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Abstract.  We study the time evolution of the entanglement entropy after 
quantum quenches in Lifshitz free scalar theories, with the dynamical exponent 
z  >  1, by using the correlator method. For quantum quenches we consider 
two types of time-dependent mass functions: end-critical-protocol (ECP) and 
cis-critical-protocol (CCP). In both cases, at early times the entanglement 
entropy is independent of the subsystem size. After a critical time (tc), the 
entanglement entropy starts depending on the subsystem size significantly. 
This critical time tc for z  =  1 in the fast ECP and CCP has been explained well 
by the fast quasi-particle of the quasi-particle picture. However, we find that 
for z  >  1 this explanation does not work and tc is delayed. We explain why tc 
is delayed for z  >  1 based on the quasiparticle picture: in essence, it is due to 
the competition between the fast and slow quasiparticles. At late times, in 
the ECP, the entanglement entropy slowly increases while, in the CCP, it is 
oscillating with a well defined period by the final mass scale, independently of 
z. We give an interpretation of this phenomena by the correlator method. As 
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z increases, the entanglement entropy increases, which can be understood by 
long-range interactions due to z.

Keywords: entanglement entropies, AdS/CFT correspondence
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1.  Introduction

Time evolution of non-equilibrium systems is an important subject in physics such as 
thermalization processes of quantum many body systems and black hole formation 
(see reviews [1, 2]). One well-studied protocol to describe the time evolution process of 
non-equilibrium systems is the quantum quench with a time dependent Hamiltonian 
(see for example [3–5] and figure 1 in this paper). In this case, one can calculate time 
evolution of the system and obtain insights on the time evolution through a measure 
of entanglement.

Typical choices of the time-dependent mass potentials are the ones in the 
end-critical-protocol (ECP) and cis-critical-protocol (CCP) [6]. In the ECP, the mass 
potential is nonzero at early times and approaches to zero at late times as shown in 
figure 1(a). On the other hand, in the CCP, the mass potential is nonzero at t → ±∞ 
and becomes zero at t  =  0 as shown in figure 1(b). The scaling property, the time evo
lution of correlation functions, entanglement measures, and complexity in the ECP and 
CCP were studied in [6–17].

When we consider the time evolution of a pure state due to a unitary time evo
lution operator, the density matrix cannot become a mixed state. However, the reduced 
density matrix of the total system can be the mixed states. After a sucient time, 
this subsystem may show the properties of thermodynamic equilibrium. A measure to 
study these properties is the entanglement entropy, which is defined by von Neumann 
entropy for a reduced density matrix:

SA = −TrAρA log ρA,� (1.1)
where ρA is the reduced density matrix of the subsystem A. If the entanglement entropy 
SA behaves as a thermodynamic entropy of an equilibrium state, one can interpret the 
subsystem A as thermodynamic equilibrium.

The time evolution of the entanglement entropy for an interval in two-dimensional 
conformal field theories (CFT) in a sudden quench, which is a protocol that the mass 
in the Hamiltonian is suddenly changed at t  =  0, is well described by the quasipar-
ticle picture (see, for example, [5, 18–20] and figure 6 in this paper). The basic idea 
is as follows: (i) by a sudden quench, the quasiparticle pairs are generated; (ii) these 
quasiparticles contribute to the change of entanglement entropy after the quench. For 
example, if the final mass after the quench is small enough, the maximum propagation 
speed of the quasiparticles is approximately the speed of light, so the entanglement 

entropy starts depending on subsystem size l from t ∼ l
2
 when l is large compared with 

the initial correlation length6. This result agrees with the analysis of two-dimensional 

6 This will be explained in more detail in section 3.3.
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CFT in a sudden quench. The quasiparticle formula in the sudden quench including the 
quasiparticles with various group velocities was studied in [21, 22].

Instead of systems with the Lorentz symmetry, one can consider the Lifshitz sym-
metry [23], which is the symmetry under a transformation

t → λzt, x → λx,� (1.2)
where z is the dynamical exponent, and λ is a positive scaling factor. For example, the 
Lifshitz symmetry can occur at some critical points in condensed matter systems [24], 
and a quantum gravity model with the Lifshitz symmetry has been proposed in [25]. 
Since Lorentz invariance is broken, the propagation speed of the quasiparticles and 
the behavior of the entanglement entropy in Lifshitz theories may be dierent from 
the ones in Lorentz invariant theories. Thus, it is important to check such dierent 
behavior of the entanglement entropy with the Lifshitz symmetry. The entanglement 
entropy in the Lifshitz theories was studied by field-theoretical methods and holo-
graphic methods in, for example, [26–35]. The time-independent entanglement entropy 
in the Lifshitz free scalar theories was studied in [36–39], and the time dependent 
entanglement entropy in the sudden quench of the Lifshitz free scalar theories was 
studied in [40] with z  >  1 and in [41] with 0  <  z  <  1.

In this paper, we study the time-dependent entanglement entropy on Lifshitz free 
scalar theories with z  >  1 in 1  +  1 dimensional spacetime. We compute the entangle-
ment entropy by a correlator method, which is a computation method for free theories, 
on one-dimensional spacial lattice [18, 42, 43]. In order to obtain a perspective of con-
tinuum field theories from the computations on the lattice, we will take a smaller mass 
than the inverse lattice spacing to suppress cuto eects.

There is a related previous work on this topic in [40], where only the sudden quench 
was considered. Here, we consider the slow and fast ECP and the slow and fast CCP. 
The sudden quench case in [40] can be obtained by the very fast limit of the ECP in 
our analysis. Another dierence from [40] is the mass scales. While [40] deals with the 
initial mass scale of order 1, here we consider a small mass scale compared with the 
lattice spacing since we are interested in the field theory limit.

We have found many interesting features on the dynamics of the entanglement 
entropy: some are independent of the subsystem size and some are independent of the 

Figure 1.  Schematic descriptions of the mass potential m2(t) in the ECP and the 
CCP. We will explain the ECP and CCP in more details in section 2. (a) End-
critical-protocol (ECP). (b) Cis-critical-protocol (CCP).

https://doi.org/10.1088/1742-5468/ab417f
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dynamical exponent z. For example, at early times, in both ECP and CCP, the entan-
glement entropy is independent of the subsystem size and, at late times, in the CCP the 
entanglement entropy is oscillating in time with a well defined period, independently 
of z. We will interpret such properties by the quasiparticle picture and the idea of the 
correlator method.

In particular, there is an interesting distinctive property for z  >  1 compared with 
z  =  1 case. It is about a critical time tc that the entanglement entropy starts depending 
on the subsystem size significantly7. While tc for z  =  1 in the fast ECP and CCP can be 
explained well only by the fast quasiparticles of the quasiparticle picture, we find that 
this explanation does not work for z  >  1 and tc is delayed. We will interpret this by a 
careful investigation of the quasiparticle picture. Note that a similar delay has been 
observed in some spin chain models without the Lifshitz symmetry [21, 44].

The paper is organized as follows: in section  2 we review how to compute the 
entanglement entropy of the Lifshitz free scalar theories on one-dimensional lattice by 
the correlator method. In section 3 we compute the time evolution of the entanglement 
entropy for z  >  1 in the ECP and, in section 4, we do so in the CCP. In section 5 we 
study the quasiparticle formula in the sudden quench with z  =  2, by which we interpret 
our results in sections 3 and 4. We conclude in section 6.

2. Set up and method

In this section, we consider a Hamiltonian of free scalar Lifshitz theories on one-dimen-
sional lattice. In order to study the time evolution of the entanglement entropy, we 
consider the end-critical-protocol (ECP) and cis-critical-protocol (CCP), where mass 
potentials depend on time smoothly. We also define fast and slow limits of the ECP 
and CCP by using the relation between parameters in the mass potentials. Then, we 
explain how to compute the time evolution of entanglement entropy by using the cor-
relator method8.

2.1. Hamiltonian and equation of Lifshitz free scalar theories

In this subsection, we introduce a Hamiltonian of Lifshitz free scalar theories on one- 
dimensional lattice based on [36, 37, 40]. Let us first start with a Hamiltonian of 
Lifshitz free scalar field theories in 1 spacial dimension9

H̄(t) =
1

2

∫
dx

[
π2 + ᾱ2 (∂z

xφ)
2 + m̄(t)2φ2

]
,� (2.1)

where the overbar indicates dimensionful observables, and m̄(t) is a mass potential 
which depends on t.

7 This ‘significantly’ should be quantified properly. Here, we are more qualitative. It simply means it is observable 
from our numerical plot.
8 In this paper we do not explain details of numerical calculations, which can be found in appendix D in the previ-
ous paper [13].
9 Our convention is the same as one in [37]. In this paper, we consider z ∈ Z>0.

https://doi.org/10.1088/1742-5468/ab417f
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For numerical computations, we construct a Hamiltonian on one-dimensional lat-
tice from (2.1). Let us consider N lattice sites on a one-dimensional circle10 and dis-
cretize the system with a lattice spacing ε. Accordingly, by replacing 

∫
dx → ε

∑N−1
l=0 , 

φ → ql, ∂z
xφ → ε−z

∑z
m=0(−1)z+m

(
z
m

)
ql+m−1, π → pl/ε, ᾱ → αεz−1, m̄(t) → m(t)/ε, and 

H̄(t) → H(t)/ε, we obtain a lattice Hamiltonian on a discretized circle:

H(t) =
1

2

N−1∑
l=0


 p2l + α2

(
z∑

m=0

(−1)z+m

(
z

m

)
ql+m−1

)2

+m(t)2q2l


 ,� (2.2)

where 
(
z
m

)
:= z!

(z−m)!m!
 is the binomial coecient. Note that, from here, all variables and 

parameters are dimensionless and dimensionful quantities are recovered by the lattice 
spacing ε.

To simplify the interaction between ql in the Hamiltonian (2.2), we use the Fourier 
transformations11:

ql =
1√
N

N−1
2∑

κ=−N−1
2

ei
2πlκ
N q̃κ,

pl =
1√
N

N−1
2∑

κ=−N−1
2

ei
2πlκ
N p̃κ,

�

(2.3)

and we obtain

H(t) =
1

2

N−1
2∑

κ=−N−1
2

[
p̃†κp̃κ +

(
α2

(
2 sin

(πκ
N

))2z

+m2(t)

)
q̃†κq̃κ

]
.� (2.4)

Throughout this paper, we take α = 1 without loss of generality because results for 
other values of α can be obtained by rescaling m(t) and time.

We expand q̃κ and p̃κ by a creation operator a†k and an annihilation operator ak as

q̃κ = fκ(t)aκ + f ∗
−κ(t)a

†
−κ,

p̃κ = ḟκ(t)aκ + ḟ ∗
−κ(t)a

†
−κ,

� (2.5)

and we quantize them by the canonical commutation relations [q̃α, p̃β] = iδα,−β, 

[aα, a
†
β] = δα,β, and [q̃α, q̃β] = [p̃α, p̃β] = [aα, aβ] = [a†α, a

†
β] = 0. From the Heisenberg equa-

tions of (2.5) with (2.4), the equation of f k(t) yields

d2fk(t)

dt2
+ ω2

k(t) fk(t) = 0,

ωk(t) =

√(
2 sin

(
k

2

))2z

+m2(t).

�
(2.6)

10 Here we impose the periodic boundary condition.
11 We assume that N is an odd integer. One can also do the similar analysis with even N.

https://doi.org/10.1088/1742-5468/ab417f
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Here, we introduce the rescaled momentum k as

k :=
2πκ

N
.� (2.7)

2.2. Two mass potentials: ECP and CCP

For numerical computations, we use smooth12 mass potentials in which f k(t) has ana-
lytic solutions of (2.6). One of them is the mass potential in the end-critical-protocol 
(ECP) [6]:

m2(t) =
m2

0

2

[
1− tanh

(
t

δt

)]
.� (2.8)

In the ECP, the initial mass is m0, and the mass potential decreases with time and 
becomes zero at late times as shown in the left panel of figure 1. Another mass poten-
tial with which we can obtain an analytic solution of (2.6) is the mass potential in the 
cis-critical-protocol (CCP) [6]:

m2(t) = m2
0 tanh

2

(
t

δt

)
.� (2.9)

In the CCP, the initial and final masses are m0, and the mass potential at t  =  0 becomes 
zero as shown in the right panel of figure 1.

An explicit solution of (2.6) in the ECP is [45],

fk(t) =
1√

−4iβ/δt

(
1 + tanh[t/δt]

2

)−β(
1− tanh[t/δt]

2

)−α

× 2F1(−α− β + 1,−α− β;−2β + 1; (1 + tanh[t/δt])/2),

α :=− iδt

2
|2sin[k/2]|z, β :=

iδt

2

√
(2sin[k/2])2z +m2

0,

�

(2.10)

and one in the CCP is [8],

fk(t) =
2iω0δt

√
2ω0

(cosh[t/δt])2α

E1/2E
′
3/2 − E3/2E

′
1/2

×
[
E ′

3/2 2F1

(
a, b;

1

2
;−sinh2[t/δt]

)

+ E ′
1/2sinh[t/δt]2F1

(
a+

1

2
, b+

1

2
;
3

2
;−sinh2[t/δt]

)]
,

a := α− iω0δt

2
, b := α +

iω0δt

2
,

α :=
1 +

√
1− 4(m0δt)2

4
, ω2

0 := (2sin[k/2])2z +m2
0,

E1/2 :=
Γ(1/2)Γ(b− a)

Γ(b)Γ(1/2− a)
, E3/2 :=

Γ(3/2)Γ(b− a)

Γ(1/2 + b)Γ(1− a)
, E ′

c := Ec(a ↔ b).

� (2.11)

12 Contrary to ‘smooth’, we may consider the ‘sudden’ quench, which is realized by a step function.

https://doi.org/10.1088/1742-5468/ab417f
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2.3. Fast and slow limits

The mass potentials (2.8) and (2.9) depend on m0 and δt, where we define an initial 
(t → −∞) length scale ξ as ξ := 1/m0. By using these parameters, we define two limits 
of the quenches as in [10]: fast and slow limits. The fast limit is defined such that δt is 
much smaller than the initial length scale ξ, i.e.

δt � ξ,� (2.12)
while the slow limit is defined such that δt is much larger than the initial length scale 
ξ as

δt � ξ.� (2.13)
One characteristic dierence between the fast and slow limit is time scales when the 

adiabaticity breaks. To define the time scale, we use a dimensionless function

CL(t) :=

∣∣∣∣
1

m2(t)
× dm(t)

dt

∣∣∣∣� (2.14)

for a criteria of the adiabaticity (Landau criteria). See [10, 16, 46], for details. If CL(t) 
satisfies CL(t) � 1, we can use the adiabatic expansion because the adiabaticity is held. 
The Kibble–Zurek time tkz

13 is defined such that

CL(tkz) ∼ 1,� (2.15)
which means that tkz is the time scale when the adiabaticity starts breaking (or being 
restored in the case of CCP).

In the fast limit tkz ∼ 0, while tkz in the slow limit is far from t  =  0. The Kibble–
Zurek time tkz in the slow ECP and CCP is [10]

tkz ∼ δt log[δt/ξ] (ECP),� (2.16)

tkz ∼ (δtξ)
1
2 (CCP).� (2.17)

In the slow ECP, the adiabaticity is broken after t ∼ tkz, and the one in the slow CCP 
is broken from t ∼ −tkz to t ∼ tkz. For later use, we here define a length scale ξkz at 
t = tkz as

ξkz :=
1

m(tkz)
∼ δt (ECP),� (2.18)

ξkz :=
1

m(tkz)
∼ (δtξ)

1
2 , (CCP).� (2.19)

2.4. Correlator method

In free scalar theories, we can compute the entanglement entropy by using two-point 
functions. This computation method is called as the correlator method [18, 42, 43], and 
here we review this method based on [47].

13 This tkz is determined from ωk(t) at k  =  0. See section 3 in [16] for more detail.

https://doi.org/10.1088/1742-5468/ab417f
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In our computations, we consider a thermodynamic limit N → ∞ with fixed ε. In 
this limit, (2.3) is written as

ql(t) :=

∫ π

−π

dk√
2π

q̃ke
ikl,� (2.20)

pl(t) :=

∫ π

−π

dk√
2π

p̃ke
ikl,� (2.21)

and two-point functions of ql(t) and p l(t) are

Qab(t) := 〈0|qa(t)qb(t)|0〉 =
∫ π

−π

dk

2π
|fk(t)|2 cos (k |a− b|),� (2.22)

Pab(t) := 〈0|pa(t) pb(t)|0〉 =
∫ π

−π

dk

2π

∣∣∣ḟk(t)
∣∣∣
2

cos (k |a− b|),� (2.23)

Dab(t) :=
1

2
〈0| {qa(t), pb(t)} |0〉 =

∫ π

−π

dk

2π
Re

[
ḟ ∗
k (t) fk(t)

]
cos (k |a− b|),� (2.24)

where |0〉 is the ground state for the initial Hamiltonian. With the explicit expressions 
of f k(t) in the ECP (2.10) and the CCP (2.11), these two-point functions can be com-
puted numerically.

In the correlator method, the entanglement entropy of the subsystem A with the 
number of lattice sites l can be computed by the eigenvalues of a matrix M constructed 
from the two point functions,

M := iJΓ, J :=

[
0 Il×l

−Il×l 0

]
, Γ :=

[
Qab(t) Dab(t)

Dab(t) Pab(t)

]
,� (2.25)

where Il×l is an l × l unit matrix. By computing positive eigenvalues of the 2l × 2l 
matrix M, say γa, we obtain the entanglement entropy SA(t) for a subsystem A as 
follows:

SA(t) =
l∑

a=1

[(
γa +

1

2

)
log

(
γa +

1

2

)
−
(
γa −

1

2

)
log

(
γa −

1

2

)]
.� (2.26)

In this paper, we study the time evolution of the entanglement entropy in the free 
Lifshitz scalar theories. In order to study the time evolution, we compute a change of 
the entanglement entropy

∆SA(t) = SA(t)− SA(−∞).� (2.27)
In particular, we investigate z-dependence and l-dependence of ∆SA.

3. Entanglement entropy in the ECP with z  >  1

In this section, we first describe our numerical results on the time evolution of the 
entanglement entropy in the fast and slow ECP. After that, we provide interpretations 
of our results.
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Figure 2.  Time dependence of ∆SA in the fast ECP for z  =  2 (ξ = 100, δt = 5). (a) 
Comparison between dierent subsystem sizes l. (b) Comparison between l = 1000, 2000. 

The dashed line designates the critical time for z  =  1: tc
ξ
∼ l

2ξ
= 5 for l  =  1000.

3.1. Fast ECP

As an example of the fast (δt/ξ � 1) ECP with z �= 1 (Lifshitz theory), we choose

ξ = 100, δt = 5.� (3.1)
Figure 2 shows l-dependence of ∆SA for z  =  2 with l = 100, 200, 300, 400, 500, 1000,  

2000. The entanglement entropy in the fast ECP with small δt/ξ is similar to one in the 
sudden quench because the sudden quench is expected to be a limit of the ECP with 
δt → 0. We observe the following properties from figure 2:

	(Ef1)	�The change of the entanglement entropy ∆SA begins to increase around t ∼ 0 like 
the sudden quench case.

	(Ef2)	�At early times, all plots lie on the same curve independently of the subsystem size 
l. It means ∆SA has no subsystem size-dependence at early times.

	(Ef3)	�At late times, ∆SA with the dierent subsystem sizes is dierent. The critical 
time tc, when the significant subsystem size-dependence of ∆SA occurs, increases 
with the subsystem size. For z  =  1, it is expected that tc(z = 1) ∼ l/2 from the 
quasiparticle picture [13]. For z  =  2, we find tc(z = 2) > tc(z = 1). For example, 
see figure 2(b), where tc(z = 1)/ξ ∼ 5, while tc(z = 2)/ξ ∼ 25 for l  =  1000.

Figure 3 shows z-dependence of ∆SA for l  =  2000 with z = 2, 4, 6, 8. The change ∆SA in 
this figure has the following properties of the z-dependence:

	(Ef4)	�As z increases, ∆SA also increases.
	(Ef5)	�In the figure, we focus on the time range before l-dependence appears significantly. 

At late times, ∆SA linearly increases with t, while ∆SA at early times increases 
nonlinearly. This nonlinearity is sustained for a wide time range as z increases.

3.2. Slow ECP

As an example of the slow (δt/ξ � 1) ECP with z �= 1 (Lifshitz theory), we choose

https://doi.org/10.1088/1742-5468/ab417f
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ξ = 5, δt = 500.� (3.2)
Figure 4 shows l-dependence of ∆SA for z  =  2 with l = 10, 50, 100, 300, 1000, 2000. 

We observe the following properties from figure 4:

	(Es1)	�The change ∆SA in the slow ECP starts increasing at t  <  0, unlike the fast or 
sudden quench cases.

	(Es2)	�At early times ∆SA has no subsystem size-dependence, like the fast ECP.

	(Es3)	�At late times, ∆SA with the dierent subsystem sizes are dierent and the critical 
time tc increases with the subsystem size, like the fast ECP. For z  =  1 and large 
l, it is expected that tc(z = 1) ∼ tkz + l/2 from the quasiparticle picture [13]. 
For z  =  2, we find that tc(z = 2) > tc(z = 1). For example, see figure 4(b), where 
tc(z = 1)/δt ∼ 4.8 (tkz ∼ 2300 by (2.16) and l  =  1000) while tc(z = 2)/δt > 10.

Figure 5 shows z-dependence of ∆SA for l  =  1000 with z = 2, 4, 6, 8. The change ∆SA in 
this figure has the following properties of the z-dependence:

Figure 3.  Time dependence of ∆SA in the fast ECP with ξ = 100, δt = 5, l = 2000 
and z = 2, 4, 6, 8.

Figure 4.  Time dependence of ∆SA in the slow ECP for z  =  2 (ξ = 5, δt = 500).  
(a) Comparison between dierent subsystem sizes l. (b) Comparison between 

l = 1000, 2000. The dashed line designates the critical time for z  =  1: tc
δt
∼

tkz
δt

+ l
2δt

∼ 4.8 for l  =  1000 (tkz ∼ 2300).

https://doi.org/10.1088/1742-5468/ab417f
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	(Es4)	�Like the fast ECP, ∆SA increases as z becomes large.
	(Es5)	�In the figure, we focus on the time range before l-dependence appears significantly. 

Like the fast ECP, ∆SA increases nonlinearly, this nonlinearity is sustained for a 
wide time range as z increases.

3.3.  Interpretation of the properties

In this subsection, we interpret the aforementioned properties of the entanglement 
entropy for the ECP.

3.3.1.  (Ef1) and (Es1).  The mass potential m2(t) starts decreasing around t ∼ −δt. 
Therefore, ∆SA in the slow ECP starts increasing at t  <  0. For the fast ECP, however, 
since δt ∼ 0, m2(t) starts decreasing around t ∼ 0, and ∆SA starts increasing around 
t ∼ 0.

3.3.2.  (Ef2) and (Es2).  To understand the subsystem size-independence of ∆SA at 
early times we use the quasiparticle picture [19, 21, 22]. To explain the quasiparticle 
picture, let us consider a one-dimensional system with a subsystem A of length l under 
a sudden quench, where the mass potential changes at t  =  0 from the initial mass m0 
to the final mass mf   =  0. Due to a sudden quench at t  =  0, the quasiparticle pairs are 

created at t  =  0 everywhere and then propagate with the group velocity vk =
dωk

dk
 with 

the momentum k which is computed by the Hamiltonian after a quench.
As shown in figure 6, at the time t, only the quasiparticle pairs created in the yellow 

and green region will contribute to the entanglement entropy because one of the pairs is 
inside the subsystem A and the other is outside of A. In other words, the quasiparticle 

pairs created in the length of 2|vk|t contribute in early time regime t < t̄ := l
2|vk| (yel-

low area in figure 6), while the quasiparticle pairs created in the length of l contribute 

in late time regime t > t̄  (green area). Therefore, the entanglement entropy for the 
subsystem A, generated by the quasiparticle pairs with the group velocity vk, depends 

on the subsystem size l of A after t = t̄ = l
2|vk| and does not depend on the subsystem 

size in early time regime t < t̄ . It turns out that this quasiparticle picture is consistent 

Figure 5.  Time dependence of ∆SA in the slow ECP with ξ = 5, δt = 500, l = 1000 
and z = 2, 4, 6, 8.
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with the entanglement entropy with z  =  1 in the two-dimensional CFT [19], the sudden 
quench [41], and the ECP [13].

3.3.3.  (Ef3).  In general, the group velocity vk depends on the momentum k of the 
quasiparticle, thus we need to consider the quasiparticles with various velocities. In 
order to determine the critical time tc, we may use the maximum group velocity vmax,

tc ∼ min{t̄} =
l

2|vmax|
,� (3.3)

because it is the earlist time the subsystem size dependence enters.
For example, since vmax = 1 for the massless quasiparticle with z  =  1, tc with z  =  1 

becomes tc ∼ l
2
 from (3.3), which is shown in figure 2(b). For z  >  1, the maximum group 

velocity is |vmax| > 1, so we expect tc to obey tc  <  l/2. However, figure 2(a) shows

tc >
l

2
(z = 2).� (3.4)

We also confirmed this delayed tc for z = 4, 6, 8.
One possible interpretation of this delayed tc in the quasiparticle picture is as fol-

lows. The entanglement entropy by the quasiparticle pairs comes from not only the 
ones with the fast velocity close to |vmax|, but also the sum of all quasiparticles with 
various vk. If the contribution of the fast quasiparticles to ∆SA can be suppressed com-

pared with the slow quasiparticles, the subsystem size-dependence around tc ∼ l
2|vmax| 

for the fast ECP may be negligible. Thus, if this conjecture works, in more general, we 
expect tc to satisfy

tc �
l

2|vmax|
,� (3.5)

where tc � l
2|vmax| means that tc is large enough so that we can observe dierence 

between tc and l
2|vmax| from numerical plots. Note that the condition (3.4) may not be 

satisfied even if (3.5) is satisfied because it is still possible, in principle,

Figure 6.  Quasiparticle picture in the sudden quench. The length of the subsystem 
A is l, and vk is the group velocity of the quasiparticle pairs created at t  =  0. In 
t < t̄  the range of 2|vk|t (yellow area) contributes to the entanglement entropy, 
while in t > t̄  the range of l (green area) contributes to the entanglement entropy.

https://doi.org/10.1088/1742-5468/ab417f


Entanglement after quantum quenches in Lifshitz scalar theories

14https://doi.org/10.1088/1742-5468/ab417f

J. S
tat. M

ech. (2019) 093104

l

2|vmax|
< tc <

l

2
,� (3.6)

for |vmax| > 1. In section 5, we show our conjecture works by using the quasiparticle 
formula in the sudden quench [21, 22].

3.3.4.  (Es3).  The quasiparticle picture is more applicable to the fast ECP rather than 
the slow ECP, because it is based on the sudden quench. However, we may slightly 
modify the argument by introducing the Kibble–Zurek time tkz (2.16). The quasipar-
ticles are generated not at t ∼ 0 but at t ∼ tkz in the slow ECP with large l, thus tc in 
the slow ECP with z  =  1 from the fast quasiparticles is

tc ∼ tkz +
l

2
(z = 1),� (3.7)

as shown in figure 4(b). Indeed, it is confirmed by the correlator method in [13]. By the 
same argument as in the slow ECP case, we expect tc to satisfy14

tc � tkz +
l

2|vmax|
,� (3.8)

for z  >  1. Figure 4(b) is one of the examples15. We also confirmed this delayed tc for 
z = 4, 6, 8.

3.3.5.  (Ef4,5) and (Es4,5).  The free Lifshitz scalar field theories with z  >  1 have 
a higher spatial derivative interaction. After discretizing these field theories to lat-
tice theories, this higher derivative interaction becomes a long-range interaction 
between the fields at two separate lattice points. As explained in [36, 37, 40], ∆SA 
increases as z increases because of the long-range interaction (the properties (Ef4) 
and (Es4)). We suspect that the nonlinear increase of ∆SA with t described in the 
properties (Ef5) and (Es5) is related to the large value of z, but we do not have a 
clear interpretation.

4. Entanglement entropy in the CCP with z  >  1

In this section, we study the time evolution of entanglement entropy in the CCP with 
z  >  1 and interpret its properties. Unlike ∆SA in the ECP, ∆SA in the CCP oscillates 
in time t because of the nonzero mass potential at late times.

14 For z  =  1 and large l, tkz +
l

2|vmax| is a good criteria because both tkz and vmax is evaluated at k ∼ 0 [13, 16]. How-

ever, for z � 2, it may not because tkz is determined from ωk(t) at k  =  0 while vmax is defined at finite k away from 

k  =  0 as shown in figure 13. In principle, we have to find k = k̃ such that tkz(k̃) +
l

2|v(k̃|) can be minimized and use it 

as a criteria. Here, tkz(k) is the time scale when the adiabaticity of ωk(t) starts breaking, of which precise meaning 
is shown in equation (3.10) in [16]. Note that in principle tkz(k) can be defined for every k, but we used tkz := tkz(0) 
for simplicity.
15 As we noted in (3.6), it does not guarantee tc > tkz +

l
2
. However, in our cases, it turns out to be true. See sec-

tion 5.3 for more details.
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4.1. Fast CCP

As an example of the fast (δt/ξ � 1) CCP with z �= 1 (Lifshitz theory), we choose the 
same parameter as the fast ECP:

ξ = 100, δt = 5.� (4.1)
Figure 7 shows l-dependence of ∆SA for z  =  2 with l = 100, 500, 1000, 1500, 2000. We 

observe the following properties from figure 7:

	(Cf1)	�The change ∆SA in the fast CCP starts increasing at t ∼ 0 and oscillates with t. 
The period of the oscillation at late times is about πξ. See figure 6(b). This period 
is the same as the case with z  =  1 [13].

	(Cf2)	�The change ∆SA is the global minimum around t ∼ 2ξ which is the same as the 
case with z  =  1 [13].

	(Cf3)	�Like the slow and fast ECP, at early times ∆SA has no subsystem size-dependence 
while at late times ∆SA with the dierent subsystem sizes are dierent. Again, 
the critical time tc increases with the subsystem size. For z  =  1, it was shown that 

Figure 7.  Time dependence of ∆SA in the fast CCP for z  =  2 (ξ = 100, δt = 5). (a) 
Comparison between dierent subsystem sizes l (−2 � t/ξ � 40). (b) Zoomed-in 
view of (a) (30 � t/ξ � 40) to see the oscillating feature clearly. (c) Comparison 

between l = 1000, 2000. The dashed line at t
ξ
= l

2ξ
= 5 for l  =  1000 is shown for 

comparison with z  =  1.
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tc(z = 1) ∼ l/2 [13]. For z  =  2, we find that tc(z = 2) > tc(z = 1). For example, 
see figure 6(c), where tc(z = 1)/ξ ∼ 5, while tc(z = 2)/ξ > 10 for l  =  1000.

Figure 8 shows the dynamical exponent-dependence of ∆SA for l  =  2000 with z  =  2 and 
416. The change ∆SA in the fast CCP shows the following properties:

	(Cf4)	�As z increases, the amplitude of oscillation in ∆SA increases.
	(Cf5)	�The period of oscillation (πξ) and the time scale when ∆SA is minimum (t ∼ 2ξ) 

are independent of z.

4.2. Slow CCP

Next, as an example of the slow (δt/ξ � 1) CCP with z �= 1 (Lifshitz theory), we 
choose17

ξ = 10, δt = 1000.� (4.2)
Figure 9 shows the subsystem size l-dependence of ∆SA for z  =  2 with l = 10, 50, 

100, 200, 2000. We observe the following properties in figure 9:

	(Cs1)	�Unlike the fast CCP case, ∆SA in the slow CCP with z  =  2 starts increasing at 
t  <  0 and oscillates with t. Like the fast CCP case, its period of oscillation at late 
times is about πξ which is the same as the case with z  =  1 [13].

	(Cs2)	�The change ∆SA is first local minimum around t ∼ 2ξkz which is the same as the 
case with z  =  1 [13].

Figure 8.  Time dependence of ∆SA in the fast CCP with ξ = 100, δt = 5, l = 2000 
and z = 2, 4. (a) Comparison between z = 2, 4 (−2 � t/ξ � 40). (b) Zoomed-in view 
of (a) (30 � t/ξ � 40) to see the oscillating feature clearly.

16 We plot ∆SA with z = 2, 4 only because we need more precision for the numerical computation of ∆SA in the 
fast CCP with large z to reduce the numerical error.
17 In the slow CCP, we use the adiabatic approximation of f k(t) and its time derivative at large |k| because the 
computational cost of evaluating the two point functions Qab(t), Pab(t), and Dab(t) increases in the slow CCP. The 
approximation which we use in this paper is the same one used in [13, 16].
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	(Cs3)	�Like the slow/fast ECP and fast CCP, at early times ∆SA has no subsystem 
size-dependence while, at late times ∆SA with the dierent subsystem sizes are 
dierent. Again, the critical time tc increases with the subsystem size.

Figure 10 shows the dynamical exponent-dependence of ∆SA for z = 2, 4, 6, 8 with 
l  =  1000. The change ∆SA in the slow CCP shows the following properties:

	(Cs4)	�Like the fast CCP, the amplitude of oscillation in ∆SA becomes large when the 
dynamical exponent z increases.

	(Cs5)	�Like the fast CCP, the period of oscillation (πξ) and the time scale when ∆SA is 
local minimum (t ∼ 2ξkz) are independent of z.

4.3.  Interpretation of the properties

In this subsection, we interpret the aforementioned properties of the entanglement 
entropy for the CCP.

4.3.1.  (Cf1,5) and (Cs1,5).  Like ∆SA in the ECP, ∆SA in the fast CCP starts increas-
ing from t ∼ 0, while ∆SA in the slow CCP starts increasing from t  <  0 simply because 

Figure 9.  Time dependence of ∆SA in the slow CCP for z  =  2 (ξ = 10, δt = 1000). 
(a) Comparison between dierent subsystem sizes l (−100 � t/ξ � 200). (b) Zoomed-
in view of (a) (190 � t/ξ � 200) to see the oscillating feature clearly. (c) Zoomed-in 
view of (a) (15 � t/ξ � 25) to see a local minimum around t/ξ ∼ 2ξkz/ξ ∼ 20.
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Figure 10.  Time dependence of ∆SA in the slow CCP for z = 2, 4, 6, 8 
(ξ = 10, δt = 1000, l = 1000). (a) Comparison between z = 2, 4, 6, 8 (−100 � t/ξ � 200). 
(b) Zoomed-in view of (a) (190 � t/ξ � 200) to see the oscillating feature clearly. 
(c) Zoomed-in view of (a) (15 � t/ξ � 25) to see a local minimum around 
t/ξ ∼ 2ξkz/ξ ∼ 20.

of the magnitude of δt as explained in section 3.3. A main dierence between the ECP 
and CCP is that ∆SA in the CCP oscillates in t because the mass potential in the CCP 

at late times is nonzero. The period of oscillation in ∆SA at late times can be inferred 

by (2.6) where ωk =
√

1
ξ2

+ (2 sin[k/2]) 2z  at late times. The period is π
ωk

 and it is esti-
mated with k  =  0 because the dominant contribution at late times comes from small 
k ∼ 0. (See, for example, the entropy density plots: figures 12 and 14. One can check 
that the entropy density s(k) in the sudden quench is maximum at k  =  0.) Therefore, 
the period is πξ and does not depend on z.

4.3.2.  (Cf3) and (Cs3).  As shown in figure 7, the time scale at which the significant 
subsystem size-dependence of ∆SA in the fast CCP with z  =  2 occurs is later than  
t ∼ l/218 (the property (Cf3)). In the CCP, we also confirmed this delayed tc for 
z = 4, 6, 8. The time scale t ∼ l/2 is the one of ∆SA in the fast CCP with z  =  1 and 
can be explained by the maximum group velocity of the quasiparticles. If we can use 
the quasiparticle picture to interpret the time scale of ∆SA in the fast CCP with z  =  2, 

18 In the slow CCP, tc for z  =  2 is delayed compared with z  =  1 case. However, it is not clear that the quasiparticle 
picture is valid to interpret tc even for z  =  1 [13].
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delay of the time scale with z  =  2 can be interpreted by small contribution of the fast 
quasiparticles to ∆SA as explained in section 3.3.

4.3.3.  (Cf4) and (Cs4).  As z increases, the long-range interaction in the Lifshitz theo-
ries with z  >  1 seems to make the amplitude of oscillation in ∆SA larger.

4.3.4.  (Cf2,5) and (Cs2,5).  We do not have a good understanding on why the time 
scales of the first local minimum of ∆SA is around 2ξ and 2ξkz independently of z for 
fast and slow CCP respectively. This time scale is identified in [13] for z  =  1 case.

5. Delayed time scale: quasiparticle picture for z  >  1

As in the examples in the previous sections, we found that the critical time tc for z � 2 
is delayed compared with the case z  =  1, i.e.

tc(z � 2) > tc(z = 1).� (5.1)
In this section, we interpret this by using the the quasiparticle formula of entanglement 
entropy in the sudden quench [21, 22]. We show examples of tc such that

tc �
l

2|vmax|
,� (5.2)

by using the quasiparticle formula in the sudden quench for z � 2. This result supports 
our interpretation that (5.1), in fact, should be understood as

tc � tkz +
l

2|vmax|
,� (5.3)

as we explained in (3.5) and (3.8) in the fast and slow ECP and fast CCP for z � 2. For 
the fast ECP and CCP case, tkz ∼ 0. For the slow ECP, tkz is non-zero. See footnote 14 
for more details. In the following section, for example, we focus on z  =  2 case.

5.1. Review of the quasiparticle formula

We explained a basic idea of the quasiparticle picture in section 3.3. This idea can 
be generalized to the case z  >  1 [40] and 0  <  z  <  1 [41, 48]. We again consider a one-
dimensional system with a subsystem A of length l under a sudden quench, where the 
mass potential changes at t  =  0 from the initial mass m0 to the final mass mf .

The idea of z  =  1 case still applies to z  >  1 case and the explanation in figure 6 also 

works for z  >  1. Namely in early time regime t < t̄ := l
2|vk| (yellow area) the quasipar-

ticle pairs created in the length of 2|vk|t contribute, while in late time regime t > t̄  
(green area) the quasiparticle pairs created in the length of l contribute. However, the 
dierence between z  =  1 and z  >  1 is in the value of maximum group velocity. This is 
not shown in figure 6, which describes the situation at some fixed vk.

In order to explain the delayed critical time, we need to consider the quasiparticle 
picture in more detail, quantitatively. The group velocity vk is a function of k and 
the created quasiparticle entropy density s(k), which we will explain later, is also a 

https://doi.org/10.1088/1742-5468/ab417f


Entanglement after quantum quenches in Lifshitz scalar theories

20https://doi.org/10.1088/1742-5468/ab417f

J. S
tat. M

ech. (2019) 093104

function of k. Thus, in total, the entanglement entropy created by the quasiparticle 
pairs (∆Sq

A(t)) reads [21, 22]:

∆Sq
A(t) = t

∫

2|vk|t<l

dks(k)2|vk|+ l

∫

2|vk|t>l

dks(k),� (5.4)

where k ∈ [−π, π], and the superscript q stands for the ‘quasiparticle formula’ to 
emphasize the dierence with ∆SA(t) by the ‘correlator method’. The first term comes 
from the yellow area, and the second term comes from the green area in figure 6. Note 

that ∆Sq
A starts depending on the subsystem size l after t = l

2|vmax| because the second 

term in (5.4) is zero before t = l
2|vmax|, where vmax is the maximum group velocity of vk. 

At fixed t, we can choose large but finite l such that the second term in (5.4) becomes 
zero. Based on this property, we define ∆Sq

A(t)|l→∞ as

∆Sq
A(t)|l→∞ := t

∫ π

−π

dks(k)2|vk|.� (5.5)

We also assume that the entropy density s(k) for the entanglement entropy (5.4) 
is equivalent to the thermodynamic entropy density which is computed from a density 
matrix ρGGE of a generalized Gibbs ensemble [5, 22] as

ρGGE = Z−1e−l
∫

dk
2π

λkn̂k ,� (5.6)

where Z is a normalization factor, λk are Lagrange multiplies, and n̂k = a†kak are num-
ber operators for Hamiltonian after the quench. This assumption implies the entangle-
ment entropy becomes the thermodynamic entropy at late time limit. Requiring the 
conservation of the expectation value of the number operator between the initial state 
and the generalized Gibbs ensemble at late times, Tr [n̂kρGGE] = 〈0|n̂k|0〉, where |0〉 is 
the initial ground state of Hamiltonian before the quench, we obtain

eλk = 1 +
1

〈0|n̂k|0〉
.� (5.7)

In free scalar theories in the sudden quench, the explicit form of s(k) is [5, 22]

s(k) =
1

2π
[(nk + 1) log(nk + 1)− nk log(nk)] ,� (5.8)

nk := 〈0|n̂k|0〉 =
1

4

(
ωk

ω0,k

+
ω0,k

ωk

)
− 1

2
,� (5.9)

where we use the dispersion relations ω0,k before the quench and ωk after the quench of 
the Lifshitz theories as

ω0,k =

√
m2

0 + (2 sin[k/2])2z, ωk =
√
m2

f + (2 sin[k/2])2z.� (5.10)

The group velocity vk after the quench in these theories is

vk :=
dωk

dk
=

z cos[k/2] (2 sin[k/2])2z−1

√
m2

f + (2 sin[k/2])2z
.

� (5.11)
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With these expressions (5.8)–(5.11), one can compute (5.4) explicitly.

5.2. Examples

Entanglement entropy with z  >  1 by the quasiparticle picture was also studied in [40], 
where m0  =  1 and mf = 0, 2z are considered. Compared with [40], we are interested 
in small m0 � 1 because i) it corresponds to the field theory limit, i.e. ξ � 1 where 
ξ is measured by the lattice spacing; ii) it corresponds to our model in section 3.1. 
Furthermore, our analysis is extended to explain the delayed tc, which is complemen-
tary to [40].

For example, let us consier ∆Sq
A for z  =  2. We choose a small but nonzero value of 

mf = 10−6 to avoid the divergence of nk at k  =  0. Figure 11 plots ∆Sq
A(t) in (5.4) for 

various subsystem sizes l = 100, 200, 300, 400, 500, 1000, 2000. Figure 11(a) is for the ini-
tial mass m0  =  0.01, and figure 11(b) is for m0  =  1.

Note that figure  11(a) should be compared with figure  2(a) because the sudden 
quench is a limit of the fast ECP. For both plots, the initial mass is the same, and the 
finial mass is almost zero. However, figure 11(a) is computed by the quasiparticle pic-
ture (5.4) while figure 2(a) is computed by the correlator method. (The horizontal time 
axis is scaled by ξ in figure 2(a).) Their significant subsystem size-dependences agree 
with each other very well19.

5.3. Why delayed critical time?

Let us now turn to our main question: why is the critical time tc delayed for z  =  2 com-
pared with the z  =  1 case? To answer the question, we first revisit the argument for 
z  =  1 (See (3.3)). In order to determine tc, we use the maximum group velocity vmax in 

(3.3). For the massless quasiparticle with z  =  1, we obtain vmax = 1 and tc ∼ l
2|vmax| =

l
2
.

To investigate this property in more detail, let us rewrite (5.4) as

19 The numerical values of the entanglement entropy is slightly dierent. Roughly speaking,

∆SA(figure 2(a)) � ∆Sq
A(figure 11(a)).

� (5.12)
This is because the mass ratio m0/mf is too big as argued in [40]. (See figures 6 and 8 in [40].)

Figure 11.  The change of the entanglement entropy ∆Sq
A (5.4) in the sudden 

quench for z  =  2 and mf = 10−6. The change ∆Sq
A for l → ∞ is (5.5). (a) m0 = 10−2. 

(b) m0  =  1.
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Figure 12.  Group velocity vk and entropy density s(k) for z  =  1, m0 = 10−2, and 
mf = 10−6. (a) Group velocity vk. The right panel is a zoomed-in view of the left 
panel near k  =  0. (b) Entropy density s(k). The right panel is a zoomed-in view of 
the left panel near k  =  0.

∆Sq
A(t) = t

∫ π

−π

dks(k)2|vk| −
∫

2|vk|t>l

dk(2|vk|t− l)s(k).� (5.13)

Here, the first term in (5.13) does not depend on l. The change ∆Sq
A depends on l after 

t = l
2|vmax| because of the second term in (5.13). Only after t ∼ l

2|vmax|, the quasiparticle 

pairs with vk ∼ vmax starts contributing. However, in this case, the factor (2|vk|t− l) in 
the integrand of the second term is small. Unless s(k) is large enough the l-dependence 

due to the second term will be negligible near t ∼ l
2|vmax| even though it is non-zero. 

Thus, we find that a naive argument for z  =  1 needs to be revisited.

5.3.1.  z  =  1 case.  In figure 12, we make plots of (5.8) and (5.11) for s(k) and vk respec-
tively, where m0 = 10−2 and mf = 10−6. The group velocity vk is maximum (vmax ∼ 1) 
near k ∼ 0 (figure 12(a)). Near k ∼ 0, s(k) is dominant, which makes the integrand of 

the second term of (5.13) big enough as we suspected. It explains tc ∼ l
2
 for z  =  1.

5.3.2.  z  =  2 case.  Let us turn to the z  =  2 case. Figure 13 shows the group velocity 
vk for m0 = 10−2. Unlike the z  =  1 case, |vk| at |k| ∼ 1.6 is maximum, which is away 
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from k  =  0. Figure 14(a) shows the quasiparticle pair entropy density s(k) of the fast 
quasiparticles around |k| ∼ 1.6 is much smaller than the one of the slow quasiparticles 
around k ∼ 0. The smallness of s(k) of the fast quasiparticles makes their contribution 
to the entanglement entropy small (the integrand of the second term of (5.13) is small). 

Figure 13.  Group velocity vk for z  =  2 and the final mass mf = 10−6. It is independent 
of the initial mass m0. The group velocity vk at k = k∗ ≈ 1.6 is maximum.

Figure 14.  The plot of entropy density s(k) for z  =  2 and mf = 10−6. The dashed 
lines represent the momentum k*. (a) m0 = 10−2. The right panel is a zoomed-in 
view of the left panel to show the value of s(k*). (b) m0  =  1. The right panel is a 
zoomed-in view of the left panel to show the value of s(k*).
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Consequently, tc becomes delayed compared with t = l
2|vmax| ∼

l
4
. Thus, for example, 

tc  >  3000 for l  =  1000 from figure 11(a), i.e.

tc(m0 = 10−2, l = 2000) > 3000 >
l

4
= 250.� (5.14)

For another comparison, we show the entropy density s(k) for m0  =  1 in figure 14(b). 
The entropy density s(k) for the fast quasiparticles with m0  =  1 is larger than that with 
m0 = 10−2. The group velocity of quasiparticles in the sudden quench with m0  =  1 
is the same as the one with m0 = 10−2 as in figure 13. Thus, we expect tc to be less 
delayed compared with the m  =  10−2 case. Indeed, it turns out to be the case. For 
example, tc ∼ 800 for l  =  2000 from figure 11(b), i.e.

tc(m0 = 1, l = 2000) ∼ 800 >
l

4
= 250,� (5.15)

which corresponds to the case (3.6) because

tc(m0 = 1, l = 2000) ∼ 800 <
l

2
= 1000.� (5.16)

In short, in this case, tc is not delayed so much compared with z  =  1 case, but still 

delayed compared with l
2|vmax|.

5.3.3.  z  >  2 case.  The qualitative feature of vk and s(k) for z  >  2 are the same as the 
z  =  2 case. The peak of vk is more shifted to the right as z increases. Thus tc is delayed 
by the same reason. The general behavior of vk can be understood by (5.11). If we take 
mf   =  0 then, the dependence of sin[k/2] will disappear only for z  =  1.

In short, in the quasiparticle picture the delayed tc can be explained by the small 
contribution of the fast quasiparticles to the entanglement entropy.

6. Conclusions

We have studied the time evolution of the entanglement entropy in the free Lifshitz 
scalar theories with the time-dependent mass by the correlator method on one-dimen-
sional spacial lattice. The mass potentials are smooth functions of time (ECP or CCP), 
and the initial ground states evolve in time by the time-dependent Hamiltonians.

Some important observations and comments from our computations are as follows.

	 1.	� At early times: for both ECP and CCP, the entanglement entropy is subsystem 
size independent. It can be understood intuitively by the quasiparticle picture as 
shown in figure 6.

	 2.	� The (intermediate) critical time: from a naive application of the quasiparticle pic-
ture only by the fast quasiparticle, we expect the critical time tc for the significant 

l-dependence in the sudden quench to become tc ∼ l
2|vmax|. It works for z  =  1 in the 

sudden quench, however, for the fast and slow ECP and the fast CCP with z  >  1, 
we have found that it is possible
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tc � tkz +
l

2|vmax|
,� (6.1)

		 where tkz is the Kibble–Zurek time, the time scale when the quasiparticle pairs 
with k ∼ 0 are created. For the Fast ECP and CCP case, tkz ∼ 0. We have 
explained that, by the quasiparticle formula in the sudden quench, it can be 
interpreted by the negligible contribution of the fast quasiparticles due to its 
small entropy density. Indeed, the dominant contribution comes from the slow 
quasiparticles. (For z  =  1 case, the entropy density is large for the fast quasi-
particles, which is why the only fast particle approximation works for z  =  1.) In 
addition, tc increases as the subsystem sizes increase.

	 3.	� At late times: for the ECP, the entanglement entropy is slowly increasing. For 
the CCP with the final mass mf , the entanglement entropy is oscillating with a 
period ∼ π/mf, which can be understood by the dominant contribution by the 
slow quasiparticles with the momentum k ∼ 0.

	 4.	� z-dependence: the entanglement entropy increases as z increases, which can be 
interpreted as the eect of the long-range interactions due to the higher deriva-
tive ∂z

x in (2.1).

	 5.	� The time scale for the first local minimum of the entanglement entropy in the 
CCP case: it is around 2ξ for the fast CCP and 2ξkz for the slow CCP indepen-
dently of z.

Even though we have found that the quasiparticle picture is successful in understand-
ing some of our results qualitatively for z  >  1 as well as z  =  1, note that it is a picture 
for the sudden quench. For a slow change of the mass potential or for a small final mass 
(see footnote 19), there will be quantitative dierences from the quasiparticle picture. 
Therefore, the property items 1 and 2 can be explained well by the quasiparticle picture, 
but it is not easy to determine precise tc by that picture. It is also not easy to determine 
the value of tc from our numerical correlator method; we first need to define some cri-
teria for the significant deviation due to the subsystem size. Some of our results cannot 
be explained even qualitatively by that picture. For example, the nonlinear behavior of 
∆SA with large z in figure 2 cannot be explained. It will be interesting to understand 
the z-dependence of this nonlinear behavior20 as well as more detailed understanding of 
item 4. Furthermore, it will be also interesting to consider the entanglement entropy at 
a limit z → ∞ for understanding the eect of large z.

Based on the argument in item 3, we may say that the entanglement entropy in our 
ECP does not oscillate at late times because mf ∼ 0. If we considered the ECP with 
a finite mf , we would have observed an oscillation. It will be interesting to check this 
expectation by the correlator method. The last item 5 is very interesting since it shows 
a universal property independent of z. Even though our results are numerical, it seems 
very robust. We do not have a good understanding on it yet, and leave it as a future 
work.

20 See also discussion of the z-dependence of entanglement entropy at early times in [40].
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