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Real-Time Denoising of Volumetric Path Tracing
for Direct Volume Rendering
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Abstract—Direct volume rendering (DVR) using volumetric path tracing (VPT) is a scientific visualization technique that simulates light
transport with objects’ matter using physically-based lighting models. Monte Carlo (MC) path tracing is often used with surface models,
yet its application for volumetric models is difficult due to the complexity of integrating MC light-paths in volumetric media with none or
smooth material boundaries. Moreover, auxiliary geometry-buffers (G-buffers) produced for volumes are typically very noisy, failing to
guide image denoisers relying on that information to preserve image details. This makes existing real-time denoisers, which take noise-
free G-buffers as their input, less effective when denoising VPT images. We propose the necessary modifications to an image-based
denoiser previously used when rendering surface models, and demonstrate effective denoising of VPT images. In particular, our
denoising exploits temporal coherence between frames, without relying on noise-free G-buffers, which has been a common
assumption of existing denoisers for surface-models. Our technique preserves high-frequency details through a weighted recursive
least squares that handles heterogeneous noise for volumetric models. We show for various real data sets that our method improves
the visual fidelity and temporal stability of VPT during classic DVR operations such as camera movements, modifications of the light

sources, and editions to the volume transfer function.

Index Terms—Volume rendering, global illumination, path-tracing, participating media, image-space filtering, real-time denoising

1 INTRODUCTION

ECENT studies evidenced perceptual benefits of applying

more advanced illumination models for 3-D scientific
visualizations [1], [2], [3]. Consequently, in the past years,
interactive volume rendering techniques started supporting
more advanced illumination effects [4], [5]. Direct Volume
Rendering (DVR) using Volumetric Path Tracing (VPT) rep-
resents a new trend of volume rendering algorithms that
use more advanced physically-based lighting models to
produce photo-realistic scientific visualizations [6], [7], [8],
[9]. This trend has also been popularized in medical imag-
ing under the term Cinematic Rendering.

Global illumination models used in DVR are inspired by
the radiative transfer equation [10], the fundamental equa-
tion governing light transport in participating media. Kajiya
and Von Herzen [11] presented an approximate solution of
this equation for its use in computer graphics. Monte Carlo
(MCQ) path tracing, which is often used to solve this equation
in an unbiased manner, has a unified theoretical framework
that guarantees convergence to the exact solution. VPT
computes DVR images by progressively averaging large
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numbers of radiance samples evaluated from randomly
chosen light paths.

The major disadvantage of this algorithm is that generat-
ing high-quality DVR images requires large rendering times
or tremendously expensive hardware equipment to achieve
near-interactive framerates. Otherwise, the rendered images
exhibit severe noise caused by MC integration of the sam-
ples. For example, Shih et al. [12] presented a parallelized,
data-distributed and GPU-accelerated algorithm for volume
rendering with advanced lighting. In particular, their
method featured soft shadows and rendering on a cluster
using up to 128 GPUs. Progressive MC volume rendering
approaches, e.g., Exposure Render [13] or progressive light
volumes [14], refine pixel colors using MC path tracing and
tend to produce nearly noise-free images only after a few
seconds. Nevertheless, these techniques still generate dis-
turbing flickering noise while manipulating the camera or
the transfer function, as real-time user interactions force the
rendering to integrate only a reduced number of samples.

As a result, reducing noise and improving the temporal
stability of DVR image sequences remains an open research
problem [15]. In computer graphics, denoising for VPT has
been explored mainly for offline production [16]. Instead,
near-interactive or real-time denoising methods have mostly
focused on scenes with surface models [17] and they have not
been explored yet in the context of real-time DVR with hetero-
geneous participating media.

In this paper, we introduce new real-time denoising for DVR
image sequences rendered using VPT. Our approach achieves
real-time performance on commodity GPUs while reducing
distracting MC noise and temporal flicker. Our high-level idea
is to use image-space denoising, widely used when rendering
surface models, with the necessary modifications that enable
the denoiser to work effectively with VPT images.
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Fig. 1. VPT results generated using the same source volume but during the interactive manipulation of different DVR transfer functions. Multiple scat-
tering bounces per ray are simulated. Our real-time denoising improves VPT images (MC-DVR with only 2 spp) while reducing its noise effectively.
Offline VPT with 1024 spp, taking minutes to produce a single image, is shown as reference.

The main contributions of this work are summarized as:

e  We successfully introduce image-based denoising of
VPT for real-time DVR. We propose a post-filtering
technique that effectively reduces the noise level of
VPT images, given only a few samples per pixel (spp).

e We extend a temporal denoiser based on recursive
least squares (RLS) into a weighted RLS (WRLS) so
that we can better handle the heterogeneous noise of
VPT by controlling the denoising weight assigned to
each pixel color.

e We demonstrate that our real-time denoiser improves
the numerical accuracy of rendered images while
reducing the temporal flicker when a user manipulates
parameters of cameras, light sources, and volume trans-
fer functions (e.g., Fig. 1). In particular, our method
relies on neither G-buffers nor any pre-training.

2 RELATED WORK

The underlying physical assumptions of the various optical
models used for light transport simulation in participating
media were reviewed in Max ef al. [18], [19]. We also refer to
Jonsson et al. [20] for a comprehensive survey on interactive
volume rendering. In this section, we mainly discuss the
existing approaches for global illumination on volume ren-
dering with a particular emphasis on interactive and pro-
gressive techniques.

2.1 Monte Carlo Path Tracing

The rendering equation [11] for participating media can be
solved using path tracing algorithms [21]. The recent survey
by Novak ef al. [22] reviewed the latest advances in MC
path tracing methods to solve the light transport in partici-
pating media. Direct Volume Rendering (DVR) techniques
in scientific visualization have typically employed ray
marching algorithms. For instance, Rezk-Salama [23] pro-
posed an interactive GPU-based MC ray-casting approach
for physically-based volume rendering that used ray-march-
ing. Ray marching is simple but has several drawbacks. For
example, it tends to be expensive for high-resolution

volumes, and the rendered images can exhibit an unpredict-
able bias since high-frequency details can be missed [15],
[24].

Improved Sampling Strategies. An alternative to the ray
marching is delta tracking, which is an importance sam-
pling that determines free paths according to the probability
density function (PDF) corresponding to the optical depth
in the participating medium. Woodcock tracking [25] is a
widely adopted unbiased solution that adjusts sampling
distances to be small enough to sample dense regions in the
volume appropriately. This algorithm has been revisited in
offline rendering for adaptive sampling on large sparse
inhomogeneous media [26] and further optimized for film
production [27]. Free path sampling with probabilities not
necessarily proportional to the volume transmittance has
been realized using weighted delta tracking approaches [24],
[28], [29]. All these techniques help reducing noise in the
estimated light paths for participating media. Our real-time
denoising can be complementary to the underlying sam-
pling techniques.

Progressive MC Path Tracing. Kroes et al. [13] and Liu et al.
[14] demonstrated that progressive VPT using GPUs could
achieve interactive frame rates for unbiased volume render-
ing. Unfortunately, while progressive VPT can converge to
noise-free images, it comes with the penalty of producing
very noisy results for interactive rendering scenarios or
requiring expensive cloud-based or distributed rendering
systems [9], [12]. We alleviate this problem of noise in pro-
gressive VPT by applying our real-time denoising as a post-
processing.

Image Denoising for MC Path Tracing. Image-space recon-
struction has been widely accepted as a viable alternative to
reduce MC path tracing noise in surface models. A compre-
hensive survey on the topic was conducted by Zwicker et al.

[30]. Recently, Schied et al. [31] presented real-time spatio-
temporal denoising that accumulates pixel colors across
frames and controls its smoothing level using the variances
of the colors. Mara ef al. [32] designed a real-time denoiser
tailored to reducing noise in matte and glossy surfaces.
These techniques are specialized for filtering noisy global
illumination for surface models. The denoising for volumes
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and participating media has often been related to produc-
tion offline rendering scenarios [16]. Deep learning deno-
isers have recently gained much popularity [33], [34]. For
example, Chaitanya et al. [17] proposed an interactive deno-
iser with deep learning for MC path tracing. However, these
denoisers for surface models heavily rely on noise-free
G-buffers, often unavailable for volumes, to produce high-
quality denoised images.

In the context of DVR, Kroes et al. [13] applied a general
noise reduction filter [35] as part of their GPU implementa-
tion, but this general filtering did not succeed in effectively
removing MC variance and temporal flicker. Applying
specialized denoising for surface models (e.g., RLS adap-
tive denoising [36]) to VPT can be ineffective due to the
noise in the G-buffer information used to reconstruct
image details. Consequently, we design our denoising to
reduce variance noise and temporal flicker for interactive
DVR using VPT, without relying on the problematic G-buf-
fers. This allows our technique to produce temporally sta-
ble results without any pre-training for different given
types of user interactions. It differentiates our method
from existing denoisers relying on G-buffers and also from
deep-learning-based approaches using expensive pre-train-
ing stages.

2.2 Irradiance Caching

Irradiance caching takes advantage of smoothly varying
indirect illumination and precomputes radiance transfer
inside the volume. In an early work, Kajiya and Von Her-
zen [11] proposed a two-pass approach that simulates
global illumination effects for heterogeneous volume data-
sets. On the first pass, the radiance is estimated in each
voxel and consecutively integrated along view rays in the
second pass. The first pass, however, is time-consuming
and thus not applicable to interactive visualization. Alterna-
tively, the estimated irradiance can be computed only at a
sparse set of cached points in the volume. For example,
Krivanek et al. [37], [38], [39] proposed storing and interpo-
lating direction-dependent radiance using spherical har-
monics (SH). Later, Jarosz et al. [40] extended this approach
for participating media. Kronander et al. [41] obtained real-
time performance for DVR by encoding local and global vol-
umetric visibility with SHs on a multi-resolution grid. More
recently, Khlebnikov et al. [42] proposed parallel irradiance
caching with MC path tracing for interactive volume ren-
dering. While irradiance caching stores and updates pre-
computed radiance, our denoising approach does not
require any pre-processing.

2.3 Volumetric Photon Mapping Approaches

Volumetric photon mapping [43] and progressive exten-
sions [44] amortized expensive calculations to solve the vol-
ume rendering integral through caching light-transport.
Jarosz et al. introduced a variation of Woodcock tracking in
progressive photon beams [45], an extension of photon
beams [46] for volumetric photon mapping. Jonsson et al.
[47] realized interactive DVR through photon mapping by
recomputing only the photons that have changed. However,
their photon gathering stage was computationally expen-
sive, leading to low frame rates when the camera moves.
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Zhang et al. [48] proposed a precomputed volume radiance
transfer using precomputed photon maps encoded using
basis functions. While this method allows real-time radiance
reconstruction, the photon map should be regenerated
every time the transfer function changes. To accelerate the
photon map generation, Jonsson et al. [49] identified pho-
tons invariant to changes of visual parameters (e.g., changes
in the transfer function), enabling a further reduction of the
overhead associated with recomputing photon maps.
Unlike MC path tracing, photon mapping typically introdu-
ces some bias, often visible as low-frequency noise.

2.4 Many-Light Methods

Many-light methods, as photon mapping, are both bidirec-
tional MC techniques. While photon mapping relies on den-
sity estimation and requires a large number of photons to be
traced, many-light methods require orders of magnitude
less light paths, and thus rendering can be very efficient.
Engelhardt et al. [50] described a particle tracing algorithm to
create a set of Virtual Point Lights (VPLs) within participating
media and derived a GPU-friendly bias compensation scheme
for high-quality rendering. Weber et al. [51] applied a many-
light approach using VPLs to interactive volume rendering.
In particular, this technique was tailored for interactive edit-
ing of volume transfer functions, providing immediate
updates and redistribution of the contributions from VPLs.
However, interactive visualization restricts the number of
VPLs, and transfer-function edits are limited to smooth transi-
tions as they require further redistribution and recomputation
of VPLs. Temporal coherence was improved by progressively
updating the positions of VPLs and refreshing only their
incremental contributions. However, significant changes (e.g.,
switching to a completely different transfer function) could
cause visible flickering. Our approach is able to address these
changes in the transfer function without noticeable flicker.

2.5 Diffusion Approximations

For the rendering of multiple scattering global illumination
effects in participating media, methods based on the diffu-
sion approximation [52] are an efficient alternative to MC
path tracing. Korner et al. [53] proposed Flux-Limited
Diffusion (FLD), a technique improving over Classical Dif-
fusion Approximations (CDA) for heterogeneous media.
While CDA methods suffer from non-physical radiative
fluxes in transparent regions, FLD produces more accurate
results than CDA when compared to the path traced ground
truth. Although the proposed FLD solver can converge
faster than MC path tracing or photon mapping, no progres-
sive or interactive extensions have yet been proposed.

3 THE VOLUME RENDERING INTEGRAL

This section explains the fundamentals of progressive
VPT to obtain MC solutions of the Volume Rendering
Integral (VRI).

Following similar mathematical notations used in Novak
et al. [22] (see Table 1), we can write the general VRI as fol-
lows (more details are in our supplementary report, which
can be found on the Computer Society Digital Library at
http:/ /doi.ieeecomputersociety.org/10.1109/TVCG.2020.
3037680):
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TABLE 1
Notations for Light-Matter Interactions
Symbol Description
1) direction vector of light propagation
X,Y,% boldface represents 3-D sampling points
T,Y, 2 italicized represents distances from 3-D points
to the ray origin (e.g., if the ray origin is at x, then
z=0)
o(-) probability density function (PDF)
P(z) probability of sampling at point z
na(y), ns(y)  absorption and scattering probabilities at point y
we(y) extinction coefficient at point y
T(x,y) transmittance or attenuation of light between two
points
L.(x, ) emission energy at point x in the direction w
Ly(x, ) in-scattering energy at point x coming from
direction w
L(z, ) emitted or reflected energy at point z in the
direction w
coming from a background surface
X a light transport path
f(x) contribution of the differential flux carried
by path x

Lix,w) = / (%, ) ta(¥) Loy ) + 11, () Laly, )]y

+T(x,2)L(z,0).
Nt e’
background
@
Iterative approximations of the VRI can be achieved
through progressive VPT, computing only a small number
of light transport trajectories (light paths) in a single frame
(see Fig. 2). So, the jth pixel color in the rendered image /
can be represented as the following integral:

5= [ fxax @

where 7 is the space of all possible light paths in the scene.
Applying MC estimation to the integral in Eq. (1), we can
obtain
L) )Ll 0) + )Ll 0)
T(x,2z)
P(z)

(L(x, ) =

+ L(z,w).

3)

The main advantage of this approach is that it only requires
to evaluate one path segment per light path at a time.
Incremental Light Transport Paths. A common approach
for constructing a light transport path x = (xo, x1,...,x3) €
7 is to start from the camera at point xy and extend the path
incrementally segment by segment (see Fig. 3). To deter-
mine the location of the next vertex x;4; of a light path, a

L(x,) Voo fnwe)  L(z,0)
O - —
o X emissive Y1 in-scattering W background  Z

Fig. 2. lllustration of an exemplar light path %, transporting L(x, ») radi-
ance energy to its ray origin at x in the direction w.
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Fig. 3. Building incremental light paths. One way to avoid building exces-
sively long paths is to place the last vertex x;, inside a randomly selected
light source after only a few real collisions.

ray direction w;1; is sampled with p(w;41), which depends
on the medium phase function or the surface bidirectional
scattering distribution function (BSDF) at x;. For this work,
we considered only isotropic scattering where the phase
function is ;- for all directions.

Distance Sampling. The iterative evaluation of Eq. (3)
requires to find a suitable discrete position y, and evaluate
its illumination contribution. Delta tracking for free-path
sampling utilizes the concept of null collisions with a ficti-
tious matter to achieve correct sampling on heterogeneous
volumes. It finds the candidate position y by recursively
sampling tentative collisions until one classified as real is
found. Real collisions are accepted with p(y) proportional
to the extinction coefficient wu,(y). While null collisions
should not affect light transport, they require expensive
memory accesses to evaluate extinction coefficients in the
volume. One general strategy to generate a tight extinction
bound is to sample free-paths using uniform random num-
bers £ € [0,1). A candidate lower distance threshold can be
therefore defined as

In(1-¢)

My

&) =— “

where p"*" is the maximum extinction coefficient in the vol-
ume. Once delta tracking classifies a tentative collision as real
and it absorbs more energy than the bound in Eq. (4), then y is
considered as the first actual collision. One advantage of using
delta tracking for DVR is that it is aware of transfer function
alterations since each collision is tested after transfer function
values have been applied to the volume. Improved distance
sampling strategies for interactive volume rendering would
represent an orthogonal research direction to this work.

4 SPATIO-TEMPORAL DENOISING FRAMEWORK

Using VPT is an attractive choice to support physically-
based global illumination on DVR frameworks, as the VPT
is a simple and general algorithm that covers a wide variety
of lighting effects. However, VPT tends to produce noisy
approximations of the VRI due to its stochastic nature, espe-
cially given a limited number of samples under the real-
time constraints of DVR. In particular, VPT noise degener-
ates into temporal flicker when a user interacts with the
parameters of a DVR scene (e.g., lighting or transfer func-
tions), since VPT generates a new image from scratch, lead-
ing to lower image quality. Our primary goal is to handle
such noise in VPT results through a real-time denoising
framework that takes advantage of spatial and temporal
coherence among pixel colors to obtain numerically and
visually improved high-quality interactive DVR results.
Challenges for DVR Image-Based Denoising. Recent image
denoising methods [30] often utilize auxiliary features, also

Authorized licensed use limited to: Kwangju Institute of Science and Technology. Downloaded on September 06,2024 at 02:40:06 UTC from IEEE Xplore. Restrictions apply.



Authorized

2738

& L)
m
o
g .
£ :
Frame Est.  Gradient Normal ~ World Pos.  Albedo  Visibility

o
2
2 s
£ L
7] .
-4

1024 spp Reference  Gradient Normal  World Pos.  Albedo  Visibility

Fig. 4. Visualization of the auxiliary buffers commonly used in image-
space denoising. It can be noticed that the buffers computed with 2 spp
are very noisy. For illustrative purposes, we show reference features
computed using 1024 spp.

known as G-buffer features (e.g., depth, normal, and albedo),
to preserve high-frequency information in rendered images.
The features can be much less noisy than radiance values for
surface models, but those can be extremely noisy, as shown
in Fig. 4, when rendering volumetric models with a small
sample count (e.g., 1 or 2 spp) under real-time constraints.
Our denoising technique shares similarities with previous
image denoisers (e.g., [36], [54]) in the sense that both reduce
MC variance by blending pixel colors as a weighted sum.
However, the key difference is that our method exploits a
stable feature formed by accumulating pixel colors over
time, instead of relying on the G-buffers, unlike the recent
denoisers specialized for surface models.

Real-Time Denoising Framework. Our real-time framework
(Fig. 5) is built upon progressive VPT for DVR. At each
frame, MC-DVR estimates the amount of radiance arrived
at each pixel based on VPT and the randomly generated
light paths. The resulting distribution of radiance is gener-
ally a noisy estimate given the low sample count imposed
by real-time rendering constraints. Each estimated pixel
color is then filtered using a pixel reconstruction filter to
obtain the current frame estimate. Our DVR denoising tech-
nique takes the current frame estimate and updates a tem-
poral denoising feature that exploits temporal coherence
and guides our denoiser. Finally, our denoising technique
will obtain the final image using per-pixel linear model pre-
dictions. Our framework supports both spatial and tempo-
ral filtering using those predictions.

5 IMAGE-SPACE DVR DENOISING TECHNIQUE

In this section, we propose our real-time image-space deno-
iser for DVR images rendered using VPT. We first describe
an approximation of the radiance arriving at each pixel of a
DVR image using linear models (Section 5.1), then present
RLS that estimates the coefficients of linear models in
an online manner (Section 5.2). Lastly, we propose a new
spatio-temporal denoiser using a weighted RLS, which
reduces temporal flickering when rendering DVR images
using VPT with low sample counts (Section 5.3).

Notation. Let us define useful terms and notations used
throughout the rest of the paper (see Table 2). Given a vir-
tual camera sensor containing n pixels that ideally could
capture a MC-DVR ground truth image /, for each jth pixel,
J € [1,n], the element I; receives the contributions of one or
multi})le light paths f(x). All estimated light paths using

I

cense
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DVR Denoising Framework  (Sec. 4) Our Denoising Technique &2
(Sec. 3) r.A (Scc. 5) t-1
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Progressive Light Path Pixel Rec. Filter Temporal Feature =
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Fig. 5. Real-time DVR denoising framework. Our real-time denoising is
integrated into the DVR framework as postprocessing of VPT. We take
noisy frame estimates as input and reduce the noise by utilizing spatial
and temporal coherence among pixel colors through per-pixel linear
models, which utilize temporally generated per-pixel features.

VPT and contributing to pixel j are denoted as f;(x), and
they are filtered using a pixel reconstruction filter to obtain
a discrete real measurement I}, an estimate of the MC inte-
gral (Eq. (2)). We use I;(t) and I(t) to refer, respectively, to
the noisy MC estimate and denoised value for the jth pixel
color at time ¢. We denote our temporal feature guiding our
linear model predictions as z.

5.1 Radiance Estimation Using Linear Models
We model the ground truth color ; at jth pixel using the
following linear regression:

Ii=p,B +&, (5)

where p; and g; represents the input predictor vector and
its coefficients with length d, respectively. {; represents the
prediction error of the linear regression model pj,B]T. Linear
models are used to find linear dependencies between the
input regressors p; and the ground truth signal /;. Usually
p; = [1,2;], where the first element of p; is the intercept
term and z; is a feature vector of the model. For brevity’s
sake, we shall treat the value /; as a scalar unless otherwise
mentioned, since our denoising is applied to each color
channel independently. Note that the linear model repre-
sents an approximation of the integral (Eq. (2)) over all light
paths f(x) for the jth pixel

TABLE 2
Notations for Linear Model Predictions
Symbol Description
1 ground-truth values of an image
1 MC estimated values for an image with a virtual
. sensor
1 predicted values of an image I using linear models
I;(t)  jthpixel color of an image I at time ¢
p,(t) predictor vector at time ¢ for pixel j used for linear
regression
z;(t)  feature vector at time ¢ for pixel j

B;(t)  linear model coefficients for pixel j at time ¢
v; velocity vector (v,, v,) at pixel j used for reprojection

7(vj) reprojection operation 7(v;) = j + v;

&;(t)  single-channel prediction error for pixel j at time ¢

e;(t) real error for pixel j at time ¢ considering color
channels

€;(t)  estimated error for pixel j at time ¢ considering color
channels
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/ f®)dx~ I =ph]. (6)

In an interactive context, the radiance value (i.e., pixel color)
I; can vary over time, and thus we linearly model its tempo-
ral change using the predictor p,. More specifically, the val-
ues from I;(t —8) at frame ¢ — 8 to I;(t) at frame ¢, can be
estimated as

. i(t) p;j(t) Bjo
5(t .— 1) _ pj(ti 1) ﬂf‘,l o
It .f 8) p;(t —9) Bja-1

X; P

J

In the equation above, X is the design matrix that concate-
nates the predictor vectors p;(t —§),...,p;(f) over time.
Next, we describe Recursive Least Squares (RLS), a method
to estimate the model coefficients B. After that, we will pro-
pose our own adaptation of RLS by estimating alternative
input predictor vectors, and how to handle heterogeneous
VPT noise more robustly.

5.2 Linear Model Regression Using RLS

The high-level approach of RLS [55] is to update the coeffi-
cients of the statistical models based on differences
between model predictions and measured values in an
online manner. Ideally, for a given pixel j at frame ¢, we
would compute the real error by using the values of the
ground truth image I, as e;(t) = I;(t) — I;(t). Because the
ground truth of the MC integral is not available in practice,
we need to estimate this error using the noisy MC estimate

I;(t) as the following:

&(t) = Ij(t) — Ij(t) = I;(t) — p,(t) B} (t — 1), ®)

where p; (t) is the predictor vector concatenating the auxiliary
features z;(t). For example, interactive denoising methods
using RLS (e.g., [36]) typically exploits noise-free G-buffers as
the auxiliary features. Given the residual é;(t), the model coef-
ficients B, are incrementally updated at time ¢ [55]

Bi(t) = B;(t — 1) +q;(t)e;(t) 9)

Pt -1)pi(1)
S A+ (Pt - Dpf (1)

q;(t) (10)

where A is the forgetting factor, typically fixed to a value
near one (e.g., A = 0.998), and P;(¢t — 1) isa d x d matrix which
contains the inverse covariance of the predictor vectors. The
inverse covariance matrix is updated at frame t using the
matrix inversion lemma [55] and the predictor vector p(t)

Bi(t) = X (By(t — 1) — q,(0)p, (P, (¢ — 1)). an

5.3 Our Proposed Denoising for MC-DVR: wRLS

The problems of the RLS approaches when facing stochastic
MC-DVR are still double. First, VPT does not generate
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Fig. 6. Reprojection on volumetric participating media. Linear model
reprojection reacts to camera transformations (i.e., t, or t;), light source
modifications (t;), and edits of the volume transfer function (¢,). This
adaptative behavior of linear models avoids triggering additional MC
integration reset operations.

noise-free G-buffers when rendering with low sample
counts, and thus utilizing the buffers for the predictor vec-
tor is problematic. Second, the noise level of the input esti-
mates () can vary significantly over time and can result in
high variability of the linear model coefficients. These
challenges caused by real-time stochastic VPT were not
addressed in the previous RLS techniques [36], [54]. In this
section, we propose a weighted RLS with a temporally sta-
ble feature to tackle the challenges.

Temporal Coherence of Linear Models for VPT. Temporal
reprojection is a well-known technique to exploit temporal
coherence in consecutive frames, and it maintains an addi-
tional storage (e.g., history buffer) where pixel colors are
accumulated over time. While the conventional temporal
reprojection is to reproject pixel colors, our method repro-
jects linear models to exploit the temporal coherence more
robustly for real-time VPT. Reusing linear models has sev-
eral advantages over reprojection schemes based on caching
constant values per pixel (e.g., a history buffer). Linear
regression can predict gradual changes in the camera, light
sources and transfer functions, but also it reacts immedi-
ately to abrupt changes affecting shading (see Fig. 6). We
estimate per-pixel velocities v; (i.e., optical flow) of a linear
model using the view matrix and per-pixel world coordi-
nates. Implementation details for computing the optical
flow will be given in Section 6. Once a velocity v, for the jth
pixel is calculated, we can define a reprojection operation
that obtains the corresponding pixel coordinates ¢ in the
precedent frame as g < 7(v;). Even for cases where v; =0,
like light or transfer functions changes, linear models can
predict gradual changes.

Temporal Denoising Feature. We propose a temporal fea-
ture for our denoising, without relying on noisy G-buffers.
Ideally, the feature should have a low variance in the tem-
poral dimension and have a high correlation with the
ground truth image. To this end, we adopted an exponen-
tially weighted history buffer (e.g., [54]) as the feature z; €
R? of our linear model at pixel j. Specifically, the feature,
which is corresponding to the pixel color (e.g., RGB values)
in the history buffer, is updated at frame ¢ given the MC
estimates I(t)

z;(t) = aW(z,(t — 1), L;(t)] + (1 — &) [;(t), (12)

where « is the weight that controls the balance between his-
tory and the current estimate. Note that the pixel index ¢ in
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Fig. 7. Visualization of the VPT input, our denoising feature, our
denoised result and the reference. We also display the corresponding
error maps for the input and our final denoised result. We display frame
#100 of the Manix camera animation.

the previous frame can be different from the current index j,
and that ¢ is computed using the per-pixel velocity as 7 (v;).
The reprojected history z,(t — 1) is rectified using [, the
neighborhood clamping operator [56] that relies on the
current-frame input estimate, I;(t), to reduce artifacts
caused by stale history data. Even though we denoise color
channels independently, our feature z;(t) is constructed
using the three channels simultaneously to avoid undesired
color-shift effects. Fig. 7 shows an example feature image
that has much reduced noise compared to the input image.
Given the features constructed by accumulating colors over
time, we introduce a variant of RLS (i.e., weighted RLS) that
is able to handle temporally varying noise.

Weighted Recursive Least Squares (wRLS). As a key techni-
cal contribution, we propose a weighted RLS (WRLS) that
takes into account the heterogeneous noise in DVR images
generated with small numbers of samples. At a high-level,
the wRLS allocates high weights to samples with low vari-
ance and low weights to samples with high variance. In par-
ticular, a very low weight is assigned to outlier samples,
which have an extremely high variance so that our linear
models can produce temporally stable results. The straight-
forward way to compute the weight is to utilize sample var-
iances of pixel colors, but this cannot be robustly achieved
for our real-time scenarios where only a few samples are
available. To tackle this challenge, we control the weight by
exploiting our temporally stable feature. Explicitly, the
weight w(t) assigned to I;(t) is computed as

|0 - 20|
min(([ L[] @) + €
(13)

wity=¢ SO ay) =

where ¢ is a very small number to avoid divisions by zero,
and h is a filtering bandwidth that controls a tradeoff
between denoising bias and variance. For example, smaller
h values would provide a more temporally stable but
higher bias. We found that » = 0.75 produces a good bal-
ance between the temporal stability and bias for our tests.
The modified equation to update linear models using this
weight is

P,(t — 1p! (1)
P OPs (= DPT(D)

q;(t) = (14)

The equations to update the linear model coefficients and
the inverse covariance matrix remains the same (see Eqs. (9)
and (11)), with the exception that they use the new qj(t)
instead of q(¢).
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MANIX

Error

MC Est. (2 spp) MC Est. RLS NF wRLS-NF RLS F Ours

Fig. 8. Ablative comparisons of our contributions for denoising. Temporal
flicker is compared in our supplementary video, available online, (this is
frame #47 of the Manix semi-transparent sequence). Suffix NF and F
mean using ‘No Feature’ and ‘Feature’ respectively. Ghosting and over-

blurring appear when 'No Feature’ is used.

RLS-F MC Est.

Qurs

Camera animation #33 Dynamic lighting #85  Edit materials #130

Fig. 9. Results of RLS and wRLS both using our feature. While both
methods produce reasonably good images thanks to our feature, wRLS
suffers much less spike noise as it down-weights input pixel colors with
high variances (check our supplemental video, available online, for tem-
poral stability comparisons).

Fig. 8 shows the results of RLS and wRLS with and with-
out our temporal feature. Both methods have reduced errors
(see the bottom row in Fig. 8) when our temporal feature is
used for the methods. While both techniques have much
less noise than the MC estimated input, our method (WRLS)
handles spike noise well compared to the RLS, as shown
in Fig. 9, since the wRLS handles the heterogeneous noise
adaptively by varying its weights.

Spatio-Temporal Denoising Using wRLS. Our wRLS reduces
the variance of VTP results by exploiting temporal coherence,
but it is also desirable to use the spatial coherence between pixel
colors within a frame to further reduce this variance. To this
end, we apply a spatial filter to the denoised output of our tem-
poral denoising. Technically, a linear model at a pixel can pre-
dict the colors of its neighboring pixels as well as its own pixel
color using our per-pixel predictor vector. Specifically, to deter-
mine a final pixel color at ith pixel, we blend colors predicted
from its neighboring pixels defined by a 5 x 5 window cen-
tered at the ith pixel. We have used a bilateral weight to aver-
age the multiple predictions and observed that this spatial filter
reduces residual noise of the temporal output, without exces-
sive blurring thanks to our feature-based linear predictions.

6 IMPLEMENTATION DETAILS

We have built our DVR denoising framework using the
Exposure Render proposed in Kroes et al. [13]. Specifically,
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TABLE 3
Scenes Used in Our Experiments

Scene Resolution (voxels) Bps Training data (only for RAE)
MANIX 256 x 256 x 230 16 500 frames
CHAMELEON 1024 x 1024 x 1080 8 500 frames
HeLoperMa 1024 x 1024 x 555 8 500 frames

DracoN 1024 x 1024 x 1024 8 -

We detail the volume resolution, the bits per sample (bps) and the number of
images used to train DNN-based solutions like RAE [17]. Unless otherwise
specified, all rendered images are always in HD resolution (1280 x 720p). The
DRAGON dataset is only used at testing time.

we have extended their framework to simulate multiple
scattering effects and support additional light sources (e.g.,
point lights or HDR light probe captures). For example, we
have utilized delta tracking for free-path sampling and
built random walk paths to simulate multiple scattering
effects. In particular, we have connected the last path ver-
tex with a randomly selected light source using unidirec-
tional sampling. We have used a separable Gaussian
kernel to implement our pixel reconstruction filter, as this
provides reasonable results for real-time purposes [57].
When computing our temporal feature, we have set the
parameter o (in Eq. (12)) to 0.75. Our DVR framework
internally works in HDR (CIE-XYZ) colorspace, while for
image display, it transforms final images into LDR (RGB)
colorspace. In our framework, we perform the denoising in
the original HDR space before applying any tone-mapping
or gamma correction.

Optical Flow Estimation. An optical flow estimation is nec-
essary to perform our temporal reprojection. In rendering,
we typically exploit the world coordinates intersected by
rays to estimate the per-pixel image velocity, commonly
used in reprojection techniques for rendering surface mod-
els. Nevertheless, a ray can intersect at multiple locations
within participating media due to its semitransparent
nature. The naive ways of handling such ambiguous world
coordinates could select a world coordinate randomly or
use an average one. We, however, have found that it could
result in unstable temporal reprojections. To mitigate this
problem, we compute our per-pixel image velocity using
the closest world coordinate from the view position of the
first real collision according to delta tracking. Our imple-
mentation of the optical flow estimation is a heuristic, but
we have found that this simple choice works reasonably
well for our tested scenarios (e.g., Figs. 8 and 14). We leave
more principled manners of estimating optical flow in vol-
ume rendering as future work.

7 RESULTS AND EVALUATION

In this section, we validate the performance of our DVR
denoising using a series of experiments where we use a col-
lection of stationary volume data sets: Manix, CHAMELEON,
HeLoberMa and DracoN (see Table 3). Our supplementary
material, available online, contains a figure that shows the
default transfer functions used in our experiments. More-
over, one of our supplementary videos, available online,
demonstrates our denoising results during dynamic editing
operations on live recorded sessions running on a 2.8 GHz
i7 Intel processor la d;ztop with 32 GB of RAM and an Nvidia
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(b) Numerical accuracy over time for the HELODERMA sequence.

Fig. 10. Real data sets tested for MC-DVR camera animations.

1070 GTX GPU. All our testing scenes include dynamic
changes, e.g., the camera viewpoint transformation, chang-
ing lights, or transfer functions. Unless stated otherwise, we
used the same GPU configuration and screen resolution
(1280 x 720p) for all reported experiments.

7.1 Comparison With State-of-the-Art Denoisers
Recurrent Auto-Encoders (RAE). We compared our method
with a recent learning-based denoising proposed by
Chaitanya et al. [17]. This previous work uses RAEs and
was optimized for interactive reconstruction of MC image
sequences with surface models, but it was not trained for
volume rendering. We implemented their approach in Ten-
sorflow [58] and retrained the network on DVR images for a
fair comparison.

Training RAEs for Volume Data. We retrained their pro-
posed RAE architecture using MC image sequences gener-
ated by our DVR. In volume rendering, auxiliary features
can be very noisy [59], and thus our best option was to train
RAEs using the input color buffer exclusively. For training
the RAEs we generated 500 temporal sequences for ManIx,
CHaMELEON, and HELODERMA scenes (as seen in Table 3). To
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MANIX

29.62 dB 34.66 dB 36.83 dB 36.91 dB (PSNR)
(LPIPS)

0.083 0.034 0.031 0.018

CHAMELEON

#3596 3447 dB 38.01dB 40.50dB 41.73dB (PSNR)
0.108 0.039 0.045 0.037  (LPIPS)
Ours 2 spp. MC Est.  RAE SVGF Ours Ref.

Fig. 11. Results for Manix and CHameLEON tested under MC-DVR with ani-
mated point lights. Full time-wise comparisons, for both PSNR and
LPIPS metrics, are available for all data sets in the supplemental mate-
rial, available online.

generate the sequences for each scene, we modified the cam-
era view and orientation around the volume, the light source
position, and we also modified the transfer function of the vol-
ume. Note that we trained the network with the same scenes
(ManNix, CHAMELEON, HELODERMA) used for our comparisons,
just with some variations (e.g., camera view or the position of
a light source). Furthermore, we trained a separate RAE net-
work for each scene in order to maximize its denoising qual-
ity. The networks were trained for 150 epochs, taking one
week of training time each using an Nvidia Quadro P6000
GPU. Note that we did not change the volume data itself for
their testing (i.e., for comparisons with our method). While it
is common practice to have different test scenes from training
scenes, we chose this overly fair comparison so that our
method can be compared with an upper bound performance
of the RAE for the three scenes. Moreover, we used the
DRrAGON scene to compare our method with the RAE for gen-
eral scenarios with a non-trained volume.

Surface-Based Denoising Methods. We also compared with
the spatiotemporal variance-guided filtering (SVGF) [31],
whose primary purpose is to get rid of global illumination
noise generated in scenes with surface models. We imple-
mented SVGF following the guidelines in their paper, but
we exchanged its reprojection scheme with ours (as
explained in Section 6) in order to improve the denoising
accuracy of SVGF for DVR.

Evaluation Metrics. We report error images, computed as
absolute per-pixel differences with a reference, peak-signal-
to-noise ratio (PSNR) and learned-perceptual-image-patch-
similarities (LPIPS) by Zhang et al. [60], which is a recent
perceptual metric improving over SSIM and MS-SSIM. Usu-
ally a higher PSNR means higher quality, while for LPIPS a
lower value means better quality.

7.2 DVR Evaluation Scenarios

We compared our method with the previous techniques
given different types of user interaction scenarios for DVR.
For each scenario, we computed a reference sequence with
1024 spp at 720p. Please, refer to our supplementary video
and material, available online, for visual comparisons and
time-wise PSNR and LPIPS metrics.
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& Scenario 1: Modification of Camera Parameters.

We created predefined camera animations that modified
the position and orientation of the camera viewpoint for
almost every frame during the sequence. Since our training
data include simultaneous animations of various parame-
ters, we decided to present a more straightforward case to
the RAE so that the network can show a near-ideal denois-
ing performance. We used the same camera animation pre-
sented at training time but fixing all other parameters, i.e.,
lighting and transfer function. We also run our method and
SVGF on the same input sequences. Fig. 10a shows visual
comparisons of denoised frames during camera animations.

Discussion. In general, we noticed that our method
exploits temporal coherence appropriately and produces
temporally more stable results than RAE and SVGF. Our
method behaves reasonably well either for surface reflec-
tions (e.g., skull reflections) or semi-transparent materials
(e.g., Manix eyelids or vessels). For still images, RAE and
our method have a comparable visual quality (e.g., similar
LPIPS in Fig. 10b). While RAE can infer texture patterns
quite convincingly (e.g., CHAMELEON skin bumps), its recon-
struction is sometimes not as faithful and tends to wash out
details. On the other hand, our method and SVGF tend to
preserve the original lighting and geometric details better,
but our method is temporally much more stable than SVGF.

¢ Scenario 2: Interaction With Light Sources.

We compared our method with RAE and SVGF under dif-
ferent lighting scenarios. It remains a highly impractical solu-
tion to reproduce all possible lighting conditions in the RAE
training data. Thus, we decided to choose one representative
lighting setup, like a rectangular area light as the principal
light source and an environment map as a fill light. We gener-
ated training samples where the area light source is rotated
around the main volume while we keep the environment
lighting active. Analogously with the camera animation test,
at testing time, we used the same path for the area light and
the same environment lighting, but the camera and the trans-
fer functions remained fixed. We tested our DVR denoising
under different luminaire sources:

Point Lights. Fig. 11 shows denoising results given a single
point light animated around the main volume inside a dark
environment. In this case, our method obtained comparable
reconstruction quality as indicated by PSNR numbers but
always better perceptual distance according to the LPIPS metric.

Area Lights. For this test, we illuminated our data sets using
the same HDR light probe captured environment used at
training time and animated the rectangular area light rotating
around the main volume. In Fig. 12a, we show visual compar-
isons with real volumes, and in Fig. 12b the time-wise quanti-
tative values (PSNR and LPIPS) for the CHAMELEON scene.

Discussion. In general, we observed that our technique pro-
duces visually sharper and more faithful reconstructions than
RAE and SVGF approaches for this scenario. Regarding tem-
poral coherence, our method provides more stable visualiza-
tions with less low-and-medium frequency flicker, as shown
in our supplementary video, available online. In the scenario
with area lights, SVGF and our method generate sharper
results than RAE. For example, high-frequency details on the
thin vessels on the left temple of the head are well preserved
by SVGF and ours. However, the SVGF suffers from spike
noise, and its LPIPS numbers are much higher than with our
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(b) Numerical accuracy over time for the CHAMELEON sequence.

Fig. 12. Real volume data sets tested for MC-DVR with animated area
lights.

method. This leads to the noticeable temporal flickering of
SVGEF, as shown in our supplementary video, available online.
While RAE shows better PSNR numbers than ours for Manix,
our method produces the best distortion and perceptual
results for both CaMELEON and HELODERMA. In particular, our
LPIPS (0.039) is much lower than that of RAE (0.132), as RAE
does not preserve the high-frequency details for HELODERMA.
Also, our method produces temporally more stable results
than the RAE for the tested scenes.

\ Scenario 3: Editing of Transfer Functions.

Another interaction scenario is user manipulation of the
transfer function, which is a classic interaction for visual
inspection of volume data since it allows for hiding or
enhancing different structures in the volume. The manipu-
lation of the transfer function during interactive visualiza-
tion would require recalculating the MC integral after every
variation. To compare our method with RAE and SVGF, we
used the same manipulation of the transfer functions as the
one utilized to generate the training data for the RAE
approach. The only variation for this test is that the camera
and the lighting conditions are fixed.
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(a) Visual comparisons of denoising methods.
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Fig. 13. MC-DVR with transfer function variations in real-time.

Discussion. Fig. 13a shows a single frame captured during
the interaction to illustrate the visual quality obtained with
each method, and Fig. 13b shows time-wise PSNR and
LPIPS comparisons for the HELODERMA volume. Our method
often produces more accurate and perceptually preferable
results than RAE and SVGF in terms of PSNR and LPIPS
metrics. For example, the LPIPS of RAE (0.045) is 27 percent
better than ours (0.057) for MaNI1x, but our technique outper-
forms RAE for the other cases. Overall, RAE tends to gener-
ate overly blurred results and the perceptual metric value of
RAE (0.128) for HELODERMA is 3.9x higher than ours (0.033).
As shown in our supplemental video, available online, RAE
generates low-and-medium frequency flickering artifacts
and tends to blur high-frequency details of volumetric mod-
els. On the other hand, our method produces robust denois-
ing results given different types of transfer functions.

7.3 DVR of Highly-Transparent Volumes

We tested the denoising methods for complex semitranspar-
ent iso-surfaces and DVR camera animations (Fig. 14).
Given these experiments, our technique shows comparable
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(b) Numerical accuracy over time for the semi-transparent MANIX .

Fig. 14. Complex transfer functions demonstrating multiple semi-
transparent isosurfaces on the Manix data set. In general, our result
achieves good reconstructions in comparison to RAE and SVGF, but
much better temporal stability.

distortion and better perceptual errors than both RAE and
SVGF, as shown in Fig. 14a and the time-wise plots in
Fig. 14b. In Fig. 15, we also tested semitransparent homoge-
neous media with the DrRaGON data set, which was not used
at training time by the RAE. When producing results for
RAE, we always picked the best result from our three pre-
trained networks.

7.4 Convergence and Temporal Stability
Convergence. Fig. 16 shows our results with varying the sam-
ples per pixel (spp), and it indicates that our numerical

29.99 dB 34.70 dB 35.65

Lk g7

dB 35.72dB (PSNR)

#54
0.271 0.045 0.067 0.043  (LPIPS)
Qurs 2 spp. MC Est. RAE SVGF Ours Ref.

Fig. 15. Complex geometry with dense homogeneous participating
media material, shown on the Dracon data set. Full time-wise compari-
sons, for both PSNR and LPIPS metrics, are available for this scene in
the supplemental material, available online.
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Fig. 16. Our results with different numbers of samples. We render semi-
transparent multiple isosurfaces with narrow transfer function bands for
the Manix dataset.

accuracy improves progressively as increasing the spp. We
also compare our numerical convergence with RAE in
Fig. 17, and our method shows better convergence than the
previous method. For example, the improvements of RAE
over noisy input images become more modest, as the sam-
ple count increases. On the other hand, our method consis-
tently improves the input images.

Temporal Stability. The temporal stability of animated
sequences is a critical aspect of maximizing user experience
during interactive visualization. As demonstrated in our sup-
plemental videos, available online, our approach provides
more consistent temporal stability while minimizing the neg-
ative impact of outlier samples (i.e., spike noise) thanks to
our wRLS. Camera animations are challenging scenarios for
our temporal reprojection, but we did not notice strong over-
blur or ghosting in our experiments, especially when com-
pared to RAE that suffers from low-and-medium frequency
flickering artifacts. In Fig. 18, we tested the denoising meth-
ods for a static camera but in the presence of input temporal
MC variance caused by only the random jittering present in
the camera rays. Our method handles spike noise appropri-
ately while preserving the details of the volume.

7.5 Runtime Performance

The computational complexity of our denoising mainly
depends on image resolution (e.g., 1280 x 720p HD used for
our tests). In our experiments, the execution time allocated to
MC sampling and DVR rendering with 2 spp is ~ 40 ms. The
average runtime of our denoiser is more than x3 less, being

@ VCEst. @ RAE ours

PSNR

Rays / samples per pixel (spp)

Fig. 17. Numerical convergence of RAE and our method with different
numbers of samples for the semi-transparent Manix dataset.
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Fig. 18. Temporal flicker and outlier removal on the CHaMELEON data set.
Here we use a highly transparent transfer function and one extra scatter-
ing bounce per sample. This complex setup creates more outlier sam-
ples and stresses the denoisers.

around ~ 12 ms per frame (£2.5 ms). The computation over-
head of our denoising remains solely dependent on the
image resolution, and thus 12 ms can be well suited for real-
time DVR. Also, our method and SVGF do not require expen-
sive preprocessing stages, as it happens for RAEs where net-
work training can take several days. The running times for
RAE and SVGF are much higher than the overheads
described in the original papers. Our RAE implementation
works offline and takes over a second to process a single
frame. Our SVGF implementation working with DVR can
take ~ 150 ms per frame, which is also much higher than the
overhead described in their paper. Our unoptimized imple-
mentations may cause all this, and thus, for reference pur-
poses, we report the optimized times in their papers. We
took as reference timings the performance reported in
authors’ original papers. RAE and SVGF required 54.9 ms
and ~ 4.4 ms respectively for the same 720p HD resolution.

7.6 Limitations and Future Work

The proposed method makes use of temporal reprojection to
identify candidate linear models for the next predictions.
However, this reprojection can make an error, especially
inside heterogeneous volumes. In our experiments, we
noticed incorrect reprojections could result in a small degree
of overblur or sporadic ghosting when strong disocclusions
occur, and in this case, the linear models can fail to compen-
sate for this change. This trade-off falls within the expectations
of any temporal filter since small amounts of overblurring are
often perceived as more acceptable than the flickering
effect [61], especially when flickering is significantly reduced
by the filtering method. Nevertheless, it would be ideal for
designing robust reprojection schemes specialized for hetero-
geneous volumes, and we leave that as future research. Our
method approximates radiance changes over time with linear
functions, and the approximation error can become large
when the radiance varies in a totally non-linear manner.
Fig. 19 shows a challenging scenario where a dynamic light
changes its color over time. Our method produces improved
results compared to RAE and SVGF. However, to further opti-
mize our denoising, we would like to investigate an automatic
parameter selection for the forgetting factor. It would also be
interesting to integrate our denoising into an advanced frame-
work that handles volumes with non-exponential free-flight
distributions [62].
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Fig. 19. A challenging scenario with an animated area light that changes
its color rapidly over time. RAE shows a color shift and excessive blur on
this difficult scenario. Our method also generates slightly over-blurred
results but shows better numerical reconstruction and more pleasant
visual results than state-of-the-art.

8 CONCLUSION

This paper has presented a novel real-time denoising tech-
nique that reduces noise in VPT when used for DVR. In par-
ticular, our method produces high visual fidelity and
temporally stable results for challenging scenarios where
VPT suffers severe noise due to the real-time constraints
(e.g., 1 or 2 spp). Technically, we reduce the variance of VPT
effectively using per-pixel linear model predictions and
additional spatial filtering, which take advantage of the spa-
tio-temporal coherence among pixel colors in consecutive
frames. Our denoising achieves temporal stability thanks to
our weighted recursive least squares that addresses hetero-
geneous noise introduced by VPT. We have extensively
demonstrated that our framework enables users to manipu-
late volume data experiencing much less temporal flicker
interactively.
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