
1

Vol.:(0123456789)

Scientific Reports |         (2021) 11:7563  | https://doi.org/10.1038/s41598-021-86938-0

www.nature.com/scientificreports
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High‑energy‑density and low‑cost calcium (Ca) batteries have been proposed as ‘beyond‑Li‑ion’ 
electrochemical energy storage devices. However, they have seen limited progress due to challenges 
associated with developing electrolytes showing reductive/oxidative stabilities and high ionic 
conductivities. This paper describes a calcium monocarborane cluster salt in a mixed solvent as a 
Ca‑battery electrolyte with high anodic stability (up to 4 V vs.  Ca2+/Ca), high ionic conductivity (4 
mS  cm−1), and high Coulombic efficiency for Ca plating/stripping at room temperature. The developed 
electrolyte is a promising candidate for use in room‑temperature rechargeable Ca batteries.

Li-ion batteries with high energy densities are indispensable in applications such as portable electronic devices, 
electric vehicles, and grid-scale storage. However, current Li-ion battery technologies are approaching their 
theoretical energy density limits. In addition, there are critical challenges associated with natural abundance, 
cost, and  safety1. A plausible solution to these issues is to use divalent batteries based on Ca or Mg metal anodes, 
because these elements are the fifth and seventh most abundant in Earth’s crust, respectively. In particular, Ca 
has a low reduction potential (− 2.87 V vs. standard hydrogen electrode (SHE)), similar to that of Li (− 3.04 V 
vs. SHE) but much lower than that of Mg (− 2.37 V vs. SHE). Furthermore, these divalent metals offer higher 
volumetric capacities (Ca: 2073 mAh  cm−3; Mg: 3833 mAh  cm−3) than  Li2–5. Thus, the cell voltage and energy 
density of Ca batteries are expected to be comparable to and higher than those of Li-ion and Mg batteries, 
respectively. Moreover, as  Ca2+ (1.12 Å) has a larger ionic radius than that of  Mg2+ (0.72 Å), its charge polariza-
tion is reduced, and this ion softness tends to form more-covalent bonds with host anions, which may lead to 
improved ion transport and diffusion in electrolyte and cathode  materials3, 6. Therefore, rechargeable Ca batteries 
that exhibit not only the advantages of cost effectiveness and abundance but also the battery performances are 
attractive candidates for post-Li-ion battery  technologies2, 6–8.

Among the main challenges related to Ca-battery technology is a lack of suitable electrolytes for reversible 
Ca metal plating/stripping at room  temperature9. Non-aqueous Ca electrolytes comprising conventional salts 
in aprotic solvents are fundamentally incompatible with Ca metal anodes because the passivating films that 
form on anode surfaces prevent Ca ion  transport10. In the past few years, intensive research has been pursued to 
develop new electrolytes capable of reversible Ca plating/stripping. In 2016, reversible Ca plating/stripping was 
first reported in an electrolyte of Ca(BF4)2 in ethylene carbonate/propylene carbonate at 100°C11. The deposited 
product contained not only Ca metal but also  CaF2, which inhibits Ca diffusion and hinders plating and strip-
ping  processes12.

More recently, Li et al. and Shyamsunder et al. simultaneously demonstrated that room-temperature revers-
ible Ca plating/stripping using an electrolyte of Ca[B(hfip)4]2 (hfip = hexafluoroisopropyloxy) in 1,2-dimeth-
oxyethane (DME) was possible with impressive anodic stability (> 4.0 V)13, 14. The [B(hfip)4] anion is known 
to be a weakly coordinating anion with weak anion–cation interactions, thereby favouring ion association and 
higher  conductivities15, 16. Despite its excellent electrochemical performances, this electrolyte can intrinsically 
suffer from the same issue of  CaF2 formation as the Ca(BF4)2 electrolyte. Wang et al. proposed Ca(BH4)2 in 
tetrahydrofuran (THF) as a fluorine-free electrolyte system, which showed a Coulombic efficiency of 95% dur-
ing Ca plating/stripping on an Au  electrode17. Although this electrolyte is compatible to Ca metal, the anodic 
stability is only 2.4 V vs.  Ca2+/Ca because of the reducing nature of  BH4

−  anions18, 19. Thus, it is desirable to find 
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a fluorine-free Ca electrolyte system that delivers high electrochemical performance, i.e. a wide electrochemical 
potential window, reversible Ca plating/stripping stability, and high ionic conductivity at room temperature.

Herein, we propose a fluorine-free Ca electrolyte using calcium monocarborane (CMC or  Ca[CB11H12]2), 
which shows a wide electrochemical potential window up to 4 V vs.  Ca2+/Ca and high conductivity of 4 mS  cm−1, 
in addition to supporting reversible Ca metal plating/stripping at room temperature. The monocarborane clus-
ter anion  ([CB11H12]−) is a type of complex hydride anion, which is known as a weakly coordinating  anion20–23. 
Moreover, due to its high reductive and oxidative stability, it allows for a wide potential window and shows 
excellent stability against metal anodes such as Li, Na, and  Mg24–29. These led to the idea that an electrolyte with 
the  [CB11H12]− anion could also be highly compatible with Ca batteries. However, a design that incorporates a 
monocarborane cluster anion into a Ca electrolyte has not been proposed. In fact, the results of this study reveal 
that electrolytes prepared by simply adding a CMC salt to single DME or THF solvents show poor solubility and 
deliver insufficient electrochemical performance. Hence, we found that a DME/THF mixed solvent shows high 
solubility for the CMC salt and delivers excellent electrochemical performances in Ca batteries.

Methods
The preparations and handling of air-sensitive materials were conducted under a dry Ar atmosphere using a 
glovebox and Schlenk techniques.

Synthesis of CMC electrolytes. Hydrated CMC (CMC·nH2O) and anhydrous CMC were synthesised via 
ionic exchange and heat  treatment30, 31. First,  Cs[CB11H12] (2.759 g, 10 mmol, Katchem Ltd.) was converted into 
the corresponding acid  [H3O][CB11H12] through ion exchange(acidic form of Ambarlite IR120B, 20 mL). Aque-
ous  Ca[CB11H12]2 was prepared by neutralising  [H3O][CB11H12] with excess  CaCO3(1.501 g, 1.5 eq, FUJIFILM 
Wako Pure Chemical Co.). Solvent removal yielded hydrated CMC, which was further dried under vacuum 
(< 8 ×  10−4 Pa) at 433 K for 10 h to obtain  CMC32. DME (Sigma-Aldrich), THF (Sigma-Aldrich), DME/THF 
mixed solvent, diglyme, and triglyme were stored over 3-A molecular sieves prior to use, yielding measured 
water levels of < 10 ppm. To prepare Ca electrolytes, CMC was dissolved in a volumetric flask with appropriate 
amounts of each solvent to achieve the desired or saturated concentration. The molar concentration of the elec-
trolyte is based on the molar mass of CMC.

Physicochemical characterisations of the CMC electrolytes. The Ca, B, and residual Cs contents of 
the compounds were determined using inductively coupled plasma-optical emission spectrometry (ICP-OES) 
and inductively coupled plasma mass spectrometry (ICP-MS). Nuclear magnetic resonance (NMR) spectra 
(Bruker Avance II spectrometer) were obtained at 7.05 T for the 1H and 11B nuclei. All samples were prepared 
using aceton-d6 (Sigma-Aldrich) as the solvent. The vibrational modes of complex anions were characterised by 
Raman spectroscopy (DXR, Thermo Scientific). Prior to performing scanning electron microscopy (SEM) with 
energy-dispersive X-ray spectroscopy (EDS) analysis, all the samples were loaded in air-tight sample holders to 
prevent any exposure to ambient conditions during sample transfer. For the differential scanning calorimetry 
(DSC) measurements, samples weighing 4.02  mg were transferred through the glovebox and measurements 
were conducted under Ar flow. After loading the samples in the DSC instrument, a heating programme from 
T = 303 to T = 773 K with a heating rate of dT/dt = 2 K  min−1 was started. A return programme for cooling was 
started sequentially at a cooling rate of dT/dt =  − 2 K  min−1. The saturated concentrations of CMC in DME, THF, 
and the DME/THF mixture were determined by performing ICP-OES measurements. The water contents were 
measured using a convertible Karl Fischer moisture meter (CA-200, Mitsubishi Chemical Analytech Co.,Ltd.).

Electrochemical analyses and battery tests. Disc-shaped working electrodes composed of Au, Pt, Cu, 
and SUS (with diameters of 8.0 mm) and the counter and reference comprising Ca (with sizes of diameters of 
10.0 mm and diameters of 5.0 mm, respectively) were extensively polished until a metallic lustre was achieved 
before each use. All the electrochemical analyses were performed at room temperature with a stainless-steel 
electrochemical cell holder. Cyclic voltammetry (CV) was conducted at 20  mV   s−1 with the voltage ranging 
between − 0.4 and 4.0 V vs.  Ca2+/Ca. Ex-situ XRD measurement was performed using an X’PERT Pro diffrac-
tometer (PANalytical) with Cu Kα radiation (wavelength λ = 1.5406 Å for  Kα1 and 1.5444 Å for  Kα2).

Sulfur/carbon (S/C) composites were prepared through mechanical milling using elemental sulfur (99.98%, 
Sigma-Aldrich), KETJEN BLACK (KB), and MAXSORB with a weight ratio of 2:1:124, 33. S/C electrodes were 
prepared by mixing 80 wt% of the composite and 20 wt% of weight of polyvinylidene difluoride (PVDF) in 
N-methyl pyrrolidone. The mixture was coated on an etched Al foil (current collector) and dried at 353 K in a 
vacuum for 12 h. For the battery tests, the S/C electrodes, separator, electrolyte, and Ca metal anode were placed 
in a stainless-steel electrochemical cell holder. The electrochemical measurements were conducted at a C-rate 
of 0.1 C at room temperature in the voltage range of 3.2–0.5 V using a battery tester (580 Battery Test System, 
Scribner Associates).

X-ray photoelectron spectroscopy (XPS) analyses of the pristine S/C electrode and S/C electrode after dis-
charge at 0.5 V were performed using a PHI 5000 VersaProbe III instrument (ULVAC-PHI, Inc.). The conduc-
tivities of solid-phase CMC pellets (8 mm) pressed at 120 MPa were measured using the AC impedance method 
that utilized Au/CMC/Au over a temperature range of 303–423 K, with applied frequencies of 4 Hz to 1 MHz 
that were produced using a frequency response analyzer (3532–80, HIOKI).
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Results and discussion
First, the atomic ratios of Ca, Cs, and B in CMC were determined through ICP-MS and ICP-OES (Table S1). As 
the Cs/Ca ratio was less than 1/10,000, the Cs salt was almost completely converted into Ca salt. Furthermore, the 
Ca/B ratio was 1/21.96, which is close to the theoretically determined ratio of 1/22 in CMC  (Ca[CB11H12]2). To 
characterize  [CB11H12]− anion and  H2O in CMC, Raman spectroscopy measurements and NMR measurements 
were assessed for CMC and CMC‧nH2O (Fig. 1a,b). The Raman spectra of CMC and CMC‧nH2O exhibited vari-
ous deformation vibration modes of  [CB11H12]− below 1200  cm−1. In addition, the Raman peak at 3050  cm−1 was 
ascribed to the C–H stretching mode of  [CB11H12]− anion (Fig. 1c)34. The Raman peak observed at 3600  cm−1 
for CMC·nH2O, ascribed to the O–H mode of  H2O35, was not detected for CMC, indicating that the hydrated 
water can be mostly removed from CMC by simply heating akin to the removal of the closo-type Ca complex 
hydride  CaB12H12

30, 32. These results are consistent with the 11B and 1H NMR  spectra28, 36. To investigate the water 
content in CMC and CMC‧nH2O in detail, the Karl-Fischer titration method was applied for two electrolytes that 
were prepared from 5 mL of DME/THF (water content is less than 10 ppm) with 20 mg of CMC or CMC‧nH2O. 
The water content of CMC in DME/THF was measured as 15 ppm, while the water content of CMC‧nH2O in 
DME/THF was measured as 1178 ppm. The difference of 5 ppm in the water content would not affect battery 
operation; this difference can be compensated by the addition of molecular sieves to the CMC electrolyte. Upon 
the calculation of water content, CMC·nH2O can be expressed as CMC·6H2O, which is consistent with the heat-
treatment-induced weight loss determined by thermogravimetric analysis (Fig. S1).

Ca electrolytes were prepared by dissolving CMC into the weakly coordinating solvents, which enabled 
the dissociation of Ca  salts37–39. As the weakly coordinating solvents, THF, DME, and a mixture of DME/THF 
(1:1, v/v) were selected, and the solubilities of CMC were evaluated by ICP-OES using saturated solutions. Fig-
ure 1d shows photographs of 5 mg CMC dissolved or dispersed in 1 mL of solvent. Interestingly, although the 
solubilities of CMC in DME and THF were very low (< 0.0033 and 0.0026 M, respectively), that in DME/THF 
was high (> 0.75 M). An investigation of the solubility behaviour of CMC in THF and DME binary mixtures 
was carried out at room temperature, where Fig. 1e shows the solubility diagram of CMC in DME/THF mixed 
solvents of various ratios. The highest solubility in the diagram is observed at a solvent ratio of approximately 
1/1 (v/v). Similar improvements in solubility have been reported by using mixed solvents for several salts con-
taining cluster-type complex hydride anions, such as Mg(CB11H12)2,  Li2B10Cl10, and  Li2B12Cl12

29, 40. One of the 
possibility for the improved solubility observed in the present study is that the mixed solvents can be function-
alized of the monocarborane cluster anion with one or more  moieties41. The mechanism and role of the mixed 
solvent can be elucidated through quantum chemistry calculations and X-ray absorption spectroscopy of the 
 electrolyte42, 43, which will provide information about the coordination structure surrounding the  Ca2+ cation 
and the  [CB11H12]− anion; we plan to conduct such investigations in our future studies. These conductivities were 

Figure 1.  (a) Raman spectra of calcium monocarborane (CMC) (orange) and CMC·nH2O (blue). (b) 11B and 
1H nuclear magnetic resonance (NMR) spectra of CMC (orange) and CMC·nH2O (blue). (c) Geometry of the 
 [CB11H12]– anion (black, green, and blue spheres denote C, B, and H atoms, respectively). (d) Photographs of 
CMC dispersed/dissolved in 1,2-dimethoxyethane (DME), tetrahydrofuran (THF), and a DME/THF mixture. 
(e) Solubility diagram of CMC in mixtures of DME/THF with various solvent ratios. (f) Relationship between 
conductivity and CMC solubility (for details, see Table S2 and Fig. S2). The thermal stability is shown in Fig. S4. 
The conductivity of the solid phase CMC were measured by EIS and shown in Fig. S5.
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determined using a symmetrical cell with an Au electrode with the cell constant obtained via cell calibration 
using 0.08% KCl and were used to calculate the conductivity of the electrolyte. The calculated conductivity of 
0.5 M CMC/DME/THF (4.0 mS  cm−1) was greater than those of CMC/DME (0.073 mS  cm−1) and CMC/THF 
(0.036 mS  cm−1), and of the same order as that of the previously reported Ca[B(hfip)4]2 electrolyte (Figs. 1f, S2, 
S3 and Table S2)13.

Electrochemical studies were conducted using 0.5 M CMC/DME/THF. Ca plating/stripping was performed 
via CV at 20 mV  s−1 with three-electrode setup using Ca metal as the reference and counter electrodes, and Au 
metal as the working electrode. Typical metal plating/stripping behaviour was observed in the cathodic/anodic 
scans (Fig. 2a). Ca plating commenced at − 220 mV in the cathodic scan, and in the anodic scan, the current began 
to rise at ∼ 80 mV, indicating the stripping of plated Ca. After conditioning for three cycles (Fig. S6), plating/
stripping proceeded with a lower overpotential and improved reversibility. Moreover, the Coulombic efficiency 
increased to ca. 88% during the initial several cycles and then remained steady over the 30th cycle (Fig. 2b). The 
insufficient Coulombic efficiency seems to be a result of the partially decomposed CMC/DME/THF electrolyte 
on the Au electrode and the formation of dead Ca, which is electrically isolated from the electrode. This will be 
discussed in a different section of this paper along with the SEM/EDS results. Even if the Au working electrode 
is replaced by an electrode of another metal (e.g., Pt, Cu, and SUS), low overpotential, reversibility, and moder-
ate Coulombic efficiency were still obtained (Fig. S7). On the other hand, the Ca plating/stripping behaviours 
were not observed when using electrolytes of 0.1 M CMC in diglyme and 0.1 M CMC in triglyme (Fig. S8). 
Considering the influence of the type of ether solvent and anion coordination on Ca, the incompetency of these 
electrolytes arises due to the coordination of Ca with diglyme and triglyme being stronger than that of Ca with 
DME and  THF37.

To provide direct evidence for Ca ionic conduction through the CMC/DME/THF electrolyte, we assembled a 
Ca | CMC/DME/THF | Au cell and deposited Ca on the Au electrode at room temperature. In the disassembled 
cell, the deposits appeared as black powder on the Au electrode, which was washed with DME/THF (Fig. 3a). 
The black powder on the Au electrode and separator was removed and collected for XRD measurement, which 
revealed that the dominant product is Ca metal in the form of α-Ca and β-Ca, along with a small amount of 
 CaH2 (Fig. S9). These broad peaks with a low intensity indicate a small size and a low crystallinity for all depos-
ited materials. Then, the morphology of the deposits on the Au electrodes in CMC/DME/THF electrolyte were 
examined using SEM and EDS, and showed uniformly dispersed spherical particles (Figs. 3b,c, and S10). The 
spherical particle deposits have a shape similar to that of the Ca deposits prepared in the Ca(BH4)2–LiBH4–THF 
 electrolyte44. The EDS profile indicates that the deposits were mainly composed of Ca, O and C with trace 
amounts of B (Fig. 3b). The large amount of O originated from the highly reactive fresh Ca deposits being 
briefly exposed to air before the EDS observation (Fig. 3c). The moderate amounts of C and B were likely due to 
electrolyte reduction at low potentials or residual CMC. The Ca weight ratio in a typical particle was calculated 
as 84% when contribution of Au content was eliminated. Accordingly, we concluded that the charge carrier in 
this system is Ca.

In addition, black deposits were also observed on the glass separator after peeling it off of the Au electrode 
(Fig. S11). The deposits were collected from the glass separator for SEM and EDS analysis by sticking the carbon 
tape onto the glass and then peeling it off. The obtained images show that the deposits comprise Ca metal and 
are relatively larger than those on the Au electrode (Fig. S12). The poor adhesion to the Au electrode indicates 
that they easily lose contact with the electrode, resulting in the formation of dead Ca. This dead Ca formation 
and the electrolyte reduction at low potentials could cause the insufficient Coulombic efficiency during the Ca 
plating/stripping processes.

To investigate the anodic stability of the CMC/DME/THF electrolyte system, further CV measurements 
were performed using the Au electrodes with different voltage ranges (Fig. 4). The current density increased at 
a potential of approximately 4 V, followed by suppression of further electrolyte breakdown and the absence of 
a significant cathodic current density during the reverse potential sweep even at a higher voltage of ~ 7 V. This 
finding is consistent with the behaviour observed in electrolytes containing carborane anions with magnesium 
and tetraethylammonium cations rather than electrolytes containing  BH4  anions17, 45.

Figure 2.  (a) Cyclic voltammograms of Ca plating/stripping after conditioning cycles at 20 mV  s−1 with a 
three electrode setup using Au as the working electrode and Ca as the reference and counter electrodes at room 
temperature. Cyclic voltammograms for initial three cycles as conditioning processes are shown in Fig. S6. (b) 
Coulombic efficiency determined from the cyclic voltammograms. Inset: charge balance for cycles 4–10.
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Finally, to investigate the feasibility of the CMC electrolyte, we conducted an exploratory test involving a 
Ca–S battery, which is a very promising system owing to its high theoretical energy density of 3202 Wh  L−146. A 
Ca–S battery, viz. Ca | CMC/DME/THF | S/C was tested with a current density of 167.2 mA  g−1 (0.1 C per S) at 
room temperature (Fig. 5a). The initial discharge and charge capacities of the S/C cathode were up to 805 and 
750 mAh  g−1, respectively. Furthermore, it displayed a flat voltage plateau of ~ 2.4 V vs.  Ca2+/Ca corresponding 
to the sulfur redox reactions with Ca (Fig. 5a inset)47, 48. To obtain information on the conversion reaction of 
the S/C cathode with Ca, XPS measurements were performed on the pristine electrode and the electrode after 
discharge. The S 2p spectra of the pristine S/C cathode display the spin–orbit-splitting doublet for elemental S 
with the S  2p3/2 and S  2p1/2 peaks at 164.0 and 165.2 eV, respectively (Fig. 5b top). After the electrode discharged to 
0.5 V, the S 2p signal spectra can be deconvoluted into three doublet peaks. In addition to peaks of the elemental 

Figure 3.  (a) Optical image of the Au electrode after a Ca plating process. (b) Energy-dispersive X-ray 
spectroscopy (EDS) profile within the yellow square. (c) Scanning electron microscopy (SEM) image of Ca 
deposits on the Au electrode after Ca plating in a Au | CMC/DME/THF | Ca cell, and EDS maps of Ca, Au, O, 
and B.

Figure 4.  Cyclic voltammograms at 1 mV  s−1 with different voltage ranges above 5 V (blue), 6 V (orange), 7 V 
(green), and 8 V (purple). Arrows indicate the sweeping direction during voltammetry. (d) Cycling performance 
of the Ca | CMC/DME/THF | Ca cell at a current density of 0.02 mA  cm−2.
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S, new peaks at 160.3 eV and 162.2 eV attributed to terminal sulfur atom in polysulfides of  CaSx (2 ≤ x < 8) and 
calcium sulfide (CaS), respectively, reflecting the effective conversion of S to sulfides (Fig. 5b bottom). This result 
demonstrates the practical applicability of the CMC electrolyte for Ca–S batteries at room temperature, with a 
Ca metal anode.

In summary, we developed a highly stable and efficient fluorine-free Ca electrolyte based on a monocarbo-
rane anion, viz. a CMC electrolyte, for room-temperature Ca batteries. CMC salts were successfully prepared 
via simple cation exchange and heating processes, thus indicating that the synthetic method using an aqueous 
solution is scalable and very promising from an application perspective. The CMC salt exhibited low solubili-
ties in THF and DME, but high solubility in the mixed solvent of DME/THF (1/1, v/v). The CMC electrolyte 
at 0.5 M showed the most promising electrochemical performances, viz., a high conductivity, wide voltage 
window, and reversible Ca plating/stripping behaviour with high Coulombic efficiency. In a feasibility study, we 
used the CMC electrolyte in a Ca–S battery exhibiting reversible discharge and charge abilities as well as a high 
capacity of 805 mAh  g–1, demonstrating that the CMC electrolyte is compatible with a Ca–S battery system. The 
development of a promising electrolyte candidate based on complex hydrides compatible with Ca batteries will 
create future opportunities for exploring other related complex hydride compounds as Ca  salts26, 49–52. In addi-
tion, the absence of fluorine and  CaF2 formation in these materials will intrinsically pave the way for achieving 
high cyclability in Ca batteries. These findings will contribute toward the development of practical electrolytes 
for room-temperature rechargeable Ca batteries.
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