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ABSTRACT Knowledge representation learning represents entities and relations of knowledge graph
in a continuous low-dimensional semantic space. Recently, various representation learning models have
successfully been developed to infer novel relations in general-purpose knowledge bases such as FreeBase
andWordNet. However, few studies have used such models for biomedical data for inferring useful relations
among biomedical entities such as genes, chemicals, diseases, and symptoms. This study aimed to compare
the potential of representation learningmodels in extracting biomedical relations by using four different types
of representation learning models, viz., TransE, PTransE, TransR, and TransH. For training and evaluating
themodels, we collected and utilizedmanually curated data from public databases, including relations among
chemicals, genes, diseases, and symptoms. Overall, TransE, the most efficient translation-basedmonolingual
knowledge graph embedding model, displayed the best performance with a higher learning speed for large-
scale biomedical data. Using TransE, we inferred new relations among chemicals, genes, diseases, and
symptoms, and evaluated the reliability of these inferred relations. Furthermore, TransE outperformed an
existing statistical method used in the Comparative Toxicogenomics Database for inferring new chemical-
disease relations. Together, the present results show that the representation learning model is useful for
inferring new biological data from numerous existing biomedical data.

INDEX TERMS Knowledge representation learning, biomedical knowledge graph.

I. INTRODUCTION
Multi-relational data contained in common knowledge
bases (KBs) are often represented using knowledge
graphs [1], where nodes indicate entities and edges represent
the relations linking the entities. Recently, these entities and
relations have been represented as vectors using represen-
tation learning models such as TransE [2], PTransE [3],
TransR [4], and TransH [5], which are specialized for embed-
ding multi-relational data in a low-dimensional vector space.

The associate editor coordinating the review of this manuscript and
approving it for publicationwasNavaniethaKrishnaraj Krishnaraj Rathinam.

These representation learning models have been widely used
in statistical relational learning and help infer new knowl-
edge in many applications including recommender systems,
semantic web, and natural language processing [6]. Recently,
the contents and volumes of general-purpose KBs such as
FreeBase [7] and WordNet [8] have been rapidly expanding
owing to collaborative contributions by experts and the pub-
lic. Accordingly, several studies have focused on improving
existing representation learning models on the basis of these
general-purpose KBs. However, few studies have applied
representation learning models to infer biomedical rela-
tions such as chemical-gene, disease-gene, chemical-disease,
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gene-gene, and disease-symptom relations, despite the large
and growing amount of publicly available biomedical multi-
relational databases.

Previous studies have attempted to infer new biolog-
ical knowledge using public resources from biomedical
databases and the literature. For example, HerDing [9] is
a herb recommendation system for treating diseases on
the basis of resources compiled from public databases
and the literature. In HerDing, data regarding chemical-
gene relations are obtained from two public databases:
the Comparative Toxicogenomics Database (CTD) [10] and
TCMID [11]. Data regarding gene-disease relations are
obtained from MalaCards [12]. Moreover, Swanson’s ABC
model [13] was used to infer chemical-disease relations,
because genes can serve as links between chemicals and
diseases. ChemDis [14] is another integrated chemical-
disease inference system based on chemical-gene interac-
tions, which involves a hypergeometric test to combine
chemical-gene interactions from STITCH [15] and gene-
disease relations from Disease Ontology [16] and Disease
Ontology Lite [17] for inferring chemical-disease rela-
tions. In the CTD [10], manually curated chemical-gene
and gene-disease relations are used to infer chemical-
disease relations on the basis of variants obtained from a
hypergeometric test.

However, these common gene-based approaches may yield
various false-positive findings because the gene activation
and regulation differ in accordance with the type of dis-
ease considered. We hypothesized that representation learn-
ing models can adequately help reduce these false-positive
findings, because these models learn vector representations
of knowledge graphs by reflecting complex relations among
entities, and the plausibility of a certain knowledge within the
graph is determined through algebraic operations in the low-
dimensional vector space.

To assess the feasibility of this approach, in the present
study, we first constructed a large-scale biomedical multi-
relational dataset containing information on chemicals,
genes, diseases, and symptoms from various public databases
such as the CTD [10], MalaCards [12], and BioGrid [18],
which were converted into an appropriate data format to be
used in a representation learning model. By applying these
multi-relational data to the representation learning model,
we inferred novel chemical-gene, chemical-disease, disease-
gene, gene-gene, and disease-symptom relations and eval-
uated the reliability of new inferred relations. Thereafter,
we assessed the performance of four different types of rep-
resentation learning models, TransE, PTransE, TransR, and
TransH on the basis of the biomedical datasets and further
compared our approach with another conventional inference
approach.

The principal findings of this study work are summarized
as follows:

1) We construct a heterogeneous biomedical knowledge
graph using manually curated data from various public
databases.

2) We conducted several experiments to prove that
the representation learning model is very useful to
infer new biomedical relationships and has scope for
improvement.

The rest of this article is organized as follows. Section II
introduces related databases and existing representation
learning models used in this study. Section III describes how
novel biomedical relations were inferred using representa-
tion learning models and how these models were evaluated.
Subsequently, our results are further discussed in Section IV.
Section V describes the conclusion and future prospects for
research on this topic.

II. RELATED MATERIALS
A. DATABASE
1) PubMed DATABASE

PubMed (http://www.ncbi.nlm.nih.gov/PubMed/) is
themost widely used database for searching biomedical
literature from MEDLINE and life sciences journals.
Currently, PubMed contains over 28 million biomedi-
cal abstracts, which contain numerous biomedical enti-
ties. We extracted the PubMed abstracts and calculated
the number of co-occurrence between biomedical
entities.

2) COMPARATIVE TOXICOGENOMICS DATABASE
CTD [10] is a publicly available and an important
resource and scientific tool for researchers from all
biomedical fields. The database provides manually
curated biomedical data and inferred data. We used
the curated data including chemical-gene, chemical-
disease, and disease-gene relations.

3) THE BIOLOGICAL GENERAL REPOSITORY FOR
INTERACTION DATASETS
BioGRID [18] is a well-known database of pro-
tein/gene interactions manually curated from Medline
literature. We used the database to extract gene-gene
interactions.

4) THE MalaCards HUMAN DISEASE DATABASE
MalaCards [12] is a comprehensive disease database
containing integrated information regarding 72 meta-
resources and over 19,000 disease entries. We used the
database to obtain disease-symptom relations.

B. REPRESENTATION LEARNING MODEL
A representation learning model or knowledge graph-
embedding model is a prominent method for link predic-
tion. A knowledge graph comprises multi-relational data with
entities as nodes and relations as edges. The model then
embeds entities of a knowledge graph into a continuous low-
dimensional space to be represented as vectors, and further
embeds the included relations as vectors. In the represen-
tation learning model, data are presented as triplets (i.e.,
Head Entity, Relation, Tail Entity), where Relation indicates
a relation between the Head Entity and Tail Entity (e.g.,
(Steve Jobs, Founded, Apple company)). Herein, we denote a
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triplet as (h, r, t) and their corresponding vectors as h, r, and
t, respectively. A knowledge graph-embedding model helps
predict new relations among entities on the basis of existing
triplets. In the present study, we applied four different types
of representation learning models: TransE, PTransE, TransR,
and TransH.

TransE [2] is an energy-based model for learning low-
dimensional embeddings of entities. The basic concept of
TransE is that the relation between two entities corresponds
to the translation between the embeddings of entities. In other
words, the embedding of the tail entity t should be close to the
embedding of the head entity h plus a vector depending on the
relation r (i.e., h+ r≈ t for positive triplets). Thus, the energy
score function E of TransE (1) is expressed as follows:

E(h, r, t) = ||h+ r− t||L1/L2, (1)

where h, t, and r ∈ Rd are d-dimensional embeddings of
h, t, and r , respectively, and satisfy the norm constraints
(||h||22 = ||t||

2
2 = 1). To learn such embeddings, they min-

imize a margin based-ranking loss function defined as L =
6(h,r,t)∈16(h′,r ′,t ′)∈1′max(0, γ + E(h, r, t) − E(h′, r ′, t ′)),
where 1 represents a set of positive triplets,1′ indicates a set
of corrupted triplets which are triplets with either head or tail
replaced by a randomly selected entity from the set of entities,
and γ is the margin separating positive and corrupted triplets.
The loss function tries to minimize energy scores for the
positive triplets and, on the other hand, favors higher values
of the energy score function for the corrupted triplets. TransE
is simple and efficient, and is therefore easy to train with very
large-scale datasets and contains a relatively small number of
parameters: (O(ned + nrd)), where ne and nr are the number
of entities and relations and d is the embeddings dimen-
sion. Despite its simplicity, TransE performs as adequately as
most expressive models with large multi-relational datasets.
However, it was reported that TransE has disadvantages for
handling multi-step path relations that frequently appear in
the general-purpose KBs [3].

PTransE [3] is an extended model of TransE developed to
model relation paths for representation learning of KBs and
is also known as path-based TransE. The primary difference
between TransE and PTransE is that TransE only assesses
direct relations between two entities, whereas PTransE con-
siders not only direct relations but also important multi-step
path information. For example, (entity1, relation1, entity2)
and (entity2, relation2, entity3) can reveal a new relation
(entity1, relation1 ◦ relation2, entity3), where ◦ is a function
that links relation1 and relation2 into a unified relation path
representation. As explained in PTransE [3], multiple rela-
tion paths are defined as P(h, t) = {p1, . . . , pl} connecting
two entities h and t, where relation path p = (r1, . . . , rl)
represents h

r1
−→ ...

rl
−→ t . The energy score function E of

PTransE (2) is expressed as follows:

E(h, r, t) = E1(h, r, t)+
1
Z

∑
p∈P(h,t)

R(p|h, t)E(h, p, t), (2)

where the first term E1(h, r, t) is the same as in Equation (1),
and the second term represents a function for modeling indi-
rect relations through multiple step relation paths. R(p|h, t)
represents the reliability of the relation path p given the entity
pair (h, t) and Z = 6p∈P(h,t)R(p|h, t) is a normalization
factor, and lastly E(h, p, t) is the energy function of the triplet
(h, p, t) concerning the relation path representation.

In contrast with most representation learning models that
assume embeddings of entities and relations within the same
d-dimensional vector space Rd , TransR [4] assumes that
entities and relations are completely different objects; thus,
they should not be represented in a common semantic space.
Therefore, TransR was proposed as a novel method for mod-
eling entities and relations in different vector spaces such as
the entity space and relation space. The energy score function
E of TransR (3) is expressed as follows:

E(h, r, t) = ||hMr + r− tMr ||L1/L2, (3)

where Mr is a relation-specific projection matrix that
projects entities from the entity vector space to the relation
vector space. For a head and tail pair, the relation-specific
projection forms the members of a pair actually holding the
relation closer with each other, but places the members far
away from each other if the pair does not hold the relation.
However, TransR tends to not scale well because of its expen-
sive matrix vector operations on very large-size, complex
datasets.

Considering the poor performance of TransE [2] for infer-
ring relations with mapping properties such as reflexive, one-
to-many, many-to-one, and many-to-many relations among
entities despite its efficiency, TransH [5] was developed to
overcome these limitations and provide a good trade-off
between model capacity and efficiency. TransH enables an
entity to have distributed representations for different rela-
tions, which indicates different roles of the entity in different
relations. Thus, for a particular relation r, the relation-specific
translation vector dr is positioned in the relation-specific
hyperplane wr instead of within the same space of entity
embeddings. Thereafter, the embedding h and t are projected
to the hyperplane wr , and each projection is denoted as
follows: h⊥, t⊥. In TransH, both projections are expected
to be linked via a translation vector dr on the hyperplane.
Therefore, the energy score function E of TransH (4) can be
represented as follows:

E(h, r, t) = ||h⊥ + dr + t⊥||L1/L2, (4)

where h⊥ = h -wr
ᵀhwr and t⊥ = t -wr

ᵀtwr . Consequently,
TransH yields better results than TransE, especially for com-
plex multi-relational data such as FreeBase.

III. METHODOLOGY
In this section, we first show howwe constructed our biomed-
ical datasets to use them in the representation learning mod-
els. Second, we explain how we inferred new biomedical
relations using themodels and also evaluated the performance
of the models. Lastly, we introduce several experiments
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FIGURE 1. An illustration of the entire process of our work. (1) We extracted relations among biomedical entities from public databases; (2) We
normalized biomedical entities in the datasets because different databases can use different names for the same entity; (3) We transformed biomedical
data into the form of triplet to use them in the representation learning models; (4)–(5) We trained each model by minimizing a loss function using
randomly selected training, development and test triplets; and (6) We performed several experiments to verify the reliability of the results from the
models.

to verify the reliability of inferred relations using TransE.
An illustration of the entire process is shown in Fig 1.

A. CONSTRUCTION OF BIOMEDICAL DATASETS
To infer new relations via the aforementioned training mod-
els, we obtained biomedical data, including chemical-gene,
chemical-disease, gene-gene, disease-gene, and disease-
symptom relations. Relationships were extracted from
the CTD, MalaCards, and BioGrid databases, as shown
in Table 1, in which the first column represents the relation
type between head and tail entities. For example, (chemi-
cal, relate, gene) indicates that a chemical upregulates or
downregulates a gene, (chemical, relate, disease) represents a
chemical that is used to treat or cause a disease, and (disease,
relate, gene) indicates a gene targeted for the treatment of a
disease or that the gene causes a disease. These three relation
types were extracted from the CTD. Moreover, (gene, relate,
gene) extracted from BioGrid indicates interactions between
two genes. Finally, (disease, have, symptom) relations were
extracted from MalaCards. Herein, we only used curated
relations owing to their higher confidence levels than inferred
relations. The CTD, one of the largest databases indicating
relations among chemicals, genes, and diseases, delineates
not only biomedical relations that have beenmanually curated
by experts but also includes inferred relations with corre-
sponding inference scores [19].

TABLE 1. Statistics of biomedical knowledge bases obtained from public
databases.

Different public databases use different names for the same
diseases. For example, in the CTD, ovarian cancer is named
‘‘ovarian neoplasms,’’ whereas in the MalaCards database,
it is called ‘‘ovarian cancer, somatic.’’ Because such name
variations can result in different vectors for the same bio-
logical concepts, we normalized the names of diseases in
our dataset by first obtaining information about the names
of diseases from disease dictionaries with various types of
disease identifiers such as MeSH [20], OMIM [21], and
ICD [22] from public databases. Thereafter, we mapped the
names of all diseases to MeSH, OMIM, and ICD. In the
absence of appropriate identifiers for the names of specific
diseases, new identifiers were assigned. Furthermore, we nor-
malized gene names, because information regarding genes
was obtained from two different public databases (CTD and
BioGrid). We first constructed a gene dictionary by com-
piling synonyms for each gene symbol from the CTD and
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BioGrid databases, comprising gene symbols with corre-
sponding identifiers and synonyms. Using this gene dictio-
nary, we denoted all gene names in our biomedical datasets
as gene identifiers. Furthermore, we assigned new identifiers
for some gene names that were not included in the gene dic-
tionary. Consequently, we compiled 3,273,215 relations and
103,625 entities (chemicals, genes, diseases, and symptoms)
among these relations.

We examined the properties of the biomedical data by
comparing them with two other KBs: WordNet and Freebase.
WordNet is a lexical KB of the English language and con-
tains 40,743 entities, 18 relation types, and 151,442 triplet
data. FreeBase is a huge KB of general facts, compris-
ing 14,951 entities, 1345 relation types, and 592,213 triplet
data. Both KBs are considered standard datasets used to
assess various representation learning models. In [23], it was
reported that ‘‘averaged triplet number per entity (ATPE)’’
is a measurement of diversity and complexity of datasets.
The ATPE is calculated as the number of total triplet data
divided by the number of total entities. Thus, more triplets
lead to more complex structures of the knowledge graph.
Usually, the performance of embedding methods is lower
in datasets with a higher ATPE, and the ATPE values for
WordNet and FreeBase are 3.71 and 39.61, respectively. The
ATPE value for our biomedical datasets with 103,625 enti-
ties and 3,273,215 triplets is 31.59, which is similar to that
for FreeBase. However, there is a difference between Free-
Base/WordNet and the biomedical datasets. First, FreeBase
andWordNet contain many transitive relations ((x, y) ∈ R and
(y, z) ∈ R imply (x, z) ∈ R), whereas the transitivity property
does not hold formany entities and relations in the biomedical
datasets. Second, FreeBase and WordNet contain relatively
numerous and distinct relation types, whereas our biomedical
datasets have only five relation types that are semantically
related with each other. Thus, we need to investigate whether
the performances of the representation learning models are
affected by these differences in data sets.

B. INFERRING NEW BIOMEDICAL RELATIONS USING
REPRESENTATION LEARNING MODELS
We transformed all biomedical data in Table 1 into the form
of triplet (Head Entity, Relation, Tail Entity) to render the
dataset suitable for use in representation learning models.
Head and tail entities are represented as unique identifiers
with a specific relation type. For example, the disease-gene
relation for (cardiomyopathies is related to CYCS) is denoted
as the triplet (/d/13364, d_relate_g, /g/28644). Further-
more, the chemical-gene relation (bisphenol a is related to
MMS22L) is represented as the triplet (/c/11853, c_relate_g,
/g/06856). Although both d_relate_g and c_relate_g rela-
tion identifiers have the same relation name, i.e., ‘‘relate,’’
in Table 1, they are assigned different relation identifiers
because they represent relations among different entity types.
Thus, each relation has different embeddings.

After transformation of the biomedical data, we randomly
split all the triplets into training, validation, and test datasets,

TABLE 2. Statistics of training, validation and testing data used for the
training representation learning models and for comparing the
performance of the models each other based on mean rank scores and
Hits@10.

as described in Table 2. To train the representation learning
models (TransE, PTransE, TransR, and TransH), we used the
training and validation datasets in Table 2. The representation
learning model predicts head entities for a particular relation
type along with a tail entity and predicts tail entities for a
particular relation types along with a head entity. To infer
new biomedical relations, we input a pair of elements of
triplet (head entity, relation type) or (relation type, tail entity)
into the trained models. Thereafter, we predicted tail entities
or head entities, respectively, in accordance with the input.
For example, if we input (/d/13364, d_relate_g) data into the
model, the model outputs tail entities with prediction scores
from its energy score function. Note that the prediction scores
(or inference scores) in this study were calculated by the
product of energy scores and -1 to make the results easy
to interpret. Thus, higher prediction scores represent greater
accuracy.

C. EVALUATION OF MODEL PERFORMANCE AND
VERIFICATION OF INFERRED RELATIONS
KBs such as WordNet and Freebase do not contain nega-
tive triplets. Because the knowledge in KBs is incomplete,
the triplets that are not in the KBs may not be true negative
triplets. Thus, to evaluate the representation learning model
using these KBs, typical measurements including the area
under the curve between true-positive and false-positive data
are unsuitable. Instead, Bordes et al. [24] suggested the fol-
lowing evaluationmethod. Asmentioned above, the represen-
tation learning model predicts head entities for a particular
relation type along with a tail entity, and predicts tail entities
for a particular relation type along with a head entity. For
each test triplet, the original head entity is replaced by all
entities of the same types of entities in KBs in turn, which are
referred to as corrupted triplets. Furthermore, the energies of
these corrupted triplets and the original triplet are computed
by an energy score function and sorted in descending order,
which is used to determine the rank of the original triplet. The
same procedure is then performed for the original tail entity.
The average of the ranks for all test triplets is used as the
performance metric of the model. For example, considering
the test triplet (cardiomyopathies, relate, CYCS), the left
entity, i.e., cardiomyopathies, is replaced with all other enti-
ties in turn, and the energies for the corrupted triplets are
computed. The energy score of the original entity was then
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compared with those of the corrupted triplets, and the rank
was computed. This procedure would also be completed for
the right-hand argument, CYCS. Note that the other triplets
included in the training and validation sets were not used
when calculating the rank.

We measured hits@10 representing the proportion of cor-
rect entities ranked in the top 10. For example, to measure
hits@10 for head, the ehead was removed for each test triplet
(ehead , r , etail) and replaced by each of the entities of the
test set. Thereafter, we assessed whether the ehead is ranked
in the top 10 among predictions when prediction scores are
sorted in descending order. This procedure was repeated for
measuring hits@10 for the tail. We used these two evaluation
procedures to compare the performance of representation
learning models (TransE, PTransE, TransR, and TransH).

Because we inferred new biomedical relations from repre-
sentation learning models, it was considered as the primary
focus of this study to verify the reliability of inferred rela-
tions. Thus, we conducted not only performance evaluation
of the models but also several additional experiments. First,
we investigated whether the highly ranked entities could be
considered more reliable because a higher score by the model
represents greater accuracy. We trained and tested the model
with a randomly selected subset of the data, and assessed
whether the highly ranked triplets were more likely to be
included in the remaining data. Second, the CTD provides
inference scores for the inferred chemical-disease relations
to indicate their reliability. Thus, we applied a statistical
model used in the CTD to our biomedical data. Thereafter,
we compared the reliability of new chemical-disease rela-
tions inferred by the representation learning model with
that of those inferred by the statistical model used in the
CTD. Finally, the co-occurrence represents the simultane-
ous occurrence of two entities in the same document, sen-
tence, or phrase, which is a measure of the relative closeness
between two entities. Thus, we investigated whether two
entities in the highly ranked relation co-occurred in the larger
number of abstracts by counting the number of the abstract-
level co-occurrences of two entities in each predicted relation.
Hence, we first compiled approximately 28 million PubMed
abstracts for detecting 103,625 entities listed in Table 2 using
LinPipe [25]. Therefore, we used our dictionary containing
chemical, gene, disease, and symptom entity names and their
synonyms. Consequently, we obtained NER results for the
103,625 entities, which were used to determine the number
of co-occurrence PMIDs for the inferred relations.

IV. EXPERIMENTS
A. PERFORMANCE OF VARIOUS REPRESENTATION
LEARNING MODELS BASED ON OUR
BIOMEDICAL DATA SETS
We initially assessed the performance of four different
types of representation learning models (TransE, PTransE,
TransR, and TransH) based on our biomedical datasets. For
training and evaluating the models, we randomly split the

biomedical data shown in Table 1 into train, validation, and
test datasets, as shown in Table 2. Each of the four rep-
resentation learning models (TransE, PTransE, TransR, and
TransH) was trained with 3,269,465 training triplets and
2500 validation triplets. For TransE, we followed the default
configuration used in the source code as follows: learning rate
λ= 0.01,margin γ = 2, latent dimension k= 20, dissimilarity
measure d = L1 distance, and 500 learning epochs. Further-
more, we followed the default configuration in the source
code for the other models (PTransE, TransR, and TransH) as
follows: learning rate λ= 0.001, margin γ = 1, latent dimen-
sion k = 100, dissimilarity measure d = L1 distance, and
1000 learning epochs. For the test data, the scores of tail enti-
ties were predictedwith given head entities and relation types.
Inversely, the scores of head entities were predicted with
particular tail entities and relation types. Finally, we ranked
the predicted relations in accordance with the scores for each
given head or tail entity with a particular relation type.

Table 3 summarizes the comparative performance of
TransE, PTransE, TransR, and TransH on the basis of mean
rank scores using the datasets shown in Table 2. The first col-
umn represents the representation learningmodels. In the sec-
ond column, separate data types indicating the performance
are shown for each data type. The mean rank for the relation
type denoted as ‘‘ALL’’ represents the average of mean ranks
for the five relation types. The third and fourth columns
indicate each mean rank for the head and tail entities. For
example, in TransE, the mean rank for head entities in the
chemical-relate-gene relation type was 445.1, indicating that
the chemicals in the test triplets ranked in the top 2.9%
on average out of the total number of chemicals (15,267).
The averaged mean ranks for both head and tail entities
are also shown. For example, TransE achieved a mean rank
of 1642.06 out of 103,625 entities, indicating that when a
relation type and one of the arguments in some test triplets
are entered in TransE, the model predicts its corresponding
left- or right-hand argument in the top 1642.06 rank position
on average.

Table 4 summarizes the comparison of the performances
of each model on the basis of Hits@10 representing the
proportion of correct entities ranked in the top 10. The second
and third columns mean each hits@10 for the head and
tail entities. For example, in TransE, the hits@10 for head
entities was 20.08%, indicating that for 20.08% of 1250 test
triplets, head entities were correctly ranked in the top 10. The
averaged proportion of both head and tail entities are also
shown in the last column.

PTransE, TransR, and TransH were originally developed
to overcome the limitations of TransE. However, with our
biomedical datasets, TransE outperformed the other repre-
sentation learning models, as shown in Table 3 and Table 4.
Thus, we speculated why TransE works better on the biomed-
ical datasets than PTransE, TransR, and TransH despite
TransE having a disadvantage for handling complex relation
types. First, PTransE is an extending model of TransE to
model a path-based representation. The model incorporated
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TABLE 3. Comparison of the performance of different representation learning models based on mean rank scores.

TABLE 4. Comparison of the performance of different representation
learning models on the basis of Hits@10 (in %).

connected relational facts between entity pairs instead of
only considering the direct relation between two entities.
Thus, PTransE works better with data containing transitive
relations. As we previously described, FreeBase and Word-
Net have many transitive relations. For example, FreeBase
contains the following relation types: ‘people_born_here’,
‘capital’, and ‘nationality’ and suppose that we have two
triplets: T1 = (Samuel Leroy Jackson, people_born_here,
Washington D.C.) and T2 = (Washington D.C., capital, the
USA). From these two triplets the transitive relation, T3 =
(Samuel Leroy Jackson, nationality, the USA), can be derived.
In a similar perspective, in WordNet, the hyponymy relation
has transitivity properties. For example, if an armchair is a
kind of chair, and if a chair is a kind of furniture, then an
armchair is a kind of furniture. On the other hand, transitivity
is not always satisfied in biomedical datasets owing to the

characteristics of biomedical entities and relation types. Sup-
pose that the BioGrid database contains the following gene
interactions: (gene1, relate, gene2) and (gene2, relate, gene3).
However, the relation (gene1, relate, gene3) does not always
exist in BioGrid.

Second, both TransR and TransH were designed to differ-
ently project entities depending on each relation type, mean-
ing that they assign an entity with different representations
when involved in various relation types. These two meth-
ods outperformed TransE on knowledge bases containing
numerous and distinct relation types. As mentioned earlier,
FreeBase and WordNet have 1345 and 18 distinct relation
types, respectively. In addition, except for some relations
holding transitive properties, relations are distinct from each
other, having been obtained from several different domains
such as business, music, and medicine. However, the number
of relation types in our biomedical datasets is only five,
and chemical, gene, disease, and symptom are related with
each other so that relations among them are also related with
each other. Therefore, we used TransE to infer new rela-
tions between biomedical entities and to proceed with further
experiments, because the training duration of TransE was
much shorter than that of other models and it displayed the
best performance especially with a large amount of biomedi-
cal data.
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TABLE 5. Statistics of training and validation data used for evaluating the
accuracy of relations inferred by TransE.

B. EVALUATION OF NEW RELATIONS
INFERRED USING TRANSE
The aforementioned evaluation was based on the ranking of
predicted entities. During subsequent evaluation, we further
investigated whether the highly ranked entities were indeed
more reliable for inferring relations. Thus, we trained and
tested the model with a randomly selected subset of the
data and investigated whether the highly ranked predictions
were more likely to be included in the remaining data. For
each relation type, we randomly selected 20% of the total
triplets and 500 triplets, which were used as training and val-
idation datasets, respectively. Of 3,273,215 triplets, 656,693
(= 654,193+ 2500) triplets were used for training the model.
Details of these datasets are provided in Table 5. Thereafter,
we selected 250 head entities for each relation type for testing,
and predicted their corresponding tail entities. To select these
250 entities, we initially sorted all entities from the train
triplets of Table 5 in descending order of the number of
occurrences. Thereafter, we selected the top 250 entities for
each relation type. Finally, we investigatedwhether the highly
ranked predicted triplets were more likely to occur in the
2,616,522 (= 3,273,215 − 656,693) remaining triplets.
Fig 2 shows the distribution trends of direct matches

obtained for each rank range, where a direct match indicates
that a predicted relation occurs in the set of the remaining
triplets. In Fig 2, x-axis is a rank range between top X and
top Y rank, and y-axis is the percentage of the number of
direct matches in each rank range. The model predicted up to
3000 tail entities for each test triplet. Thus, if 250 chemicals
are entered in the model, it yields 750,000 possible relations.
In Fig 2, among the 100 predictions ranked in the range
between the top 1 and 100, 11.66% of the predicted chemical-
disease relations occurred in the 71,216 ( = 89,457 - 18,241)
remaining triplets on average and tended to decrease with a
reduction in the rank. Furthermore, the rest of the bars for
each relation type displayed a similar tendency. Thus, This
graph shows that the highly predicted relations determined
using TransEweremore likely to be included in the remaining
triplets for disease-gene, chemical-disease, chemical-gene,
gene-gene, and disease-symptom relations.

C. RELIABILITY OF THE NEW CHEMICAL-DISEASE
RELATIONS INFERRED USING TRANSE COMPARED
TO THAT OF THOSE INFERRED USING THE
STATISTICAL MODEL USED IN CTD
The CTD provides manually curated chemical-gene, gene-
disease, and chemical-disease relations. Further, they provide

inferred relations between chemicals and diseases, which
are generated by combining chemical-gene data with gene-
disease data by using common genes linking chemical and
disease entities. The CTD also provides inference scores
for the inferred chemical-disease relations to indicate the
reliability of the inferred data, which were analyzed using
five statistical metrics including the hypergeometric cluster-
ing coefficient (CXY ), two common neighbor statistics (P1,
P2), and two novel variants of these metrics (SXYA, WXYA).
Among these metrics, the CTD used WXYA as the inference
score [19]. Before explaining WXYA, we introduce the two
common neighbor statistics, P1 and P2. In the chemical-
gene-disease network, P1 considers the number of common
neighbor genes and the degree of two nodes (chemical and
disease), and P2 takes into account the degrees of common
neighbor genes. According to [26], P1 and P2 are calculated
as follows:

P1(m|N , nX , nY ) =

(
N
m

)(
N − m
nX − m

)(
N − nX
nY − m

)
(
N
nX

)(
N
nY

) (5)

P2(X and Y share A|N ) =
∏
i∈A

ni(ni − 1)
N (N − 1)

, (6)

where nX and nY are the node degrees of chemical X and dis-
ease Y , respectively, in a chemical-gene-disease interaction
network, N is the total number of entities, m is the number of
mutual neighboring nodes (genes), A= {Z1,. . . , Zi,. . . , Zm} is
the set of common neighbor genes that connect the chemical
and disease, and ni is the number of edges of the gene Zi in
the set A.
WXYA considers both the number of common genes and

the connectivity among the chemical, disease, and gene.
WXYA [19] is the weighted product of a log10-transformed
form of P1 and P2, defined as follows:

WXYA = −(w1 log10(P1)+ w2 log10(P2)) (7)

where

w1 = w2 = (1−
e

2em
).

To compare the reliability of the chemical-disease relations
inferred using TransE with those inferred using the CTD,
we constructed a chemical-gene-disease interaction network
using chemical-gene, chemical-disease, and disease-gene
relations corresponding to the training and validation datasets
in Table 5. This network comprised 7854 chemicals, 3043 dis-
eases, and 21,118 genes. We first applied the statistical model
in CTD to this network. Thereafter, we determined the infer-
ence scores (WXYA) for all pairs among 250 chemicals and
3043 diseases in the interaction network and sorted the pairs
by their inference scores. These 250 test chemicals are same
as those listed in Table 5. As shown in Fig 2, we already deter-
mined whether the sorted chemical-disease pairs occurred
in the 71,216 remaining chemical-disease triplets for
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FIGURE 2. Distributions of the number of direct matches in accordance with the change in each rank. The x-axis represents each rank range between the
top X to top Y, and the y-axis indicates the percentage of the number of direct matches in each rank range.

FIGURE 3. Distributions of the number of direct matches for inferred chemical-disease relations from the TransE (orange) and the Comparative
Toxicogenomics Database statistical model (blue). The values on each bar represent the average number of direct matches in each rank range.

each rank range. Thus, we compared these results with those
of the CTD.

As shown in the blue bar in Fig 3, when applying the statis-
tical model of the CTD, only 8.31% of the inferred relations
on average appeared in the remaining triplets in the rank range
between the top 1 to 100. In contrast, an average of 11.66%
of the chemical-disease relations inferred by TransE occurred
in the remaining triplets. Moreover, the orange bar (TransE)

tended to display a better performance than the blue bar
(CTD statistical model) in the higher rank range (from rank 1
to rank 800). These results show that the relations inferred
using TransE are more reliable than those inferred using the
CTD statistical model. Herein, we speculated why TransE
outperformed the method used in the CTD. The statistical
model used in the CTD is basically based on indirect rela-
tionships between chemicals and diseases through genes to
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FIGURE 4. Graph explaining the distribution trends of the average number of co-occurrence PMIDs in accordance with each rank range. The x-axis is each
rank range between top X to top Y and the y-axis means the average number of co-occurrence PMIDs in each rank range.

calculate their inference scores. In this process, many candi-
date chemical-disease relation pairs can be produced by hub
genes. However, this gene-based approach generated many
false-positives because the activation and regulation of drugs
and genes differ depending on the type of disease. On the
other hand, TransE learns vector representations of knowl-
edge graphs in the low-dimensional vector space without
the assumption of indirect relations between chemicals and
diseases and determines the plausibility of a certain knowl-
edge in the graph through algebraic operations. We assume
that this difference may result in better performance
of TransE.

D. EVALUATION OF INFERRED DISEASE-GENE
RELATIONS ON THE BASIS OF THE NUMBER
OF CO-OCCURRENCE ABSTRACTS
We hypothesized that two entities in highly ranked rela-
tions may appear in a greater number of abstracts. Thus,
for 20 commonly studied diseases [9], including Alzheimer’s
disease and diabetic neuropathies, we inferred 3000 genes
for each disease using TransE and determined the average
number of abstracts wherein the inferred gene and disease are
mentioned together.

As shown in Fig 4, the number of co-occurrences between
the 20 diseases and corresponding inferred genes in each
rank range tended to be markedly higher in the higher rank
range. For example, in an average of 13,811.7 abstracts,
the test diseases ranking in the top 100 co-occurred. However,
the number of co-occurrence abstracts decreased at lower
rank positions.

Furthermore, we determined Pearson’s correlation coef-
ficients between the ranks of genes and the number of

TABLE 6. Statistics of correlation analysis for the 20 diseases.

co-occurrence abstracts. As shown in Table 6, all dis-
eases except for ‘‘asthma’’ showed a significant negative
relation (p-value < 0.05), indicating that higher ranked
disease-gene relations tend to appear in more co-occurrence
abstracts. These results support our hypothesis that highly
ranked relations are more reliable than lower ranked
relations.

V. CONCLUSION AND FUTURE PROSPECTS
In this study, we constructed a biomedical knowledge base
using data from well-known, publicly available databases.
We compared the performance of the representation learning
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models (TransE, PTransE, TransR, and TransH) based on
the biomedical knowledge base. The present results show
that TransE outperformed the other representation learning
models despite being originally designed to overcome the
limitations of TransE. Thus, we used TransE to infer novel
biomedical relations among chemicals, genes, diseases, and
symptoms. Thereafter, we conducted several experiments to
verify the reliability of these inferred relations. In the inferred
relations, higher ranked relations displayed a higher reliabil-
ity than the lower ranked positions. Furthermore, the present
results show that the relations inferred using TransE are
more reliable than those inferred using the statistical model
used in the CTD. Finally, our results show that higher
ranked relations tend to be present in more co-occurrence
PubMed abstracts. These findings indicate that the repre-
sentation learning model is useful to infer new biomedical
relations.

In future studies, we intend to develop a deep learning-
based representation learning model that suitable for the
present biomedical knowledge base because the perfor-
mance of existing models with the biomedical data was
not as satisfactory as that during the application of
these models to general purpose KBs including FreeBase
and WordNet.

APPENDIX
As shown in Table 2, we randomly split the biomedical
data extracted from public databases into training, devel-
opment, and test datasets. More specifically, we randomly
picked 250 test triplets for each relation type, resulting in a
total of 1250 test triplets. Thereafter, a total of 2500 devel-
opment triplets (500 triplets per relation type) were ran-
domly selected, and the rest of data were considered as the
training triplets. Thus, we used them to compare the per-
formance of each representation learning model as shown
in Table 3. In this experiment, a k-fold cross-validation was
not used for evaluating the performance of the models due to
computational resource limitations. Unlike other KBs such
as FreeBase and WordNet, our biomedical datasets con-
sist of a total of 3,273,215 triplets (3,269,465 training +
2500 development + 1250 test triplets), which are very huge
in size.

Here, we measured the training time of each represen-
tation learning model based on our biomedical datasets.
TransE, which is implemented using Python and the
Theano library, took 14 hours and 30 minutes. TransH
took 8 hours and 33 minutes. TransR took 105 hours and
30 minutes. PTransE(ADD) took 16 hours and 40 min-
utes. PTransE(MUL) took 22 hours and 20 minutes.
PTransE(RNN) took about 9 days. Note that all models except
TransE were implemented in C++ language. Since training
TransR and PTransE took a lot of time we did not use a
k-fold cross-validation. All computational times have been
measured on a Linux server with the following configuration:
Intel Core i9-7900XCPU 3.3 GHz, NVIDIA Titan XpCUDA
GPU 12 GB GDDR5, 64 GB RAM DDR4.
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