In this study, we performed a comprehensive analysis of ONT
error profiles in STR regions using 3 publicly available ONT se-
quencing datasets (Supplementary Table S1). We centered our
analysis on the T2T-CHM13 dataset (generated using R9.4.1 flow-
cells) because of its high sequencing depth (~120x) and the avail-
ability of the T2T-CHM13 reference genome, which serves as the
ground truth. The near homozygosity of the CHM13 cell line

removes the need to consider biallelic STR signals, enabling a
straightforward analysis. To validate our findings and translate
them to the current R10.4.1 flowcell version, we incorporated 2
additional datasets of the HG002 genome, one generated using
the R9.4.1 flowcell and another using the R10.4.1 flowcell, both
publicly available through EPI2ME. These HGO02 datasets are re-
ferred to as the “HG002 R9.4.1 dataset” and the “HG002 R10.4.1
dataset” throughout the article. The HG002 R10.4.1 dataset was
generated using the V14 kit (SQK-LSK114), allowing us to explore
the error profile of the most up-to-date ONT configuration. Un-
less otherwise specified, (i) analyses of the R9.4.1 STR error pro-
file were performed using the CHM13 dataset, and (ii) the R9.4.1
data presented in this article were basecalled with the Guppy
v6.5.7 high-accuracy (HAC) model, whereas the R10.4.1 data were
basecalled with the Dorado v8.1.0 HAC model. Finally, we present
NanoMnT (RRID:SCR_026210), a lightweight Python-based tool
that performs error correction for ONT reads in STR regions and
estimates STR allele size. We demonstrate the utility of our find-
ings by identifying MSI status of 4 cancer cell lines from the Sin-
gapore Nanopore Expression Project (SG-NEx) dataset [36] and 15
colorectal cancer (CRC) organoids [37] using NanoMnT.

Methods
Identification of STR regions

We employed Krait (v1.3.3, default settings, except the minimum
repeat length requirement for 1-bp repeat STRs has been low-
ered to 10 bp) [38], an ultrafast bioinformatic program designed
to identify STRs from genomes via brute-force search algorithm
2 described by Sokol et al. [39], to search for STR regions within
the T2T-CHM13 (v2.0) genome and the HG0O02 (maternal genome,
v1.0.1) genome.

1. T2T-CHM13

Running Krait on the T2T-CHM13 genome (v2.0) resulted in an
initial set of 2,103,586 STR regions. Because many 1-bp/2-bp/3-
bp repeat STR regions were flanked by low-complex flanking se-
quences that closely resembled the STR sequences, 1-bp, 2-bp,
and 3-bp repeat STR regions whose flanking sequences had exces-
sively low k-mer diversity (see “Calculation of k-mer diversity” in
Methods) were filtered out (k-mer < 2.5 for 1-bp repeat, < 2.0 for 2-
bp repeat, < 5.0 for 3-bp repeat), as they may introduce ambiguity
when measuring STR repeat sizes. This resulted in 1,288,130 STR
regions being left. Subsequently, regions with a read orientation-
specific coverage of at least 20 (i.e., atleast 20 forward strand reads
or 20 reverse strand reads) were selected, resulting in the final set
of 762,311 STR regions.

2. HG002 (Maternal genome)

First, 1-bp, 2-bp, and 3-bp repeat STR regions were identified
from the HG002 maternal assembly using Krait, resulting in an ini-
tial set of 1,316,436 STR regions. Unlike the CHM13 genome (which
is haploid), the HGO02 genome contains a considerable number of
biallelic STR regions, which complicate the analysis of the ONT
error profile. Therefore, we decided to exclusively use monoal-
lelic STR regions in our analysis by employing LiftOff (v1.6.3, de-
fault parameters) to convert genomic coordinates from HG002 pa-
ternal assembly to HGO02 maternal assembly [40]. During this
process, 72,651 STR regions could not be converted, resulting in
the remaining 1,243,785 regions, of which 493,804 were confirmed
to be monoallelic. Finally, STR regions whose flanking sequences
with low k-mer diversity (same thresholds applied to CHM13 STR
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regions) and regions with coverage lower than 5 (the coverage
threshold was reduced to account for the lower coverage of the
HGO002 dataset compared to the CHM13 dataset) were filtered out,
resulting in the final set of 186,237 STR regions.

Data processing and visualization

After downloading FASTS files and PODS files from sources spec-
ified by the authors, FASTQ files were obtained by employing the
appropriate basecaller for each dataset (Supplementary Table S1).
We aligned the FASTQ files to the reference genomes using min-
imap2 (v2.24-r1122) [41] with -ax map-ont parameters for all
data except for SG-NEx data, where -ax splice was used in-
stead. To reduce misalignments, we filtered out supplementary
reads and reads with a mapping quality score below 60. We
validated the effectiveness of this filtering step by realigning
reads mapped to chromosome 21 back to the reference genome
(Supplementary Fig. S1). Approximately 85% of the reads re-
aligned to chromosome 21, while the remaining reads aligned
elsewhere with markedly low mapping quality scores, close to 0.
Filtering reads with mapping quality score below 60 resulted in
99.4% of accurately mapped reads. Subsequent data analysis and
visualization were performed using Seaborn (0.13.0), Matplotlib
(3.7.1), Pandas (2.0.0), and Numpy (1.22.4). All datasets analyzed
in this study were PCR-free, ensuring the absence of PCR stutters.
Moreover, all major datasets—CHM13 data, HG002, data and SG-
NEx data—provided raw FAST5/PODS files, allowing us to compare
the influence of basecalling programs and their configurations on
STR sequencing accuracy.

Calculation of k-mer diversity

First, the frequency of each k-mer within the given DNA sequence
was counted. The counting process involved sliding a window
across the DNA sequence by 1 nucleotide at a time, extracting all
possible k-mers and storing their frequency in a dictionary data
structure. For example, if the DNA sequence is ATCGC, the 2-mer
counting process produces the following Python dictionary: {AT:
1, TC:1, CG:1, GC:1}.

Then, the k-mer diversity was calculated using the following
expression:

L-(k—1)

ks
i=1

k — mer diversity =

where Lis the length of the given DNA sequence (L — (k — 1) equals
the maximum number of k-mers that can be found in the DNA
sequence), and Fi, B, F, Fi ... represents the frequency of each
found k-mer.

CNN prediction of sequencing accuracy using
flanking sequences

The flanking sequences (6 nucleotides in each direction of the STR,
resulting in 12 nucleotides) were one-hot encoded and converted
into a Numpy array. STR loci with coverage below 40 were dis-
carded, and a training/validation ratio of 9:1 was used with the
remaining loci. Briefly, we used TensorFlow [42] to implement a se-
quential neural network featuring a 1-dimensional convolutional
layer with 48 filters and a kernel size of 2, followed by a flatten-
ing layer and 2 dense layers with 120 and 40 nodes, respectively,
both using ReLU activation. The output layer consisted of a sin-
gle node with a sigmoid activation function. The model used the
Adam optimizer and mean absolute error (MAE) as the loss func-
tion. Training was performed with 20 epochs with a batch size of
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400, with data shuffled at the start of each epoch, ensuring that
the model encounters a random order of data. Finally, we enabled
early stoppage by monitoring validation loss with a patience of 10
epochs to prevent overfitting. Using this model, we predicted the
sequencing accuracy of STR regions using the one-hot encoded
flanking sequences as inputs. Linear regression was performed to
assess the prediction results and visualized using Seaborn’s reg-
plot function, while Pearson correlation values were calculated
using SciPy (1.7.1).

UMAP projection of STR regions

We considered a STR region’s sequencing accuracy to be well pre-
dicted if it satisfied the following expression:

1 . 1
p— 50< (predicted accuracy — actual accuracy) < u + 59

where u is the mean of differences between predicted and ac-
tual accuracies, and o is the standard deviation of these dif-
ferences. The flanking sequences of these well-predicted STR
regions were one-hot encoded and converted into an Anndata
(v0.10.6) and subjected to UMAP visualization [43]. The follow-
ing functions and parameters of Scanpy (1.10.0) were used:
sc.pp.neighbors (adata, n neighbors=15, n pcs=18) and
sc.tl.umap(adata, spread=1) [44].

Identification of “top” and “worst” 20 flanking
sequences of A-repeat STR loci

Confirming the association of flanking sequences of A-repeat
STR loci and sequencing accuracy through CNN prediction and
UMAP visualization, we identified “top” (i.e., demonstrating the
best sequencing accuracy) 20 and “worst” (i.e., demonstrating the
worst sequencing accuracy) 20 flanking sequences of A-repeat
STR (Ax10-Ax14; 2 nucleotides in each direction, totaling 4 nu-
cleotides) by calculating the average sequencing accuracy of STR
loci of each length, with different flanking sequences. To ensure
that the impact of a given flanking sequence on the sequenc-
ing accuracy was consistent, we only included flanking sequences
that were present in more than 10 A-repeats of every length. For
example, although the CG/CA flanking motif was found in more
than 10 Ax10 repeats, it was not found in the A-repeat of other
lengths and thus was not included in our analyses. The results
were visualized using Seaborn’s heatmap function.

Subset of A-repeat STRs that harbor
low-complexity flankings

A subset of STRs that were previously excluded from the main
analysis due to low-complexity flanking sequences (see “Identifi-
cation of STR regions” in Methods) was reintroduced to validate
the association between flanking sequence complexity and STR
sequencing accuracy. Specifically, A-repeat STRs were selected if
the Levenshtein distance between the STR sequence and either
the left or right flanking sequence was below 7. For example, con-
sider the following 2 A-repeat STR loci:

Loci A: 5'-AAAAAAAAAAAC (A)12 GCAATCCATACT-3'
Loci B: 5-TTTTTTTTCCCC (A)12 GCAATCCATACT-3'

Inlocus A, although the Levenshtein distance between the right
flanking sequence and the STR sequence is &, the distance for the
left flanking sequence is 1 and therefore excluded. In contrast, lo-
cus B has a Levenshtein distance of 12 between the left flanking
sequence and the STR sequence and therefore included.
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Benchmarking NanoMnT, NanoRepeat, and
NanoSTR

Six hundred 1-bp repeat STRs and six hundred 2-bp repeat STRs
were incorporated. Unlike NanoRepeat and NanoMnT, NanoSTR
requires the genomic coordinates of STR regions to be based on
the hg38 assembly. Thus, we converted the genomic coordinates
of STR regions from the HG002 maternal assembly to the hg38
assembly using LiftOff. After filtering out loci that could not be
confidently converted, 712 loci remained for 1-bp repeat STRs and
619 loci for 2-bp repeat STRs. The STR loci used for benchmark are
available in Supplementary Table S2. In-house scripts were used
to summarize the outputs of each program.

MSI detection of cancer sequencing datasets

Ax10-Ax14 STR loci with coverage above 30 were used for MSI
identification, as mononucleotide repeats of these lengths have
been shown to be vulnerable to deletion mutations in MMR-
deficient cells [45]. For the SG-NEx dataset, loci that were not cov-
ered in at least 3 of 4 samples were discarded, while for the CRC
organoid WGS dataset, loci that were not covered in at least 10
of 15 samples were discarded. For the “read + loci selection ap-
proach” , we filtered out (i) A-repeat STR loci that had guanine
nucleotides directly next to the A-repeat tracts and (ii) loci whose
allele prominence (calculated by NanoMnT) satisfied the follow-
ing expression:

1 . 1
w— 50 < allele prominence < u + 50

where u is the mean of allele prominences of all genotyped loci,
and o is the standard deviation of these prominences.

Subsequently, we obtained the allele size histogram and calcu-
lated the relative allele size of each STR locus using the following
expression:

=

(Ai —Ri) fi
i=1
where A; is the observed allele, R; is the reference allele (CHM13),
and fi is the frequency of A;. The STR loci used for MSI detection
are available in Supplementary Tables S3 and S4.

Implementation of NanoMnT

NanoMnT provides 3 functions: (i) error correction of reads, (ii)
STR allele size estimation, and (iii) informative loci identification.

1. Error correction of individual reads

NanoMnT collects reads that aligned to the user-provided STR
loci using Pysam (v0.20.0) [46] and realigns them to a modified STR
region that excludes the STR sequence itself, consisting only of
the STR-flanking regions. This approach prevents alignment bias
caused by the reference genome, as minimap? tends to produce
slightly different alignments in STR regions, depending on the
STR sequence length. For each realigned read, the sequences that
aligned to the STR regions are extracted and compared against
a list of possible alleles by calculating the Levenshtein distance.
When defining the list of possible alleles (i.e., number of repeats),
NanoMnT assumes that the allele for a given aligned read falls
between 0 repeats (lower bound) and the longest allele among all
the reads (determined by counting the number of repeats prior to
error correction) plus 5 additional repeats (upper bound). The 5
additional repeats serve as a buffer to account for potential out-
liers. The allele with the minimum Levenshtein distance is chosen

as the most likely allele. If the total Levenshtein distance exceeds
a certain threshold, the read is considered excessively erroneous
and discarded. This process yields corrected STR alleles for each
ONT read, which are then used for subsequent STR allele size es-
timation.

2. Estimation of STR allele size

Using the corrected reads, NanoMnT creates an allele size
histogram for each locus. The user can decide whether to use
all reads or forward/reverse strand reads—which is very benefi-
cial when analyzing A-/T-repeats—when creating allele size his-
togram. To estimate the STR allele size, NanoMnT generates syn-
thetic allele size histograms for each possible allele and calculates
the distance between the observed allele size histogram against
each synthetic allele size histogram. The synthetic histogram with
the minimum distance to the observed histogram is then cho-
sen as the best match. The allele associated with this chosen his-
togram is selected as the most probable STR allele. Finally, SciPy’s
find peak function is used to calculate the prominence of the
observed allele size histogram.

3. Informative loci identification

Given the outputs of NanoMnT (Allele Table and Locus Table,
see Fig. 8A) of paired normal and tumor samples, NanoMnT finds
STR loci that have been sequenced in both samples (namely, com-
monly covered loci) and compares the STR allele size histogram
by calculating the distance between the 2 histograms. This dis-
tance information tells us about the similarity between the STR
allele size histogram of 2 samples; if the similarity is low, this lo-
cus may be an indication of MSI phenotype. Lastly, the “score”
of each STR locus is calculated using the following expression:
locus score = distance(H,, H;) x Peak prominenc of H,, where H, and
Hi are the allele size histogram of normal and tumor samples, re-
spectively. This score informs the reliability of each result.

Results
Distribution of sequencing errors in STR regions

The STR regions analyzed in this study were carefully selected
because many exhibited excessively low-complexity sequences
in their flanking regions, which often introduce alignment bias
and hampers downstream analyses (Methods). The number and
distribution of STRs analyzed in this study are available in
Supplementary Fig. S2A. Note that GC-rich STR could not be ro-
bustly represented in our analyses due to the scarcity of GC-rich
STR in the human genome (Supplementary Fig. S2B).

We first measured the abundance of each type of sequenc-
ing error (deletions, insertions, and substitutions) by counting the
number of errors in ONT reads that aligned to the STR regions
(Fig. 1A). Overall, the error rates were higher in STRs with shorter
repeat units, with 1-bp repeats exhibiting the highest rate. Indel
errors accounted for most of the sequencing errors (96%, 73%, and
55% for 1-bp, 2-bp, and 3-bp repeats, respectively). Among these,
deletion errors were the most prevalent, particularly in 1-bp re-
peats, where 59% of reads (14,989,206 out of 25,392,291) contained
at least 1 deletion, aligning with previous reports [20, 22, 24].

To provide a more practical analysis of STR error profile, we
performed rudimentary polishing of sequencing errors using in-
house scripts, as doing so considerably increased the number of
reads that can be analyzed. This was achieved by calculating the
Levenshtein distance between the observed STR sequence and a
list of possible STR sequences, then selecting the STR sequence
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Figure 1: Distribution of ONT sequencing error in STRs. (A) Percentage of errorless reads in 1-bp, 2-bp, and 3-bp repeat STRs (left) and distribution of
sequencing error types (right). The 1-bp repeats with 10 to 30 repeats, 2-bp repeats with 7 to 24 repeats, and 3-bp repeats with 5 to 15 repeats were
analyzed. (B) STR allele size histograms of various lengths of 1-bp, 2-bp, and 3-bp repeat STRs.

with the minimum distance. Reads with distances exceeding 4,
which constituted approximately 2.8% of the total reads, were
discarded. Using these polished reads, we visualized the distri-
bution of STR allele sizes by generating histograms for various
STR alleles. We observed that ONT tended to underestimate STR
sizes, causing some histograms to shift slightly leftward (Fig. 1B,
Supplementary Fig. S3). While many histograms exhibited clear
peaks that matched the actual STR alleles, prominent peaks could
not be generated for 1-bp repeats.

Sequencing accuracy of STR across different
repeat units and lengths

Next, we measured ONT sequencing accuracy for different STR
types. In this study, we define sequencing accuracy as the percentage
of errorless reads (i.e,, reads that do not contain any sequencing
errors within the STR sequence), terms we will use interchange-
ably throughout the article. When conducting this analysis, we

made an important consideration. Given that only 1 strand of the
double-stranded DNA enters the nanopore, the error profiles gen-
erated by the 2 different orientations of reads are probably differ-
ent. For example, the error profile of forward strand reads orig-
inating from an A-repeat STR locus (reads that map to the for-
ward strand of the reference genome) may differ from that of re-
verse strand reads from the same locus (reads that map to the re-
verse strand of the reference genome). This is because the former
set of reads encompasses the sequencing of A-repeats, while the
latter encompasses the sequencing of T-repeats. Thus, we calcu-
lated the sequencing accuracy for each type of STR, based on their
lengths and the repeat units that were actually sequenced by the
nanopore. As a result, we found that the sequencing accuracy var-
ied substantially among different types of STR (Fig. 2A). Among 1-
bp repeats, A-repeats were generally better sequenced than other
1-bp repeats, whereas in 2-bp repeats, AT/TA-repeats were better
sequenced than other 2-bp repeats. However, we emphasize that
this trend only applies in a general sense, as there are considerable
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exceptions (Supplementary Fig. S4). We validated this hierarchy of
sequencing accuracy among repeat units using the HG002 R9.4.1
dataset (Fig. 2B). For STRs with longer repeat units, most STRs dis-
played much better accuracy compared to 1-bp and 2-bp repeat
STRs (Supplementary Fig. S5), although it should be noted that
their scarce nature limited our analysis to their relatively shorter
forms. Moreover, we noticed a substantial variability of sequenc-
ing accuracy among STRs, even those with identical repeat units
and lengths (Fig. 2C).

Relationship between STR sequencing accuracy
and flanking sequences

To explain the variability in sequencing accuracy among identical
STR types (i.e,, STRs with same repeat unit and same length) (as
shown in Fig. 2C), we hypothesized that the flanking sequences
of STRs may influence the sequencing accuracy. We tested this

hypothesis by training a convolutional neural network (CNN) ma-
chine learning model using the flanking sequences of Ax10 STR re-
gions (6 nucleotides for each direction, totaling 12 nucleotides) to
predict the sequencing accuracy of Ax10 STR regions (n = 39,594)
(Fig. 3, Methods). The model displayed considerable predictive ac-
curacy, as shown by the Pearson correlation value of 0.66 (Fig. 3B).
Repeating the same process with either left or right flanking se-
quences yielded markedly lower Pearson correlation values, sug-
gesting that flanking sequences influence the STR sequencing ac-
curacy in both directions (Supplementary Fig. S6A). The STR accu-
racy of 2-bp repeats such as ATx8 (n = 7,660) and ACx8 (n = 5,916)
repeats was also moderately predicted by our model, indicating
that the association between sequencing accuracy and flanking
sequences extends beyond Ax10 to other STR types. However, out-
liers in the CNN prediction suggest that flanking sequences alone
do not fully determine the sequencing accuracy of STR regions.
Although STR regions with identical flanking sequences gener-
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ally exhibit similar sequencing accuracies, noticeable variation re-
mained evident (Supplementary Fig. S6B).

Nonetheless, motivated by this finding, we identified motifs as-
sociated with high or low sequencing accuracy within the CNN
model. We selected Ax10-Ax15 STR regions whose sequencing
accuracies were well predicted by the CNN model and applied
UMAP using the flanking sequences as features (Methods, Fig. 4A).
Mapping sequencing accuracy onto the UMAP revealed an in-
teresting pattern: the sequencing accuracy appeared to be pri-
marily with the nucleotides closest to the A-repeats. Notably, A-
repeats flanked by 2 guanine nucleotides consistently exhibited
poor sequencing accuracy. Furthermore, the distance between

the flanking nucleotides and the A-repeats appeared to be in-
versely proportional to their influence on sequencing accuracy
(Supplementary Fig. S7A). We identified the top 20 motifs and the
worst 20 motifs of A-repeats (defined by the 2 flanking nucleotides
on each side) whose effects on sequencing accuracy were rela-
tively consistent across varying lengths of A-repeats (Fig. 4B, Meth-
ods). Top motifs were enriched with pyrimidine bases, while the
worst motifs were enriched with purine bases (Supplementary
Fig. S7B). These results were validated using the HG002 R9.4.1
dataset (Supplementary Fig. S7C). Finally, to address the poten-
tial bias introduced by filtering STR regions with low-complexity
flanking sequences, we repeated the same analysis using these
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STR regions and obtained similar results (Supplementary Fig. S8,
Methods).

The impact of basecaller on STR sequencing
accuracy

A unique aspect of ONT data analysis is the basecalling process,
which uses machine learning to convert electric signals into nu-
cleotide sequences. Basecallers are regularly updated, allowing
users to reanalyze their data using different versions. To explore
the impact of basecallers on STR sequencing accuracy, we com-
pared the performance of 4 basecaller versions—Guppy v5.0.7,
Guppy v6.0.0, Guppy v6.5.7 (the final Guppy version), and Dorado
v5.2.0—by comparing the sequencing accuracy of Ax10 STR (n =
1,552) and ATx10 STR (n = 102) located in chromosome 1 of the
T2T-CHM13 genome (Fig. 5A). The HAC model was used for all
4 basecaller versions. Guppy v6.5.7 and Dorado v5.2.0 exhibited
similar performances and vastly outperformed the other 2 ver-
sions, highlighting the importance of using the most up-to-date
basecaller. Next, we compared the influence of the HAC model
against the super accuracy (SUP) model of Guppy v6.5.7 and ob-
served considerable improvements (Fig. 5B). Given that the SUP

model is known to offer only marginal improvements over the
HAC model, this improvement was unexpectedly significant. How-
ever, this improvement was not uniform; while 71.5% of Ax10
STR regions were better resolved using the SUP model, the re-
maining 28.5% regions were better resolved with the HAC model
(Fig. 5C). Notably, UMAP analysis of these loci revealed no segrega-
tion based on the basecalling model that best resolved each locus,
suggesting that flanking sequences do not determine the better
model (Supplementary Fig. S9). Nevertheless, in general, choosing
the latest version and model provides significant benefit for STR
analysis.

Base quality score of sequencing error in STR
regions

Next, we examined whether the elevated error rates in STR
regions were reflected in the base quality. First, we compared
the average base quality scores of correctly sequenced reads
against incorrectly sequenced reads and noted marginal differ-
ences (Fig. 6A). However, we observed a significant overestima-
tion of the base quality scores of bases within the STR regions,
regardless of the presence of errors (the average base quality
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score within the entire CHM13 dataset was approximately 20.67).
Upon investigating the distribution of base quality scores of bases
within and adjacent to STR regions (Supplementary Fig. S10A),
we observed bursts of quality scores to abnormally high values.
While this phenomenon was observed in 1-bp, 2-bp, and 3-bp re-
peat STRs, it was most evident in 2-bp repeat STRs. For the ma-
jority of 2-bp repeat STRs, the basecaller consistently assigned a
fixed value of 90 as the base quality score for bases within the
STR regions. Figure 6B shows the base quality score distribution
within an ACx12 STR locus (chr10:25,491,367-25,491,390, T2T-
CHM13v2.0), which demonstrates the typical base quality score
distribution within 2-bp repeat STR regions. Notably, such quality
score bursts were not observed in 4-bp, 5-bp, and 6-bp repeat STR.

We also examined the base quality scores of sequencing er-
rors to assess their potential utility in sequencing error infer-
ence. The overall base quality scores of substitution errors within
the STR regions were markedly lower than those of the correct
bases (Fig. 6C). In contrast, the differences between base qual-
ity scores between correctly sequenced reads and reads har-
boring indel errors were unnoticeable, which was disappoint-
ing, considering that indel errors accounted for most sequenc-
ing errors (Supplementary Fig. S10B). We validated these find-
ings by repeating the same analysis on the HG002 R9.4.1 dataset
(Supplementary Fig. S11).

STR error profile of R10.4.1 flowecell

We expanded our analysis by comparing the HG002 R10.4.1
dataset with the HGO02 R9.4.1 dataset, incorporating reads that
mapped to 1-bp, 2-bp, and 3-bp repeat STRs. The error pro-
file of R10.4.1 resembled that of R9.4.1 (Fig. 7A). Although in-
del errors still accounted for most sequencing errors (91%),
R10.4.1 demonstrated significant improvement over its predeces-
sor across nearly all 3 STR types, particularly for the GC-rich STR
(Fig. 7B). We performed similar analyses performed throughout
the study on the HG002 R10.4.1 dataset and show that all the
topics discussed in this article—sequencing accuracy of various
STR types, impact of basecallers, and the association of flank-
ing sequences with sequencing accuracy—are largely maintained
in R10.4.1 as well (Supplementary Figs. S12-S14). Notably, un-
like with R9.4.1 (Fig. 5C), the advantages of the SUP model over
the HAC model (Dorado v8.1.0) were more prominent and con-
sistent, with 92.99% of Ax12 STR loci showing improvements
(Supplementary Fig. S12B).

Development of NanoMnT

Although existing STR analysis tools discussed in the Introduc-
tion section excel in genotyping 3-bp, 4-bp, 5-bp, and 6-bp repeats,
they are not designed for analyzing 2-bp and, especially, 1-bp re-
peats. Thus, we developed NanoMnT, a lightweight Python-based
tool that (i) corrects STR sequencing errors for ONT reads, (ii) es-
timates allele sizes of user-specified STR loci using the corrected
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reads, and (iii) searches for informative STR loci given the out-
put files for paired normal and tumor samples (Methods, Fig. 8A).
Using the HG002 R9.4.1 dataset, we tested the performance of
NanoMnT against NanoRepeat and NanoSTR and confirmed that
NanoMnT provides better STR allele size estimation for monoal-
lelic 1-bp repeats and 2-bp repeats (Fig. 8B, Supplementary Fig.
S15A). NanoMnT provides the prominence of the allele histogram
peak, which can be used as a quality measure, with high peak
prominence generally corresponding to confident allele estima-
tion results (Fig. 8C, Supplementary Fig. S15B). When estimating
Ax10 repeats, selectively using reads based on their sequencing
orientation (e.g., forward strand reads for A-repeat STRs and re-
verse strand reads for T-repeat STRs) improves accuracy from 55%
(without read selection) to 78% (Supplementary Fig. S15C). This
accuracy can be further increased to 85% by excluding loci flanked
by guanine nucleotides. These results highlight the practicability
of our findings.

Next, we evaluated the impact of sequencing coverage and
the flowcell version on NanoMnT performance by using inputs
of varying sequencing parameters (Fig. 9). The HG002 R9.4.1 and
HG002 R10.4.1 datasets were used to compare the 2 flowcell ver-
sions. STR allele estimation with the R10.4.1 data produced more
accurate results for both 1-bp repeat STR (44% more accurate on

average) and 2-bp repeat STR (23% more accurate on average), re-
flecting the advancements introduced by the R10.4.1 flowcell and
the V14 chemistry. This improvement was especially pronounced
in 2-bp repeat STR regions, where R10.4.1 maintained consistently
high accuracy even for longer repeat lengths. Coverage was also an
important factor that affected allele estimation results for R10.4.1
data. As expected, higher coverage led to more accurate results.

MSI detection of cancer samples from ONT data
using NanoMnT

We integrated our findings into a biological context by identify-
ing MSI status of cancer samples from the bulk RNA sequencing
dataset created by SG-NEx [36]. Among the many types of ONT
sequencing datasets provided by SG-NEx, we chose the PCR-free
direct cDNA sequencing data to ensure the absence of PCR stut-
ter. Conventionally, the MSI status is determined by comparing
the STR allele size histograms of the tumor sample with those
of the corresponding normal sample. Unfortunately, due to the
lack of matched normal sample, we used the CHM13 genome as
the substitute normal sample. We calculated the relative allele
sizes of STR loci and compared their distribution among sam-
ples to identify MSI and microsatellite stable (MSS) cancers (Meth-
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ods). To showcase the importance of bioinformatics strategies for
analyzing ONT data, we compared the MSI identification results
derived from 3 distinct versions of FASTQ data obtained from
the same sample: (i) raw FASTQ files provided by SG-NEx, which
were basecalled using Guppy version 3.2.10; (ii) data re-basecalled
using the latest version of Guppy, version 6.5.7 (HAC); and (iii)
data re-basecalled using Guppy version 6.5.7 (HAC), while apply-
ing read selection and the STR loci selection process to achieve
better accuracy (Fig. 10A, Methods). Overall, the STR allele sizes
of the MSI cell line were shorter than those of the MSS cell lines,
aligning with previous reports that deletion mutations predom-
inate in mononucleotide repeats within MSI [45]. While simply
re-basecalling the data with Guppy v6.5.7 was enough in sepa-
rating the STR allele profiles of the MSI cell line from those of the
MSS cell lines, the read selection and/or loci selection process gave
markedly better results (Fig. 10B).

We performed a similar analysis on the CRC organoid dataset
created by Pickles et al. [37], who conducted WGS on 15 primary
CRC organoids, each labeled with MMR status and consensus
molecular subtype (CMS) (Fig. 10C). Although we could not re-
basecall this dataset with the latest basecaller because the raw
FASTS/PODS files were unavailable, we still showed that dMMR
status could be readily identified, except for samples 064 and 080.
Although these 2 discordant results may be false positives, they

could also reflect the intratumoral heterogeneity of CRC. Indeed,
several studies have reported coexistence of CMS1—which is al-
most exclusively enriched in MSI CRC—and other CMS CRC within
individual patients [47-49].

Discussion

The capacity of ONT to generate long reads, along with its porta-
bility and versatility, makes it an attractive approach in many
research fields. However, the high error rate of ONT in low-
complexity regions hinders its application in STR-related fields.
This study provides a comprehensive overview of ONT sequencing
profiles in STR regions by measuring the abundance of sequenc-
ing errors in various STR types and identifying factors that influ-
ence STR sequencing accuracy. Indels were responsible for most
sequencing errors, with deletions being more prevalent than in-
sertions. In addition, we observed a substantial overestimation of
base quality scores in STR regions, which may suggest that the
basecaller machine learning models are not properly tailored for
STR regions. While base quality scores of substitution error bases
and correct bases differed significantly—suggesting the potential
of base quality score in inferring substitution errors—we did not
observe such difference between indel errors and correctly se-
quenced bases, which is unfortunate, considering the abundance
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Figure 9: NanoMnT performance across flowcell versions and coverage. Percentage of correct allele estimation for 1-bp repeat and 2-bp repeat STRs by
NanoMnT across varying sequencing coverages and flowcell types. The HG002 R9.4.1 dataset and the HG002 R10.4.1 dataset were employed for this
benchmark. The upper 2 plots compare NanoMnT performance between the 2 flowcells, while the lower 2 plots illustrate the impact of sequencing

coverage (10x, 30x, 60x) on allele estimation accuracy.

of indel errors. We also compared the STR error profiles between
the R10.4.1 and R9.4.1 flowcells and observed a significant im-
provement in the R10.4.1 flowcell. Although the overall frequency
of each type of sequencing error was similar between the 2 flow-
cells (with indels comprising the majority), the total number of
errors was markedly reduced in the R10.4.1 flowcell. Conse-
quently, as shown in Fig. 9, allele estimation accuracy for both
1-bp repeat and 2-bp repeat STR loci was substantially enhanced.

In this study, we identified 3 factors that influence the ONT se-
quencing accuracy of STR. First, the sequencing accuracy of STRs
was heavily influenced by the repeat unit of the sequenced STR,
specifically the repeat units that entered the nanopores. This find-
ing suggests a strategic approach when analyzing STR from ONT
data: preferential usage of reads with specific orientation over
reads with opposite orientation may achieve superior accuracy,
given that the sequencing depth is sufficiently high. This find-
ing was consistently observed in both versions of flowcells (R9.4.1
and R10.4.1) and basecalling programs, indicating that the elec-
tric signals associated with some repeat units may be intrinsi-
cally more resolvable for ONT compared to others. Second, flank-
ing sequences were also associated with the sequencing accu-
racy of STR regions, implying that careful selection of STR loci
based on their flanking sequences may help mitigate the high er-
ror rate of ONT. For example, A-repeats with purine-rich flanking
sequences were linked to worse sequencing accuracy compared
to A-repeat with pyrimidine-rich flanking sequences. This could
be due to the high similarity of electric signals produced by the

A-repeats and the purine-rich flanking sequences. Third, we high-
lighted the significance of the basecaller version, which is possi-
bly the most influential factor of sequencing accuracy, as shown
in Fig. 5. Therefore, we encourage researchers who have previ-
ously generated ONT sequencing data to re-basecall their data
using the latest basecaller for STR-related analyses such as MSI
identification.

We introduced NanoMnT, a lightweight Python-based tool that
performs error correction in STR regions by choosing the most par-
simonious allele (i.e, allele with the minimum Levenshtein dis-
tance compared to the observed allele) and genotyping STR re-
gions using these corrections. Although existing tools serve simi-
lar purposes, none of them have been designed to genotype 1-bp
and 2-bp repeat STR. Instead, to the best of our knowledge, most
tools are designed to genotype STR with longer repeat units to
study areas such as neurological disease [34] and forensics [31].
Benchmarking analyses demonstrate that NanoMnT provides su-
perior STR allele estimation for monoallelic 1-bp and 2-bp repeat
STRloci. By applying NanoMnT on 2 cancer datasets, we were able
to identify MSI status of various cancer samples. However, we ac-
knowledge a major caveat of NanoMnT: NanoMnT lacks the capa-
bility to phase multiple alleles, making it unsuitable for analyzing
polyallelic STR loci. If heterozygosity is expected, we encourage
users to examine NanoMnT output metrics (e.g., peak prominence
or allele histogram visualizations) or to use a different tool capa-
ble of detecting heterozygotic STR alleles, such as NanoRepeat,
NanoSTR, or WarpSTR.
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(C) Average STR allele sizes of 15 CRC samples visualized by bar plots, with each sample colored by its reported CMS type.

We acknowledge several limitations of this study. First, our
study was solely focused on perfect tandem repeats, excluding
many types of repeats such as compound repeats and imperfect
tandem repeats. Future studies will be needed to assess the per-
formance of ONT in analyzing these types of repeats. Second,
although we identified certain motifs that are enriched in well-
/poorly sequenced A-repeat STR, we failed to provide a compre-
hensive mechanism that explains the influence of flanking se-
quences on STR sequencing accuracy. Also, the CNN machine
learning model did not exhibit optimal predictive accuracy, indi-
cating the presence of additional factors that we could not de-
tect and/or the stochastic nature of ONT error profile. We note
that the lack of diversity of flanking sequences within the human
genome—since a major portion of A-/T-repeat STR originates from
mobile genetic elements such as Alu elements—may have exac-
erbated the CNN prediction results. Thus, using a sufficiently di-

verse set of flanking sequences may improve our understanding
of the association between flanking sequences and sequencing ac-
curacy. Lastly, while NanoMnT outperforms existing tools in esti-
mating 1-bp repeat and 2-bp repeat STR loci, its overall accuracy
remains suboptimal for 1-bp repeat STRs. This limitation is ex-
pected to improve as ONT continues to update its flowcells and
enhance sequencing accuracy.

Availability of Source Code and
Requirements

Project name: NanoMnT

Project homepage: https://github.com/18parkky/NanoMnT
Operating systems: Tested on Ubuntu, CentOS 7, and macOS
(Sonoma 14.1.2)

Programming language: Python
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https://github.com/18parkky/NanoMnT

Other requirements: Python 3.x, Matplotlib>3.7.1, Numpy=>1.20.3,
Pysam=>0.20.0, Pandas>2.0.0, Scipy>1.7.1, Seaborn>0.13.0
License: MIT

RRID: RRID:SCR_026210

bio.tools ID: nanomnt

Additional Files

Supplementary Fig. S1. (A) Percentage of chromosomes which
reads (of the CHM13 dataset, whose primary alignments aligned
to chromosome 21) realigned to. (B) Mapping quality distribution
of 2 groups of the realigned reads: reads that mapped back to chro-
mosome 21 and reads that mapped elsewhere. (C) Distribution of
the number of alignments per read. For example, 1 indicates thata
read aligned to a single region, and 2 indicates that a read aligned
to 2 different regions.

Supplementary Fig. S2. (A) Number of STRs analyzed in this study.
(B) Percentage of 1-bp/2-bp repeat STRs by repeat units.
Supplementary Fig. S3. STR allele size histograms of various
lengths of 4-bp, 5-bp, and 6-bp repeat STR.

Supplementary Fig. S4. Distribution of forward strand sequenc-
ing accuracy (i.e., sequencing accuracy calculating using only for-
ward strand reads) minus reverse strand sequencing accuracy in
Ax12 STRs. Of Ax12 STR loci, 21.7% exhibited better sequencing
accuracy when using reverse strand reads, while the remaining
78.3% of Ax12 STR loci exhibited the opposite.

Supplementary Fig. S5. Sequencing accuracy of 3-bp, 4-bp, 5-bp,
and 6-bp repeat STRs. Synonymous STR types (e.g., ACG, CGA, GAC
repeats) were grouped together and represented by the “represen-
tative” repeat unit (e.g., ACG repeat). STRs with at least 30 obser-
vations were included in this plot. The colorbar next to each figure
represents the sequencing accuracy.

Supplementary Fig. S6. (A) Prediction of sequencing accuracy
of Ax10 STRs using left or right flanking sequences as inputs.
(B) Standard deviation of sequencing accuracy of Ax10 STRs
that share the identical flanking sequences, compared against
randomly sampled Ax10 STRs, demonstrating that flanking se-
quences indeed influence the sequencing accuracy of A-repeat
STRs.

Supplementary Fig. S7. (A) Sequencing accuracy of A-repeat STRs
that possesses specific pairs of nucleotides in specific distances
within their flanking sequences. The influence of nucleotide pair
on sequencing accuracy is proportionate to its proximity to A-
repeat STR. (B) Sequencing accuracy of A-repeat STRs based on
the number of purine counts in their flanking sequences of 4 nu-
cleotides (2 nucleotides in each direction). (C) Sequencing accu-
racy of A-repeat STRs measured from the HG002 R9.4.1 dataset.
A-repeat STRs that were flanked by the motifs identified in the
CHM13 dataset (see the x-axis of Fig. 4B) are shown.
Supplementary Fig. S8. (A) Sequencing accuracy (percentage of
errorless reads) of A-repeat STRs with low-complex (LC) flanking
sequences that are flanked by motifs shown in Fig. 4B. Each col-
umn represents a motif that flanks the A-repeat STR, and each
row represents the sequencing accuracy of A-repeat STRs with
different numbers of repeats. (B) Average sequencing accuracy of
Ax10-Ax13 STRs with LC flanking sequences (converted to per-
centile), where each dot represents A-repeat STRs with different
flanking sequence motifs. (C) Relationship between purine counts
of A-repeat STRs with LC flanking sequences and sequencing ac-
curacy.

Supplementary Fig. S9. UMAP visualization of A-repeat STRs, cre-
ated by using flanking sequences as features. Each dot represents
an A-repeat locus, colored by sequencing accuracy (upper left),
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better basecalling model (i.e.,, model that generated better results
for the given locus) (upper right), and the most adjacent flanking
sequence (lower left).

Supplementary Fig. S10. (A) Base quality scores of STRs. The 2
vertical lines represent the start and end of the repeat sequences,
while the horizontal lines represent the average base quality of
the CHM13 dataset, highlighting the base quality “burst” observed
within the STR regions of some STR types. (B) Average base quality
score of reads that are presumed to harbor indel errors in STR
regions.

Supplementary Fig. S11. (A) The average base quality of reads in
various STR types observed in the HG002 R9.4.1 dataset, compar-
ing correctly sequenced reads (i.e., reads with no error within STR
region) against incorrectly sequenced reads. The horizontal line
represents the average base quality of the HG002 R9.4.1 dataset.
(B) The base quality “burst” observed in the HG002 R9.4.1 dataset.
(C) Distribution of base quality compared between correctly se-
quenced bases and substitution errors.

Supplementary Fig. S12. (A) Sequencing accuracy of Nx12 and
NNx8 STRs by various repeat units, compared between the HG002
R9.4.1 dataset and the HG0O02 R10.4.1 dataset. (B) Sequencing ac-
curacy of Ax12 STRs observed in the HG002 R10.4.1 dataset, com-
paring the HAC basecalling model with the SUP basecalling model.
Each cross in the scatterplot (left) represents an Ax12 STR locus.
Around 92.99% of Ax12 STRs are better resolved using the SUP
basecaller model, whereas 7.01% of Ax12 STRs are better resolved
using the HAC basecaller model (right).

Supplementary Fig. S13. (HG002 R10.4.1 dataset) Sequencing ac-
curacy of A-repeat STRs that harbor certain motifs in their flank-
ing sequences, ordered by the “best” and “worst” motifs found in
the CHM13 dataset (top) and the HG002 R10.4.1 dataset (bottom).
Supplementary Fig. S14. (A) The average base quality of reads in
various STR types observed in the HGO02 R10.4.1 dataset, compar-
ing correctly sequenced reads (i.e., reads with no error within the
STR region) with incorrectly sequenced reads. The horizontal line
represents the average base quality of the HG002 R10.4.1 dataset.
(B) The base quality “burst” observed in the HG002 R10.4.1 dataset.
(C) Distribution of base quality compared between correctly se-
quenced bases and substitution errors.

Supplementary Fig. S15. (A) NanoMnT, NanoSTR, and NanoRe-
peat genotyping results of three hundred 2-bp repeat STR loci.
(B) STR allele size histograms of 2 example Ax15 loci, one with a
highly prominent peak and the other with a less prominent peak.
The dashed line represents the genotyped STR allele for each lo-
cus.

Supplementary Table S1. Metadata of all datasets used in this
study.

Supplementary Table S2. STR loci used for tool benchmarking.
Supplementary Table S3. STR loci used MSI detection (SG-NEX).
Supplementary Table S4. STR loci used MSI detection (CRC WGS,
Pickles et al.).

Abbreviations

bp: base pair; CMS: consensus molecular subtype; CNN: convolu-
tional neural network; CRC: colorectal cancer; dMMR: mismatch
repair deficiency; HAC: high accuracy; MSI: microsatellite instabil-
ity; MSS: microsatellite stability; NGS: next-generation sequenc-
ing; ONT: Oxford Nanopore Technology; SG-NEx: The Singaporean
Nanopore Expression Dataset; STR: short tandem repeat; SUP: su-
per accuracy; WGS: whole-genome sequencing.
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