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Abstract 

Oxford Nanopore Technology (ONT) sequencing is a third-generation sequencing technology that ena b les cost-effecti v e long-r ead 

sequencing, with broad applications in biological resear c h. How ever, its high sequencing error rate in low-complexity regions hampers 
its applications in short tandem r e peat (STR)–r elated r esear c h. To address this, w e gener ated a compr ehensi v e STR err or pr ofile of 
ONT by anal yzing pub licl y av aila b le Nanopor e sequencing datasets. We show that the sequencing error rate is influenced not only 
by STR length but also by the r e peat unit and the flanking sequences of STR r egions. Inter estingl y, certain flanking sequences were 
associated with higher sequencing accuracy, suggesting that certain STR loci are more suitable for Nanopore sequencing compared 

to other loci. While base quality scores of substitution errors within the STR re gions w ere low er than those of corr ectl y sequenced 

bases, suc h patterns w er e not observ ed for indel err ors. Furthermor e , c hoosing the most r ecent basecaller v ersion and using the 
super accuracy model significantly improved STR sequencing accur acy. F inally, w e present NanoMnT, a lightweight Python tool that 
corrects STR sequencing errors in sequencing data and estimates STR allele sizes. NanoMnT lev era ges the characteristics of ONT 

when estimating STR allele size and exhibits superior results for 1-bp- and 2-bp repeat STR compared to existing tools. By inte gr ating 
our findings, we impr ov ed STR allele estimation accuracy for Ax10 r e peats fr om 55% to 78% and up to 85% when excluding loci with 

unfav ora b le flanking sequences. Using NanoMnT, we present the utility of our findings by identifying microsatellite instability status 
in cancer sequencing data. NanoMnT is pub licl y av aila b le at https://github.com/18parkky/NanoMnT . 

Ke yw ords: Oxfor d Nanopor e, long-r ead sequencing, short tandem r e peats, micr osatellite, err or pr ofile, bioinformatics 
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Introduction 

Short tandem repeats (STRs), also known as micr osatellites, ar e 
regions of DNA consisting of a repeated sequence of 1–6 bp [ 1 ] 
and ar e r outinel y emplo y ed as “genetic fingerprints” in a variety 
of fields, such as forensics [ 2 ] and population genetics [ 3 ]. Previous 
r esearc h has shown that STRs are also involved in gene regulation 

b y modulating DN A methylation and providing binding sites for 
tr anscription factors [ 4–6 ]. Mor eov er, owing to their high mutation 

rate [ 7 ], STRs play critical roles in the pathogenesis of numerous 
degener ativ e diseases, including fr a gile X syndr ome, spinal and 

bulbar muscular atrophy (SBMA), and Huntington disease [ 8 ]. The 
major pathomechanisms of repeat expansions are diverse: loss of 
function via transcriptional repression, gain of function of canon- 
icall y tr anslated r epeat-containing pr oteins, and RNA-mediated 

gelation and sequestration of RNA-binding proteins, reflecting the 
functional importance of STR [ 8 ]. In addition, the genomic insta- 
bility of STRs in mismatch repair-deficient (dMMR) cancers mani- 
fests as a molecular phenotype known as microsatellite instability 
(MSI), whic h is gener all y associated with a favor able r esponse to 
cancer imm unother a py due to abundant generation of neoanti- 
gens [ 9 , 10 ]. The allele sizes of STRs, defined by the number of 
r epeats, ar e crucial for understanding their roles in these biolog- 
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cal contexts. Consequentl y, accur ate quantification of STR allele
ize is essential for assessing their functional roles and advancing
ur understanding of their contributions to health and disease. 

Although conventional PCR-based methods for analyzing STRs 
av e pr ov en effectiv e, they ar e limited by the number of STR
egions that can be analyzed simultaneously [ 11 ]. Ho w ever, ad-
ancements in next-generation sequencing (NGS) have signifi- 
antly expanded the number of analyzable STR regions, to the
oint where whole-genome sequencing (WGS) with sufficient se- 
uencing depth can enable the analysis of most STR regions [ 12 ].
ong-read sequencing technologies are generally more advanta- 
eous than short-read sequencing for characterizing STR regions 
ecause they can span not only the STR sequences but also their
anking sequences . T his ca pability enables r obust r ead align-
ents of STR r egions, whic h is particularly valuable for analyz-

ng STR with complex structur es, suc h as compound and im-
erfect STRs [ 13 ]. In contr ast, short-r ead sequencing often fails
o sequence the flanking sequences of STR r egions, whic h may
esult in producing misalignments . Furthermore , the lengths of
ome STR alleles exceed the read lengths of short-read sequenc-
ng, r equiring longer r eads for accur ate STR allele identification
 14 , 15 ]. 
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PacBio sequencing and Oxford Nanopore sequencing (also re-
erred to as Oxford Nanopore Technologies or ONT) are 2 of the

ost widely used long-read sequencing technologies, with exten-
iv e a pplications in v arious r esearc h fields [ 16 , 17 ]. Eac h tec hnol-
gy has distinct adv anta ges. P acBio HiFi sequencing ac hie v es im-
r essiv el y high sequencing accuracy (99.8%, > Q30), comparable
o that of Illumina sequencing (99.9%), and provides an av er a ge
ead length of 13.5 kb (although this varies depending on the frag-

entation step) [ 18 ]. In contrast, ONT enables real-time analy-
is , portability, cost-effectiveness , and “ultr a-long” r eads exceed-
ng 100 kb [ 19 ]. Ho w e v er, man y studies have reported that ONT ex-
ibits higher sequencing error rates than other sequencing tech-
ologies [ 20 , 21 ]. 

A pr e vious compr ehensiv e anal ysis r eported that a ppr oxi-
ately half of all sequencing errors occur in STR regions [ 22 ],
hic h complicates downstr eam anal yses that r equir e accur ate
ssessments of STR lengths (i.e., number of repeats). For exam-
le, indel errors in homopolymer regions can critically affect gene
alling and protein prediction by introducing false frameshift
 v ents in coding sequences [ 23 ]. In an effort to impr ov e sequenc-
ng accuracy, ONT has progressively updated flowcells, sequenc-
ng kits, and basecalling pr ogr ams. One of the most notable im-
r ov ements was seen after upgrading from the R9.4.1 flowcell

r ead accur ac y Q17) to the R10.4.1 flo wcell (r ead accur acy Q21),
hic h gr eatl y r educed the number of err ors [ 24 , 25 ]. Furthermor e,

he recent introduction of the ligation sequencing kit V14, de-
igned to ac hie v e single-pass modal accuracy of > Q20, has fur-
her impr ov ed ONT sequencing accur acy [ 25 ]. Ne v ertheless, the
igh sequencing error rate of ONT in low-complexity regions re-
ains a significant challenge, and a comprehensi ve stud y of ONT

rr or pr ofiles in STR r egions is still lac king. 
Despite these c hallenges, numer ous bioinformatic tools have

een de v eloped to anal yze STR r egions fr om ONT data. These
ools can be grouped into 2 categories based on the type of in-
ut file: electric signal-based tools, which analyze STRs directly
r om the r aw electric curr ent data (e.g., FAST5 or POD5 files), and
equence-based tools, which analyze STRs from the basecalled
ata (e.g., FASTQ or BAM files) [ 26 ]. Although eac h gr oup of tools
as been successfully applied to its respective areas of interest,
an y ar e no longer maintained or have certain limitations. For ex-

mple, electric signal-based tools such as WarpSTR [ 27 ], DeepRe-
eat [ 28 ], STRique [ 29 ], and NanoSatellite [ 30 ] r equir e FAST5 files,
hic h ar e often unav ailable in public datasets. Additionall y, man y

lectric signal-based tools are incompatible with the ne wl y intr o-
uced POD5 format, which is the current output format of ONT.
n contrast, while sequence-based tools are more versatile in this
spect, man y r el y on discontin ued de pendencies . For instance ,
anoSTR [ 31 ] r equir es Por ec hop ( RRID:SCR _ 016967 ), whic h was
fficially discontinued as of October 2018, and PacmonSTR [ 32 ]
 equir es BLASR ( RRID:SCR _ 000764 ), whic h is also no longer main-
ained. Furthermor e, man y sequence-based tools do not support
 ultithr eading, se v er el y limiting their scalability . Notably , none of

hese tools, including well-maintained tools such as Straglr [ 33 ],
anoRepeat [ 34 ], and tandem genotypes [ 35 ], have been tested

or estimating mononucleotide r epeats, whic h ar e the most err or-
r one r egions in ONT [ 22 ]. 

In this study, we performed a compr ehensiv e anal ysis of ONT
rr or pr ofiles in STR r egions using 3 publicl y av ailable ONT se-
uencing datasets ( Supplementary Table S1 ). We centered our
nalysis on the T2T-CHM13 dataset (generated using R9.4.1 flow-
ells) because of its high sequencing depth ( ∼120 ×) and the avail-
bility of the T2T-CHM13 r efer ence genome, whic h serv es as the
round truth. The near homozygosity of the CHM13 cell line
 emov es the need to consider biallelic STR signals, enabling a
traightforw ar d analysis. To validate our findings and translate
hem to the current R10.4.1 flowcell v ersion, we incor por ated 2
dditional datasets of the HG002 genome, one generated using
he R9.4.1 flowcell and another using the R10.4.1 flowcell, both
ublicl y av ailable thr ough EPI2ME. These HG002 datasets ar e r e-
erred to as the “HG002 R9.4.1 dataset” and the “HG002 R10.4.1
ataset” throughout the article . T he HG002 R10.4.1 dataset was
enerated using the V14 kit (SQK-LSK114), allowing us to explore
he err or pr ofile of the most up-to-date ONT configur ation. Un-
ess otherwise specified, (i) analyses of the R9.4.1 STR err or pr o-
le were performed using the CHM13 dataset, and (ii) the R9.4.1
ata presented in this article were basecalled with the Guppy
6.5.7 high-accur acy (HAC) model, wher eas the R10.4.1 data wer e
asecalled with the Dorado v8.1.0 HAC model. Finally, we present
anoMnT ( RRID:SCR _ 026210 ), a lightweight Python-based tool

hat performs error correction for ONT reads in STR regions and
stimates STR allele size. We demonstrate the utility of our find-
ngs by identifying MSI status of 4 cancer cell lines from the Sin-
a por e Nanopor e Expr ession Pr oject (SG-NEx) dataset [ 36 ] and 15
olorectal cancer (CRC) organoids [ 37 ] using NanoMnT. 

ethods 

dentification of STR regions 

e emplo y ed Krait (v1.3.3, default settings, except the minimum
epeat length requirement for 1-bp repeat STRs has been low-
red to 10 bp) [ 38 ], an ultrafast bioinformatic program designed
o identify STRs from genomes via brute-force search algorithm
 described by Sokol et al. [ 39 ], to search for STR regions within
he T2T-CHM13 (v2.0) genome and the HG002 (maternal genome,
1.0.1) genome. 

1. T2T-CHM13 

Running Krait on the T2T-CHM13 genome (v2.0) resulted in an
nitial set of 2,103,586 STR r egions. Because man y 1-bp/2-bp/3-
p r epeat STR r egions wer e flanked by low-complex flanking se-
uences that closely resembled the STR sequences, 1-bp , 2-bp ,
nd 3-bp repeat STR regions whose flanking sequences had exces-
iv el y low k -mer diversity (see “Calculation of k -mer diversity” in
ethods) were filtered out ( k -mer ≤ 2 . 5 for 1-bp repeat, ≤ 2 . 0 for 2-

p repeat, ≤ 5 . 0 for 3-bp repeat), as they may introduce ambiguity
hen measuring STR repeat sizes . T his resulted in 1,288,130 STR
 egions being left. Subsequentl y, r egions with a read orientation–
pecific cov er a ge of at least 20 (i.e., at least 20 forw ar d str and r eads
r 20 r e v erse str and r eads) wer e selected, r esulting in the final set
f 762,311 STR regions. 

2. HG002 (Maternal genome) 

First, 1-bp , 2-bp , and 3-bp repeat STR regions were identified
rom the HG002 maternal assembly using Kr ait, r esulting in an ini-
ial set of 1,316,436 STR regions. Unlike the CHM13 genome (which
s haploid), the HG002 genome contains a considerable number of
iallelic STR r egions, whic h complicate the anal ysis of the ONT
rr or pr ofile . T her efor e, we decided to exclusiv el y use monoal-
elic STR regions in our analysis by employing LiftOff (v1.6.3, de-
ault parameters) to convert genomic coordinates from HG002 pa-
ernal assembly to HG002 maternal assembly [ 40 ]. During this
r ocess, 72,651 STR r egions could not be conv erted, r esulting in
he remaining 1,243,785 regions, of which 493,804 were confirmed
o be monoallelic. Finall y, STR r egions whose flanking sequences
ith low k -mer diversity (same thresholds applied to CHM13 STR

https://scicrunch.org/resolver/RRID:SCR_016967
https://scicrunch.org/resolver/RRID:SCR_000764
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf013#supplementary-data
https://scicrunch.org/resolver/RRID:SCR_026210
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regions) and regions with coverage lo w er than 5 (the coverage 
threshold was reduced to account for the lo w er coverage of the 
HG002 dataset compared to the CHM13 dataset) were filtered out,
resulting in the final set of 186,237 STR regions. 

Data processing and visualization 

After downloading FAST5 files and POD5 files from sources spec- 
ified by the authors, FASTQ files were obtained by employing the 
a ppr opriate basecaller for each dataset ( Supplementary Table S1 ).
We aligned the FASTQ files to the r efer ence genomes using min- 
imap2 (v2.24-r1122) [ 41 ] with -ax map-ont parameters for all 
data except for SG-NEx data, where -ax splice was used in- 
stead. To reduce misalignments, we filtered out supplementary 
r eads and r eads with a ma pping quality scor e below 60. We 
validated the effectiveness of this filtering step by realigning 
r eads ma pped to c hr omosome 21 bac k to the r efer ence genome 
( Supplementary Fig. S1 ). Appr oximatel y 85% of the r eads r e- 
aligned to c hr omosome 21, while the r emaining r eads aligned 

else wher e with markedly low mapping quality scores, close to 0.
Filtering reads with mapping quality score below 60 resulted in 

99.4% of accur atel y ma pped r eads. Subsequent data anal ysis and 

visualization were performed using Seaborn (0.13.0), Matplotlib 
(3.7.1), Pandas (2.0.0), and Numpy (1.22.4). All datasets analyzed 

in this study wer e PCR-fr ee, ensuring the absence of PCR stutters.
Mor eov er, all major datasets—CHM13 data, HG002, data and SG- 
NEx data—provided raw FAST5/POD5 files, allowing us to compare 
the influence of basecalling pr ogr ams and their configurations on 

STR sequencing accuracy. 

Calculation of k -mer di v ersity 

First, the frequency of each k -mer within the given DNA sequence 
was counted. The counting process involved sliding a window 

across the DNA sequence by 1 nucleotide at a time, extracting all 
possible k -mers and storing their frequency in a dictionary data 
structure . For example , if the DNA sequence is ATCGC, the 2-mer 
counting process produces the following Python dictionary: {AT: 
1, TC:1, CG:1, GC:1}. 

Then, the k -mer diversity was calculated using the following 
expression: 

k − mer diversity = 

L − ( k − 1 ) 
L −1 ∑ 

i =1 
F 2 i 

where L is the length of the given DNA sequence ( L − ( k − 1 ) equals 
the maximum number of k -mers that can be found in the DNA 

sequence), and F 1 , F 2 , F 3 , F 4 . . . r epr esents the fr equency of eac h 

found k -mer. 

CNN prediction of sequencing accuracy using 

flanking sequences 

The flanking sequences (6 nucleotides in eac h dir ection of the STR,
resulting in 12 nucleotides) were one-hot encoded and converted 

into a Numpy array. STR loci with cov er a ge below 40 were dis- 
carded, and a tr aining/v alidation r atio of 9:1 was used with the 
remaining loci. Briefly, we used TensorFlow [ 42 ] to implement a se- 
quential neural network featuring a 1-dimensional convolutional 
layer with 48 filters and a kernel size of 2, followed by a flatten- 
ing layer and 2 dense layers with 120 and 40 nodes, r espectiv el y,
both using ReLU activation. The output layer consisted of a sin- 
gle node with a sigmoid activation function. The model used the 
Adam optimizer and mean absolute error (MAE) as the loss func- 
tion. Training was performed with 20 epochs with a batch size of 
00, with data shuffled at the start of eac h epoc h, ensuring that
he model encounters a random order of data. Finally, we enabled
arl y stoppa ge by monitoring v alidation loss with a patience of 10
poc hs to pr e v ent ov erfitting. Using this model, we predicted the
equencing accuracy of STR regions using the one-hot encoded 

anking sequences as inputs. Linear r egr ession was performed to
ssess the pr ediction r esults and visualized using Seaborn’s reg-
lot function, while Pearson correlation values were calculated 

sing SciPy (1.7.1). 

MAP projection of STR regions 

e considered a STR region’s sequencing accuracy to be well pre-
icted if it satisfied the following expression: 

μ − 1 
2 

σ ≤ ( predicted accuracy − actual accuracy ) ≤ μ + 

1 
2 

σ

here μ is the mean of differences between predicted and ac-
ual accuracies, and σ is the standard deviation of these dif-
erences . T he flanking sequences of these well-predicted STR
 egions wer e one-hot encoded and converted into an Anndata
v0.10.6) and subjected to UMAP visualization [ 43 ]. The follow-
ng functions and parameters of Scanpy (1.10.0) were used: 
c.pp.neighbors(adata, n_neighbors = 15, n_pcs = 18) and 

c.tl.umap(adata, spread = 1) [ 44 ]. 

dentification of “top” and “worst” 20 flanking 

equences of A-repeat STR loci 
onfirming the association of flanking sequences of A-repeat 
TR loci and sequencing accuracy through CNN prediction and 

MAP visualization, we identified “top” (i.e., demonstrating the 
est sequencing accuracy) 20 and “worst” (i.e., demonstrating the 
 orst sequencing accurac y) 20 flanking sequences of A-repeat
TR (Ax10–Ax14; 2 nucleotides in each direction, totaling 4 nu-
leotides) by calculating the av er a ge sequencing accuracy of STR
oci of each length, with different flanking sequences. To ensure
hat the impact of a given flanking sequence on the sequenc-
ng accuracy was consistent, we only included flanking sequences 
hat wer e pr esent in mor e than 10 A-r epeats of e v ery length. For
xample , although the CG/C A flanking motif was found in more
han 10 Ax10 repeats, it was not found in the A-repeat of other
engths and thus was not included in our analyses . T he results
ere visualized using Seaborn’s heatmap function. 

ubset of A-repeat STRs that harbor 
ow-complexity flankings 

 subset of STRs that were previously excluded from the main
nalysis due to low-complexity flanking sequences (see “Identifi- 
ation of STR regions” in Methods) was r eintr oduced to v alidate
he association between flanking sequence complexity and STR 

equencing accur acy. Specificall y, A-r epeat STRs wer e selected if
he Le v enshtein distance between the STR sequence and either
he left or right flanking sequence was below 7. For example, con-
ider the following 2 A-repeat STR loci: 

Loci A: 5 ′ -AAAAAAAAAAAC (A)12 GC AATCC ATACT-3 ′ 

Loci B: 5 ′ -TTTTTTTTCCCC (A)12 GC AATCC ATACT-3 ′ 

In locus A, although the Le v enshtein distance between the right
anking sequence and the STR sequence is 8, the distance for the

eft flanking sequence is 1 and ther efor e excluded. In contr ast, lo-
us B has a Le v enshtein distance of 12 between the left flanking
equence and the STR sequence and ther efor e included. 

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf013#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf013#supplementary-data
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enchmarking NanoMnT, NanoRepeat, and 

anoSTR 

ix hundred 1-bp repeat STRs and six hundred 2-bp repeat STRs
er e incor por ated. Unlik e NanoRe peat and NanoMnT, NanoSTR
 equir es the genomic coordinates of STR regions to be based on
he hg38 assembly. T hus , we con verted the genomic coordinates
f STR r egions fr om the HG002 maternal assembl y to the hg38
ssembly using LiftOff. After filtering out loci that could not be
onfidentl y conv erted, 712 loci r emained for 1-bp r epeat STRs and
19 loci for 2-bp repeat STRs . T he STR loci used for benchmark are
vailable in Supplementary Table S2 . In-house scripts were used
o summarize the outputs of each program. 

SI detection of cancer sequencing datasets 

x10–Ax14 STR loci with cov er a ge abov e 30 wer e used for MSI
dentification, as mononucleotide repeats of these lengths have
een shown to be vulnerable to deletion mutations in MMR-
eficient cells [ 45 ]. For the SG-NEx dataset, loci that were not cov-
red in at least 3 of 4 samples were discarded, while for the CRC
rganoid WGS dataset, loci that were not covered in at least 10
f 15 samples were discarded. For the “read + loci selection ap-
r oac h” , we filter ed out (i) A-r epeat STR loci that had guanine
ucleotides dir ectl y next to the A-r epeat tr acts and (ii) loci whose
llele prominence (calculated by NanoMnT) satisfied the follow-
ng expression: 

μ − 1 
2 

σ ≤ allele prominence ≤ μ + 

1 
2 

σ

here μ is the mean of allele prominences of all genotyped loci,
nd σ is the standard deviation of these prominences. 

Subsequently, we obtained the allele size histogram and calcu-
ated the r elativ e allele size of each STR locus using the following
xpression: 

n ∑ 

i =1 

( A i − R i ) f i 

here A i is the observed allele, R i is the reference allele (CHM13),
nd f i is the frequency of A i . The STR loci used for MSI detection
r e av ailable in Supplementary Tables S3 and S4 . 

mplementation of NanoMnT 

anoMnT provides 3 functions: (i) error correction of reads, (ii)
TR allele size estimation, and (iii) informative loci identification.

1. Err or corr ection of individual r eads 

NanoMnT collects reads that aligned to the user-provided STR
oci using Pysam (v0.20.0) [ 46 ] and realigns them to a modified STR
egion that excludes the STR sequence itself, consisting only of
he STR-flanking regions . T his a ppr oac h pr e v ents alignment bias
aused by the r efer ence genome, as minimap2 tends to produce
lightl y differ ent alignments in STR r egions, depending on the
TR sequence length. For each realigned read, the sequences that
ligned to the STR regions are extracted and compared against
 list of possible alleles by calculating the Le v enshtein distance.
hen defining the list of possible alleles (i.e., number of repeats),
anoMnT assumes that the allele for a given aligned read falls
etween 0 repeats (lower bound) and the longest allele among all
he reads (determined by counting the number of repeats prior to
rr or corr ection) plus 5 additional r epeats (upper bound). The 5
d ditional re peats serve as a buffer to account for potential out-
iers . T he allele with the minimum Levenshtein distance is chosen
s the most likely allele. If the total Le v enshtein distance exceeds
 certain threshold, the read is considered excessively erroneous
nd discarded. This process yields corrected STR alleles for each
NT r ead, whic h ar e then used for subsequent STR allele size es-

imation. 

2. Estimation of STR allele size 

Using the corr ected r eads, NanoMnT cr eates an allele size
istogr am for eac h locus . T he user can decide whether to use
ll reads or forw ar d/reverse strand reads—which is very benefi-
ial when analyzing A-/T-repeats—when creating allele size his-
ogram. To estimate the STR allele size, NanoMnT generates syn-
hetic allele size histograms for each possible allele and calculates
he distance between the observed allele size histogram against
ach synthetic allele size histogram. The synthetic histogram with
he minimum distance to the observed histogram is then cho-
en as the best match. The allele associated with this chosen his-
ogram is selected as the most probable STR allele. Finally, SciPy’s
ind_peak function is used to calculate the prominence of the
bserved allele size histogram. 

3. Informative loci identification 

Given the outputs of NanoMnT (Allele Table and Locus Table,
ee Fig. 8 A) of paired normal and tumor samples, NanoMnT finds
TR loci that have been sequenced in both samples (namely, com-
onl y cov er ed loci) and compar es the STR allele size histogr am

y calculating the distance between the 2 histograms . T his dis-
ance information tells us about the similarity between the STR
llele size histogram of 2 samples; if the similarity is low, this lo-
us may be an indication of MSI phenotype. Lastly, the “score”
f each STR locus is calculated using the following expression:
o cus score = distance ( H n , H t ) × Peak prominenc o f H n , where H n and
 t are the allele size histogram of normal and tumor samples, re-
pectiv el y. This scor e informs the r eliability of eac h r esult. 

esults 

istribution of sequencing errors in STR regions 

he STR regions analyzed in this study were carefully selected
ecause many exhibited excessively low-complexity sequences

n their flanking r egions, whic h often intr oduce alignment bias
nd hampers downstream analyses (Methods). The number and
istribution of STRs analyzed in this study are available in
upplementary Fig. S2 A. Note that GC-rich STR could not be ro-
ustl y r epr esented in our anal yses due to the scarcity of GC-rich
TR in the human genome ( Supplementary Fig. S2 B). 

We first measured the abundance of each type of sequenc-
ng error (deletions , insertions , and substitutions) by counting the
umber of errors in ONT reads that aligned to the STR regions

Fig. 1 A). Ov er all, the err or r ates wer e higher in STRs with shorter
epeat units, with 1-bp repeats exhibiting the highest rate. Indel
rrors accounted for most of the sequencing errors (96%, 73%, and
5% for 1-bp , 2-bp , and 3-bp r epeats, r espectiv el y). Among these,
eletion err ors wer e the most pr e v alent, particularl y in 1-bp r e-
eats, where 59% of reads (14,989,206 out of 25,392,291) contained
t least 1 deletion, aligning with pr e vious r eports [ 20 , 22 , 24 ]. 

To provide a more practical analysis of STR error profile, we
erformed rudimentary polishing of sequencing errors using in-
ouse scripts, as doing so consider abl y incr eased the number of
eads that can be analyzed. This was achieved by calculating the
e v enshtein distance between the observed STR sequence and a
ist of possible STR sequences, then selecting the STR sequence

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf013#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf013#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf013#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf013#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf013#supplementary-data
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with the minimum distance. Reads with distances exceeding 4,
which constituted approximately 2.8% of the total reads, were 
discarded. Using these polished reads, we visualized the distri- 
bution of STR allele sizes by gener ating histogr ams for v arious 
STR alleles. We observed that ONT tended to underestimate STR 

sizes, causing some histograms to shift slightly leftw ar d (Fig. 1 B,
Supplementary Fig. S3 ). While man y histogr ams exhibited clear 
peaks that matched the actual STR alleles, prominent peaks could 

not be generated for 1-bp repeats. 

Sequencing accuracy of STR across different 
repeat units and lengths 

Next, we measured ONT sequencing accuracy for different STR 

types. In this study, we define sequencing accuracy as the percentage 
of errorless reads (i.e., reads that do not contain any sequencing 
errors within the STR sequence), terms we will use interchange- 
abl y thr oughout the article. When conducting this analysis, we 
ade an important consider ation. Giv en that onl y 1 str and of the
ouble-stranded DNA enters the nanopore, the error profiles gen- 
rated by the 2 different orientations of reads are probably differ-
nt. For example, the err or pr ofile of forw ar d strand reads orig-
nating from an A-repeat STR locus (reads that map to the for-
 ar d strand of the reference genome) may differ from that of re-
 erse str and r eads fr om the same locus (r eads that ma p to the r e-
 erse str and of the r efer ence genome). This is because the former
et of reads encompasses the sequencing of A-repeats, while the
atter encompasses the sequencing of T-repeats . T hus , we calcu-
ated the sequencing accuracy for each type of STR, based on their
engths and the repeat units that wer e actuall y sequenced by the
anopore. As a result, we found that the sequencing accuracy var-

ed substantially among different types of STR (Fig. 2 A). Among 1-
p r epeats, A-r epeats wer e gener all y better sequenced than other
-bp r epeats, wher eas in 2-bp r epeats, A T/T A-r epeats wer e better
equenced than other 2-bp repeats. Ho w ever, w e emphasize that
his trend only applies in a general sense, as there are considerable

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf013#supplementary-data
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xceptions ( Supplementary Fig. S4 ). We validated this hier arc hy of
equencing accuracy among repeat units using the HG002 R9.4.1
ataset (Fig. 2 B). For STRs with longer repeat units, most STRs dis-
layed m uc h better accur acy compar ed to 1-bp and 2-bp r epeat
TRs ( Supplementary Fig. S5 ), although it should be noted that
heir scarce nature limited our analysis to their relatively shorter
orms . Moreo ver, we noticed a substantial variability of sequenc-
ng accuracy among STRs, even those with identical repeat units
nd lengths (Fig. 2 C). 

ela tionship betw een STR sequencing accur acy 

nd flanking sequences 

o explain the variability in sequencing accuracy among identical
TR types (i.e., STRs with same repeat unit and same length) (as
hown in Fig. 2 C), we hypothesized that the flanking sequences
f STRs may influence the sequencing accuracy. We tested this
ypothesis by training a convolutional neural network (CNN) ma-
hine learning model using the flanking sequences of Ax10 STR re-
ions (6 nucleotides for each direction, totaling 12 nucleotides) to
redict the sequencing accuracy of Ax10 STR regions ( n = 39,594)

Fig. 3 , Methods). T he model displa yed consider able pr edictiv e ac-
urac y, as sho wn b y the P earson corr elation v alue of 0.66 (Fig. 3 B).
epeating the same process with either left or right flanking se-
uences yielded markedly lo w er P earson corr elation v alues, sug-
esting that flanking sequences influence the STR sequencing ac-
uracy in both directions ( Supplementary Fig. S6 A). The STR accu-
acy of 2-bp repeats such as ATx8 ( n = 7,660) and ACx8 ( n = 5,916)
epeats was also moderately predicted by our model, indicating
hat the association between sequencing accuracy and flanking
equences extends beyond Ax10 to other STR types. Ho w e v er, out-
iers in the CNN prediction suggest that flanking sequences alone
o not fully determine the sequencing accuracy of STR regions.
lthough STR regions with identical flanking sequences gener-

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf013#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf013#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf013#supplementary-data
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ally exhibit similar sequencing accuracies, noticeable variation re- 
mained evident ( Supplementary Fig. S6 B). 

Nonetheless, motivated by this finding, we identified motifs as- 
sociated with high or low sequencing accuracy within the CNN 

model. We selected Ax10–Ax15 STR regions whose sequencing 
accur acies wer e well pr edicted by the CNN model and applied 

UMAP using the flanking sequences as features (Methods, Fig. 4 A).
Mapping sequencing accuracy onto the UMAP revealed an in- 
teresting pattern: the sequencing accuracy appeared to be pri- 
marily with the nucleotides closest to the A-r epeats. Notabl y, A- 
re peats flank ed by 2 guanine nucleotides consistently exhibited 

poor sequencing accur acy. Furthermor e, the distance between 
he flanking nucleotides and the A-repeats a ppear ed to be in-
 ersel y pr oportional to their influence on sequencing accur acy
 Supplementary Fig. S7 A). We identified the top 20 motifs and the
orst 20 motifs of A-repeats (defined by the 2 flanking nucleotides
n each side) whose effects on sequencing accuracy were rela-
iv el y consistent across varying lengths of A-repeats (Fig. 4 B, Meth-
ds). Top motifs were enriched with pyrimidine bases, while the
 orst motifs w er e enric hed with purine bases ( Supplementary
ig. S7 B). These results were validated using the HG002 R9.4.1
ataset ( Supplementary Fig. S7 C). Finally, to address the poten-
ial bias introduced by filtering STR regions with low-complexity 
anking sequences, we repeated the same analysis using these 

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf013#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf013#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf013#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf013#supplementary-data
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TR regions and obtained similar results ( Supplementary Fig. S8 ,
ethods). 

he impact of basecaller on STR sequencing 

ccuracy 

 unique aspect of ONT data analysis is the basecalling process,
hic h uses mac hine learning to conv ert electric signals into nu-

leotide sequences. Basecallers are regularly updated, allowing
sers to r eanal yze their data using differ ent v ersions. To explor e
he impact of basecallers on STR sequencing accurac y, w e com-
ared the performance of 4 basecaller versions—Guppy v5.0.7,
upp y v6.0.0, Gupp y v6.5.7 (the final Guppy v ersion), and Dor ado
5.2.0—by comparing the sequencing accuracy of Ax10 STR ( n =
,552) and ATx10 STR ( n = 102) located in c hr omosome 1 of the
2T-CHM13 genome (Fig. 5 A). The HAC model was used for all
 basecaller versions. Guppy v6.5.7 and Dorado v5.2.0 exhibited
imilar performances and v astl y outperformed the other 2 ver-
ions, highlighting the importance of using the most up-to-date
asecaller. Next, we compared the influence of the HAC model
gainst the super accuracy (SUP) model of Guppy v6.5.7 and ob-
erv ed consider able impr ov ements (Fig. 5 B). Giv en that the SUP
odel is known to offer only marginal improvements over the
AC model, this impr ov ement was unexpectedl y significant. How-
 v er, this impr ov ement was not uniform; while 71.5% of Ax10
TR r egions wer e better r esolv ed using the SUP model, the r e-
aining 28.5% regions were better resolved with the HAC model

Fig. 5 C). Notabl y, UMAP anal ysis of these loci r e v ealed no segr ega-
ion based on the basecalling model that best r esolv ed eac h locus,
uggesting that flanking sequences do not determine the better
odel ( Supplementary Fig. S9 ). Ne v ertheless, in gener al, c hoosing

he latest version and model provides significant benefit for STR
nalysis. 

ase quality score of sequencing error in STR 

egions 

ext, we examined whether the ele v ated err or r ates in STR
 egions wer e r eflected in the base quality. First, we compar ed
he av er a ge base quality scor es of corr ectl y sequenced r eads
 gainst incorr ectl y sequenced r eads and noted marginal differ-
nces (Fig. 6 A). Ho w e v er, we observ ed a significant ov er estima-
ion of the base quality scores of bases within the STR regions,
egardless of the presence of errors (the average base quality

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf013#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf013#supplementary-data
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score within the entire CHM13 dataset was approximately 20.67).
Upon investigating the distribution of base quality scores of bases 
within and adjacent to STR regions ( Supplementary Fig. S10 A),
we observed bursts of quality scores to abnormally high values.
While this phenomenon was observed in 1-bp , 2-bp , and 3-bp re- 
peat STRs, it was most evident in 2-bp repeat STRs. For the ma- 
jority of 2-bp repeat STRs, the basecaller consistently assigned a 
fixed value of 90 as the base quality score for bases within the 
STR r egions. Figur e 6 B shows the base quality score distribution 

within an ACx12 STR locus (chr10:25,491,367–25,491,390, T2T- 
CHM13v2.0), whic h demonstr ates the typical base quality score 
distribution within 2-bp r epeat STR r egions. Notabl y, suc h quality 
scor e bursts wer e not observ ed in 4-bp , 5-bp , and 6-bp repeat STR.

We also examined the base quality scores of sequencing er- 
rors to assess their potential utility in sequencing error infer- 
ence . T he o v er all base quality scor es of substitution err ors within 

the STR r egions wer e markedl y lo w er than those of the correct 
bases (Fig. 6 C). In contrast, the differences between base qual- 
ity scores between correctly sequenced reads and reads har- 
boring indel errors were unnoticeable, which was disappoint- 
ing, considering that indel errors accounted for most sequenc- 
ing errors ( Supplementary Fig. S10 B). We validated these find- 
ings by repeating the same analysis on the HG002 R9.4.1 dataset 
( Supplementary Fig. S11 ). 
p  

t  

t  
TR error profile of R10.4.1 flowcell 
e expanded our analysis by comparing the HG002 R10.4.1 

ataset with the HG002 R9.4.1 dataset, incor por ating r eads that
apped to 1-bp , 2-bp , and 3-bp repeat STRs . T he error pro-

le of R10.4.1 resembled that of R9.4.1 (Fig. 7 A). Although in-
el errors still accounted for most sequencing errors (91%),
10.4.1 demonstrated significant impro vement o ver its predeces- 
or acr oss nearl y all 3 STR types, particularl y for the GC-ric h STR
Fig. 7 B). We performed similar analyses performed throughout 
he study on the HG002 R10.4.1 dataset and show that all the
opics discussed in this article—sequencing accuracy of various 
TR types , impact of basecallers , and the association of flank-
ng sequences with sequencing accur acy—ar e lar gel y maintained
n R10.4.1 as well ( Supplementary Figs. S12 –S 14 ). Notably, un-
ike with R9.4.1 (Fig. 5 C), the adv anta ges of the SUP model over
he HAC model (Dorado v8.1.0) were more prominent and con-
istent, with 92.99% of Ax12 STR loci showing impr ov ements
 Supplementary Fig. S12 B). 

evelopment of NanoMnT 

lthough existing STR analysis tools discussed in the Introduc- 
ion section excel in genotyping 3-bp , 4-bp , 5-bp , and 6-bp repeats,
hey are not designed for analyzing 2-bp and, especially, 1-bp re-
eats . T hus , we de v eloped NanoMnT, a lightweight Python-based
ool that (i) corrects STR sequencing errors for ONT reads, (ii) es-
imates allele sizes of user-specified STR loci using the corrected

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf013#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf013#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf013#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf013#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf013#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf013#supplementary-data
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 eads, and (iii) searc hes for informativ e STR loci giv en the out-
ut files for paired normal and tumor samples (Methods, Fig. 8 A).
sing the HG002 R9.4.1 dataset, we tested the performance of
anoMnT against NanoRepeat and NanoSTR and confirmed that
anoMnT provides better STR allele size estimation for monoal-

elic 1-bp repeats and 2-bp repeats (Fig. 8 B, Supplementary Fig.
15 A). NanoMnT pr ovides the pr ominence of the allele histogr am
eak, which can be used as a quality measure, with high peak
r ominence gener all y corr esponding to confident allele estima-
ion results (Fig. 8 C, Supplementary Fig. S15 B). When estimating
x10 re peats, selecti vely using reads based on their sequencing
rientation (e.g., forw ar d str and r eads for A-r epeat STRs and r e-
 erse str and r eads for T-r epeat STRs) impr ov es accur acy fr om 55%
without read selection) to 78% ( Supplementary Fig. S15 C). This
ccuracy can be further increased to 85% by excluding loci flanked
y guanine nucleotides . T hese results highlight the practicability
f our findings. 

Next, we e v aluated the impact of sequencing cov er a ge and
he flowcell version on NanoMnT performance by using inputs
f varying sequencing parameters (Fig. 9 ). The HG002 R9.4.1 and
G002 R10.4.1 datasets were used to compare the 2 flowcell ver-

ions. STR allele estimation with the R10.4.1 data produced more
ccur ate r esults for both 1-bp r epeat STR (44% mor e accur ate on
v er a ge) and 2-bp repeat STR (23% more accurate on average), re-
ecting the advancements introduced by the R10.4.1 flowcell and
he V14 chemistry. This improvement was especially pronounced
n 2-bp r epeat STR r egions, wher e R10.4.1 maintained consistently
igh accuracy even for longer repeat lengths . Co verage was also an

mportant factor that affected allele estimation results for R10.4.1
ata. As expected, higher cov er a ge led to mor e accur ate r esults. 

SI detection of cancer samples from ONT data 

sing NanoMnT 

e integrated our findings into a biological context by identify-

ng MSI status of cancer samples from the bulk RNA sequencing
ataset created by SG-NEx [ 36 ]. Among the many types of ONT
equencing datasets provided b y SG-NEx, w e chose the PCR-free
irect cDNA sequencing data to ensure the absence of PCR stut-
er. Conv entionall y, the MSI status is determined by comparing
he STR allele size histograms of the tumor sample with those
f the corresponding normal sample. Unfortunately, due to the

ack of matched normal sample, we used the CHM13 genome as
he substitute normal sample. We calculated the r elativ e allele
izes of STR loci and compared their distribution among sam-
les to identify MSI and microsatellite stable (MSS) cancers (Meth-

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf013#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf013#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf013#supplementary-data
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ods). To showcase the importance of bioinformatics strategies for 
analyzing ONT data, we compared the MSI identification results 
deriv ed fr om 3 distinct v ersions of FASTQ data obtained from 

the same sample: (i) raw FASTQ files provided by SG-NEx, which 

were basecalled using Guppy version 3.2.10; (ii) data re-basecalled 

using the latest version of Guppy, version 6.5.7 (HAC); and (iii) 
data re-basecalled using Guppy version 6.5.7 (HAC), while apply- 
ing read selection and the STR loci selection process to achieve 
better accuracy (Fig. 10 A, Methods). Overall, the STR allele sizes 
of the MSI cell line were shorter than those of the MSS cell lines,
aligning with pr e vious r eports that deletion m utations pr edom- 
inate in mononucleotide repeats within MSI [ 45 ]. While simply 
re-basecalling the data with Guppy v6.5.7 was enough in sepa- 
rating the STR allele profiles of the MSI cell line from those of the 
MSS cell lines, the read selection and/or loci selection process gave 
markedly better results (Fig. 10 B). 

We performed a similar analysis on the CRC organoid dataset 
cr eated by Pic kles et al. [ 37 ], who conducted WGS on 15 primary 
CRC or ganoids, eac h labeled with MMR status and consensus 
molecular subtype (CMS) (Fig. 10 C). Although we could not re- 
basecall this dataset with the latest basecaller because the raw 

FAST5/POD5 files wer e unav ailable, w e still sho w ed that dMMR 

status could be r eadil y identified, except for samples 064 and 080.
Although these 2 discordant results may be false positi ves, the y 
q
ould also reflect the intratumoral heterogeneity of CRC. Indeed,
e v er al studies hav e r eported coexistence of CMS1—which is al-
ost exclusiv el y enric hed in MSI CRC—and other CMS CRC within

ndividual patients [ 47–49 ]. 

iscussion 

he capacity of ONT to generate long reads, along with its porta-
ility and versatility, makes it an attr activ e a ppr oac h in man y

 esearc h fields. Howe v er, the high err or r ate of ONT in low-
omplexity regions hinders its application in STR-related fields.
 his study pro vides a compr ehensiv e ov ervie w of ONT sequencing
rofiles in STR regions by measuring the abundance of sequenc-

ng errors in various STR types and identifying factors that influ-
nce STR sequencing accuracy. Indels wer e r esponsible for most
equencing errors, with deletions being more prevalent than in- 
ertions. In addition, we observed a substantial ov er estimation of

ase quality scores in STR regions, which may suggest that the
asecaller machine learning models are not properly tailored for 
TR regions. While base quality scores of substitution error bases
nd correct bases differed significantly—suggesting the potential 
f base quality score in inferring substitution errors—we did not
bserv e suc h differ ence between indel err ors and corr ectl y se-
uenced bases, which is unfortunate, considering the abundance 
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of indel errors. We also compared the STR error profiles between 

the R10.4.1 and R9.4.1 flowcells and observed a significant im- 
pr ov ement in the R10.4.1 flowcell. Although the ov er all fr equency 
of each type of sequencing error was similar between the 2 flow- 
cells (with indels comprising the majority), the total number of 
err ors was markedl y r educed in the R10.4.1 flowcell. Conse- 
quently, as shown in Fig. 9 , allele estimation accuracy for both 

1-bp repeat and 2-bp repeat STR loci was substantially enhanced.
In this study, we identified 3 factors that influence the ONT se- 

quencing accuracy of STR. First, the sequencing accuracy of STRs 
was heavily influenced by the repeat unit of the sequenced STR,
specifically the repeat units that entered the nanopores . T his find- 
ing suggests a strategic approach when analyzing STR from ONT 

data: pr efer ential usa ge of reads with specific orientation over 
reads with opposite orientation may ac hie v e superior accur acy,
given that the sequencing depth is sufficiently high. This find- 
ing was consistently observed in both versions of flowcells (R9.4.1 
and R10.4.1) and basecalling pr ogr ams, indicating that the elec- 
tric signals associated with some repeat units may be intrinsi- 
call y mor e r esolv able for ONT compar ed to others. Second, flank- 
ing sequences were also associated with the sequencing accu- 
racy of STR regions, implying that careful selection of STR loci 
based on their flanking sequences may help mitigate the high er- 
r or r ate of ONT. For example, A-r epeats with purine-ric h flanking 
sequences were linked to worse sequencing accuracy compared 

to A-repeat with pyrimidine-rich flanking sequences . T his could 

be due to the high similarity of electric signals produced by the 
-repeats and the purine-rich flanking sequences . T hir d, w e high-
ighted the significance of the basecaller v ersion, whic h is possi-
ly the most influential factor of sequencing accuracy, as shown

n Fig. 5 . Ther efor e, we encour a ge r esearc hers who hav e pr e vi-
usl y gener ated ONT sequencing data to r e-basecall their data
sing the latest basecaller for STR-related analyses such as MSI 

dentification. 
We introduced NanoMnT, a lightweight Python-based tool that 

erforms err or corr ection in STR r egions by c hoosing the most par-
imonious allele (i.e., allele with the minimum Levenshtein dis- 
ance compared to the observed allele) and genotyping STR re-
ions using these corrections. Although existing tools serve simi- 
ar purposes, none of them have been designed to genotype 1-bp
nd 2-bp repeat STR. Instead, to the best of our knowledge, most
ools are designed to genotype STR with longer repeat units to
tudy areas such as neurological disease [ 34 ] and forensics [ 31 ].
enc hmarking anal yses demonstr ate that NanoMnT pr ovides su-
erior STR allele estimation for monoallelic 1-bp and 2-bp repeat
TR loci. By a ppl ying NanoMnT on 2 cancer datasets, we were able
o identify MSI status of various cancer samples. Ho w ever, w e ac-
nowledge a major caveat of NanoMnT: NanoMnT lacks the capa-
ility to phase multiple alleles, making it unsuitable for analyzing
olyallelic STR loci. If heterozygosity is expected, we encourage 
sers to examine NanoMnT output metrics (e.g., peak prominence 
r allele histogram visualizations) or to use a different tool capa-
le of detecting heterozygotic STR alleles, such as NanoRepeat,
anoSTR, or WarpSTR. 
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We ac knowledge se v er al limitations of this study. First, our
tudy was solely focused on perfect tandem repeats, excluding
any types of repeats such as compound repeats and imperfect

andem r epeats. Futur e studies will be needed to assess the per-
ormance of ONT in analyzing these types of repeats. Second,
lthough we identified certain motifs that ar e enric hed in well-

poorl y sequenced A-r epeat STR, we failed to pr ovide a compr e-
ensiv e mec hanism that explains the influence of flanking se-
uences on STR sequencing accuracy. Also, the CNN machine

earning model did not exhibit optimal pr edictiv e accur acy, indi-

ating the presence of additional factors that we could not de-
ect and/or the stochastic nature of ONT error profile. We note
hat the lack of diversity of flanking sequences within the human

enome—since a major portion of A-/T-repeat STR originates from
obile genetic elements such as Alu elements—may have exac-

rbated the CNN prediction results . T hus , using a sufficiently di-
erse set of flanking sequences may improve our understanding
f the association between flanking sequences and sequencing ac-
ur acy. Lastl y, while NanoMnT outperforms existing tools in esti-
ating 1-bp repeat and 2-bp repeat STR loci, its overall accuracy

emains suboptimal for 1-bp repeat STRs . T his limitation is ex-
ected to impr ov e as ONT continues to update its flowcells and
nhance sequencing accuracy. 

vailability of Source Code and 

equirements 

roject name: NanoMnT 

r oject homepa ge: https:// github.com/ 18parkky/ NanoMnT 

perating systems: Tested on Ubuntu, CentOS 7, and macOS
Sonoma 14.1.2) 
r ogr amming langua ge: Python 

https://github.com/18parkky/NanoMnT
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Other r equir ements: Python 3.x, Matplotlib > 3.7.1, Numpy > 1.20.3,
Pysam > 0.20.0, Pandas > 2.0.0, Scipy > 1.7.1, Seaborn > 0.13.0 
License: MIT 

RRID: RRID:SCR _ 026210 
bio.tools ID: nanomnt 

Additional Files 

Supplementary Fig. S1. (A) P er centa ge of c hr omosomes whic h 

reads (of the CHM13 dataset, whose primary alignments aligned 

to c hr omosome 21) r ealigned to. (B) Ma pping quality distribution 

of 2 groups of the realigned reads: reads that mapped back to chro- 
mosome 21 and reads that mapped elsewhere. (C) Distribution of 
the number of alignments per read. For example, 1 indicates that a 
read aligned to a single region, and 2 indicates that a read aligned 

to 2 different regions. 
Supplementary Fig. S2. (A) Number of STRs analyzed in this study.
(B) P er centa ge of 1-bp/2-bp r epeat STRs by r epeat units. 
Supplementary Fig. S3. STR allele size histograms of various 
lengths of 4-bp , 5-bp , and 6-bp repeat STR. 
Supplementary Fig. S4. Distribution of forw ar d strand sequenc- 
ing accuracy (i.e., sequencing accuracy calculating using only for- 
w ar d str and r eads) minus r e v erse str and sequencing accur acy in 

Ax12 STRs. Of Ax12 STR loci, 21.7% exhibited better sequencing 
accuracy when using reverse strand reads, while the remaining 
78.3% of Ax12 STR loci exhibited the opposite. 
Supplementary Fig. S5. Sequencing accuracy of 3-bp , 4-bp , 5-bp ,
and 6-bp r epeat STRs. Synon ymous STR types (e.g., A CG , CGA, GAC 

r epeats) wer e gr ouped together and r epr esented by the “r epr esen- 
tativ e” r epeat unit (e.g., ACG repeat). STRs with at least 30 obser- 
v ations wer e included in this plot. The colorbar next to eac h figur e 
r epr esents the sequencing accuracy. 
Supplementary Fig. S6. (A) Prediction of sequencing accuracy 
of Ax10 STRs using left or right flanking sequences as inputs.
(B) Standard deviation of sequencing accuracy of Ax10 STRs 
that share the identical flanking sequences, compared against 
r andoml y sampled Ax10 STRs, demonstrating that flanking se- 
quences indeed influence the sequencing accuracy of A-repeat 
STRs. 
Supplementary Fig. S7. (A) Sequencing accuracy of A-repeat STRs 
that possesses specific pairs of nucleotides in specific distances 
within their flanking sequences . T he influence of nucleotide pair 
on sequencing accuracy is proportionate to its proximity to A- 
repeat STR. (B) Sequencing accuracy of A-repeat STRs based on 

the number of purine counts in their flanking sequences of 4 nu- 
cleotides (2 nucleotides in each direction). (C) Sequencing accu- 
r acy of A-r epeat STRs measur ed fr om the HG002 R9.4.1 dataset.
A-repeat STRs that were flanked by the motifs identified in the 
CHM13 dataset (see the x-axis of Fig. 4 B) are shown. 
Supplementary Fig. S8. (A) Sequencing accurac y (per centage of 
err orless r eads) of A-r epeat STRs with low-complex (LC) flanking 
sequences that are flanked by motifs shown in Fig. 4 B. Each col- 
umn r epr esents a motif that flanks the A-r epeat STR, and eac h 

r ow r epr esents the sequencing accur acy of A-r epeat STRs with 

different numbers of repeats. (B) Average sequencing accuracy of 
Ax10–Ax13 STRs with LC flanking sequences (converted to per- 
centile), wher e eac h dot r epr esents A-r epeat STRs with different 
flanking sequence motifs. (C) Relationship between purine counts 
of A-repeat STRs with LC flanking sequences and sequencing ac- 
curacy. 
Supplementary Fig. S9. UMAP visualization of A-repeat STRs, cre- 
ated by using flanking sequences as featur es. Eac h dot r epr esents 
an A-r epeat locus, color ed by sequencing accur acy (upper left),
etter basecalling model (i.e., model that generated better results 
or the given locus) (upper right), and the most adjacent flanking
equence (lo w er left). 
upplementary Fig. S10. (A) Base quality scores of STRs . T he 2
 ertical lines r epr esent the start and end of the repeat sequences,
hile the horizontal lines r epr esent the av er a ge base quality of

he CHM13 dataset, highlighting the base quality “burst” observed 

ithin the STR regions of some STR types. (B) Av er a ge base quality
core of reads that are presumed to harbor indel errors in STR
egions. 
upplementary Fig. S11. (A) T he a v er a ge base quality of reads in
arious STR types observed in the HG002 R9.4.1 dataset, compar- 
ng corr ectl y sequenced r eads (i.e., r eads with no err or within STR
 egion) a gainst incorr ectl y sequenced r eads . T he horizontal line
 epr esents the av er a ge base quality of the HG002 R9.4.1 dataset.
B) The base quality “burst” observed in the HG002 R9.4.1 dataset.
C) Distribution of base quality compared between corr ectl y se-
uenced bases and substitution errors. 
upplementary Fig. S12. (A) Sequencing accuracy of Nx12 and 

Nx8 STRs by v arious r epeat units, compar ed between the HG002
9.4.1 dataset and the HG002 R10.4.1 dataset. (B) Sequencing ac-
uracy of Ax12 STRs observed in the HG002 R10.4.1 dataset, com-
aring the HAC basecalling model with the SUP basecalling model.
ac h cr oss in the scatter plot (left) r epr esents an Ax12 STR locus.
round 92.99% of Ax12 STRs are better resolved using the SUP
asecaller model, whereas 7.01% of Ax12 STRs are better resolved
sing the HAC basecaller model (right). 
upplementary Fig. S13. (HG002 R10.4.1 dataset) Sequencing ac- 
uracy of A-repeat STRs that harbor certain motifs in their flank-
ng sequences, ordered by the “best” and “worst” motifs found in 

he CHM13 dataset (top) and the HG002 R10.4.1 dataset (bottom).
upplementary Fig. S14. (A) T he a v er a ge base quality of reads in
arious STR types observed in the HG002 R10.4.1 dataset, compar- 
ng corr ectl y sequenced r eads (i.e., r eads with no err or within the
TR r egion) with incorr ectl y sequenced r eads . T he horizontal line
 epr esents the av er a ge base quality of the HG002 R10.4.1 dataset.
B) The base quality “burst” observed in the HG002 R10.4.1 dataset.
C) Distribution of base quality compared between corr ectl y se-
uenced bases and substitution errors. 
upplementary Fig. S15. (A) NanoMnT, NanoSTR, and NanoRe- 
eat genotyping results of three hundred 2-bp repeat STR loci.

B) STR allele size histograms of 2 example Ax15 loci, one with a
ighl y pr ominent peak and the other with a less prominent peak.
he dashed line r epr esents the genotyped STR allele for each lo-
us. 
upplementary Table S1. Metadata of all datasets used in this
tudy. 
upplementary Table S2. STR loci used for tool benchmarking. 
upplementary Table S3. STR loci used MSI detection (SG-NEx). 
upplementary Table S4. STR loci used MSI detection (CRC WGS,
ickles et al.). 
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