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Recent developments in application 
of single‑cell RNA sequencing in the tumour 
immune microenvironment and cancer therapy
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Abstract 

The advent of single-cell RNA sequencing (scRNA-seq) has provided insight into the tumour immune microenviron‑
ment (TIME). This review focuses on the application of scRNA-seq in investigation of the TIME. Over time, scRNA-seq 
methods have evolved, and components of the TIME have been deciphered with high resolution. In this review, we 
first introduced the principle of scRNA-seq and compared different sequencing approaches. Novel cell types in the 
TIME, a continuous transitional state, and mutual intercommunication among TIME components present potential 
targets for prognosis prediction and treatment in cancer. Thus, we concluded novel cell clusters of cancer-associated 
fibroblasts (CAFs), T cells, tumour-associated macrophages (TAMs) and dendritic cells (DCs) discovered after the appli‑
cation of scRNA-seq in TIME. We also proposed the development of TAMs and exhausted T cells, as well as the possible 
targets to interrupt the process. In addition, the therapeutic interventions based on cellular interactions in TIME 
were also summarized. For decades, quantification of the TIME components has been adopted in clinical practice to 
predict patient survival and response to therapy and is expected to play an important role in the precise treatment of 
cancer. Summarizing the current findings, we believe that advances in technology and wide application of single-cell 
analysis can lead to the discovery of novel perspectives on cancer therapy, which can subsequently be implemented 
in the clinic. Finally, we propose some future directions in the field of TIME studies that can be aided by scRNA-seq 
technology.
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Background
Since the beginning of the twenty-first century, tumours 
have been a great threat to human health. Tumour hetero-
geneity has a significant impact on cancer prognosis and 
response to therapies [1]. Traditional genomic and tran-
scriptomic analyses have been widely used to study differ-
ent cancer types, stratifying tumours into distinct groups. 
Some previous findings have been translated into clinical 
practice owing to their potential roles in predicting progno-
sis and response to different therapies, as well as providing 
targets for cancer therapy [2–6]. However, previous stud-
ies have mainly focused on the genomic and transcriptomic 
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features of malignant cells. In addition to malignant cells, 
the tumour immune microenvironment (TIME) is an 
essential component of various tumours. Single-cell pro-
filing of different cancer types indicates that the cellular 
details of the TIME are primarily shared across multiple 
cancer types [7]. Currently, the TIME has drawn increas-
ing attention since the discovery of checkpoint inhibitors, 
and immunotherapy has revolutionized cancer treatment 
[8, 9]. The TIME is composed of noncellular components 
(vessels, extracellular matrix, signaling molecules, etc.) and 
cellular components (T cells, myeloid cells, fibroblasts, etc.) 
[10–12]. Although traditional genomic and transcriptomic 
analyses, such as CIBERSORTx and DWLS, also emphasize 
immune-related pathways and computational approaches 
and have been applied to predict immune cell components, 
technical limitations have confounded the precise charac-
terization of the TIME [13, 14].

Traditional bulk genomic and transcriptomic analy-
ses average signals from a group of different cells, which 
obscures the identification of specific cell types and states. 
In  situ hybridization and immunohistochemistry have 
been used to explore the genomic, transcriptomic, and pro-
teomic characteristics of individual cells, but their outputs 
are relatively low [15, 16]. Flow cytometry and cytometry 
by time-of-flight (CyTOF) are capable of analysing thou-
sands or millions of single-cell proteomic profiles [17]; 
however, these methods require prior selection of anti-
bodies of interest. With breakthroughs in cell isolation 
and sequencing technologies, single-cell RNA sequenc-
ing (scRNA-seq) has enabled unbiased genome-wide pro-
filing of many cells at the single-cell level in a single run. 
scRNA-seq has been used to analyse the transcriptomics of 
individual cells, which helps characterize the cellular het-
erogeneity in each sample [18–21].

In this review, we mainly focus on the TIME, which 
plays an essential role in tumorigenesis, as well as in cancer 
progression, invasion, and metastasis [22]. The TIME has 
shown potential in diagnosing, treating, and predicting the 
prognosis of different types of cancer [23]. Compared with 
conventional methods, scRNA-seq can be utilized to iden-
tify novel cellular types and corresponding cellular states, 
deepening our understanding of TIME [24]. Furthermore, 
combining scRNA-seq with other computational meth-
ods can reveal dynamic changes in the TIME. Hence, here, 
we review new findings concerning the TIME discovered 
through the application of scRNA-seq.

Application of scRNA‑seq in TIME and cancer 
therapy
Technological advances in scRNA‑seq
The main scRNA-seq procedure includes separation and 
extraction of single cells, cDNA synthesis, nucleic acid 
amplification, sequencing, and data analysis [25]. We 

depict the major procedures of scRNA-seq in Fig. 1. One 
challenge of scRNA-seq is the relatively small amount of 
RNA in individual cells compared with traditional bulk 
sequencing. Thus, more efficient amplification methods 
are needed. Researchers have successfully established sta-
ble single-cell library construction processes to generate 
sufficient cDNA for sequencing, including polymerase 
chain reaction (PCR) amplification, such as SMART-
Seq2, and in vitro transcription (IVT) amplification, such 
as CEL-Seq2 [26].

Single-cell separation and capture are essential proce-
dures for scRNA-seq in different approaches. Figure  1a 
concludes the current common approaches for single-cell 
separation and capture. These procedures fall into four 
major categories: laser capture microdissection (LCM), 
micromanipulation, fluorescence-activated cell sorting 
(FACS), and microfluidics [27, 28]. Fluidigm C1, launched 
in 2012, was the first commercial platform using micro-
fluidic chips. Taking advantage of Fluidigm C1 lowers the 
threshold for single-cell sequencing [29]. The Fluidigm 
C1 microfluidics system allows researchers to obtain the 
complete transcriptome data of 96 cells with diameters 
of 5–25 μm in a single run. This approach also provides 
high-quality gene expression readouts. However, low cell 
throughput and high cost limit its application. Thus, this 
approach is mainly used for small-sample studies [30, 31].

The development of microfluidics and reverse emulsion 
devices allows the isolation of single cells into droplets, 
which is currently the most widely used method. The 
approach is exemplified by two academically developed 
technologies, Drop-seq and inDrop [32, 33]. Compared 
with Drop-seq, inDrop is easier to set up and produces 
higher throughput data as it detects more genes. How-
ever, inDrop cell barcoding has a much higher error rate 
than Drop-seq and higher reagent costs [34]. In 2017, 
the commercial sequencing platform 10 × Genomics was 
successfully developed based on the above techniques, 
enabling a significant increase in cell throughput and a 
considerable reduction in single-cell sequencing costs 
[35].

In addition to microfluidic devices trapping cells inside 
hydrogel droplets, FACS combined with microwell plates 
is a commonly applied scRNA-seq technique [36]. Vari-
ous amplification methods can be used within microw-
ell plates, including SMART-seq2, CEL-Seq, MARS-seq, 
and STRT-seq [37–40]. These manual approaches are 
not restricted by the cell size constraints of the Fluidigm 
system, and the equipment and setup costs are meagre. 
More importantly, SMART-seq2 and STRT-seq allow 
for full coverage of cDNA sequencing, facilitating the 
analysis of alternative splicing patterns [41]. In contrast, 
Drop-seq and inDrop only provide sequence informa-
tion at the 3′ or 5′ ends of the cDNA. Figure 1b displays 
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the reverse transcription amplification and generation 
of cDNA libraries of different approaches. CytoSeq also 
takes advantage of microwells for cell separation and 
capture. A bead similar to that in the Drop-seq approach 
is suspended in each well using CytoSeq. Compared 
with Drop-seq, CytoSeq does not require a complicated 

microfluidic system to sort cells, and it is easier to achieve 
sequencing throughput expansion using plates with more 
microwells [42]. Derived from CytoSeq and launched in 
2018, the BD Rhapsody platform uses a large number of 
microwells, far exceeding the number of cells for cell cap-
ture, to ensure that each cell occupies a single well [43].

Fig. 1  The main procedure for single-cell RNA sequencing. The main procedure for single-cell RNA sequencing includes separation and extraction 
of single cells (a), reverse transcription amplification, generation of cDNA libraries, sequencing (b) and Data analysis (c). FASC fluorescence-activated 
cell sorting, UMI unique molecular identifier, cDNA complementary DNA
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The advent of SPLiT-seq reduced the cost of library 
construction for sequencing to $0.01 for each cell. SPLiT-
seq reduces equipment requirements and the costs for 
generating cDNA libraries by labelling the cellular origin 
of RNA through combinatorial barcoding. In addition, 
the quality of scRNA-seq data obtained was similar to 
that obtained with Drop-seq and InDrop [44]. The com-
mon down-stream data analysis of scRNA-seq is shown 
in Fig.  1c. Table  1 compares the current major scRNA-
seq technologies. The principles, number of cells in each 
single-run and sensitivity of different approaches are 
concluded. In addition, we also reviewed the strength 
and weakness of each approaches, as well as their poten-
tial applications.

Future development of scRNA-seq techniques may 
reduce the costs and increase the cell throughput, mak-
ing scRNA-seq a standard tool for studying individual 
cell transcriptomes. Genomes of individual cells can be 
inferred from computational approaches [45] or from 
newly developed single-cell sequencing approaches 
[46]. In addition, single-cell protein expression and epi-
genomics can also be analysed to better understand cel-
lular diversity and gene regulatory mechanisms. Recent 
reviews have concluded that the advances in these tech-
nologies [47, 48] still need improvement before wide 
application. High-throughput single-cell multiomics data 
might play an essential role in uncovering the features of 
individual cells at unprecedented resolution in the future.

As scRNA-seq technology becomes widespread, spe-
cialized computational methods and tutorials for scRNA-
seq data analysis have been put forward [49]. (1) The 
batch effect is a common issue in data integration. Sev-
eral batch-effect correction methods have been utilized, 
such as Harmony [50], fastMNN [51], and Scanorama 
[52], and a recent study compared the properties of these 
methods [53]. (2) scRNA-seq data are high dimensional 
because each cell contains the expression of more than 
10,000 genes (variables). Dimensionality reduction is 
required to improve downstream analysis. Different 
approaches have been proposed, such as principal com-
ponent analysis (PCA) [54], nonnegative matrix factori-
zation (NMF) [55], and deep neural networks [56]. The 
detailed features of these methods have been described 
in other reviews [57, 58]. Zero inflation is another chal-
lenge of scRNA-seq data analysis. There are a large num-
ber of zero values in the scRNA-seq expression matrix. 
This is due to stochastic gene expression, the different 
states of various cells and technical noise, such as RNA 
capture efficiency and random dropouts during library 
preparation [59]. Many methods, including MAGIC [60], 
CIDR [61] and scImpute [62], have been used to impute 
the zeros in the expression matrix. However, these meth-
ods can introduce false-positive results while reducing 

technical noise. To conclude, due to the complexity of 
scRNA-seq data, the computational methods still need to 
be improved.

Conventional cellular components in the TIME
The cellular components of the TIME include lympho-
cytes (T and NK cells), myeloid cells (macrophages and 
dendritic cells), fibroblasts, and other immune cells. 
Fibroblasts are traditionally categorized as stromal cells 
due to their essential roles in constructing the extracellu-
lar matrix. Here, we include cancer-associated fibroblasts 
in the TIME, as they secrete abundant proinflammatory 
and anti-inflammatory factors to reshape the TIME.

Cytotoxic CD8+ T cells, which recognize specific anti-
gens on tumour cells and subsequently eliminate them, 
are the most common and effective immune cells in the 
TIME [63]. The cytotoxic function of CD8+ T cells relies 
on CD4+ T helper 1 (Th1) cells [64]. Other CD4+ T cells, 
including T helper 2 (Th2) cells and T helper 17 (Th17) 
cells, also facilitate immune responses in the tumour 
microenvironment [65, 66]. In contrast, regulatory T 
cells (Tregs) inhibit the TIME and exacerbate tumour 
progression [67, 68]. Natural killer T (NKT) and natural 
killer (NK) cells are also involved. Their receptors recog-
nize tumour cells, which leads to the activation of other 
immune cells [69, 70].

As an important constituent of innate immunity, mye-
loid cells, including tumour-associated macrophages 
(TAMs) and dendritic cells (DCs), play essential roles 
in the TIME. Macrophages are conventionally classified 
into proinflammatory M1 and anti-inflammatory M2 
phenotypes. TAMs populations are predominantly com-
posed of M2 macrophages, facilitating tumour growth, 
tumour survival, and angiogenesis by producing growth 
factors and cytokines [71]. However, DCs are essential 
for antigen presentation to T cells, connecting innate and 
adaptive immunity [72–74].

Cancer-associated fibroblasts (CAFs) sustain prolifera-
tion and secrete regulatory factors in the TIME and can 
be divided into inflammatory CAFs (iCAFs) and myofi-
broblastic CAFs (myCAFs). iCAFs have higher secre-
tion of cytokines and chemokines, while myCAFs highly 
express contractile proteins [75]. CAFs have conflicting 
effects on the TIME. Some studies have demonstrated 
that CAFs recruit M2 macrophages and Tregs, inhibit-
ing immune responses in the tumour microenvironment 
[76, 77]. CAFs have also been found to support antitumor 
immunity in some cases [78].

In addition to secreting antibodies, B cells also par-
ticipate in cellular immunity through the production of 
cytokines that interact with T cells [79]. Studies have 
shown that B cells inhibit cytotoxic T cells [80] and 
induce CD4+ T cell differentiation into Tregs [81, 82]. 
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Furthermore, B cells are essential components of recently 
introduced tertiary lymphoid structures (TLSs). B-cell-
rich TLSs are associated with survival and immunother-
apy responses in various tumours [83, 84].

Previous studies have emphasized the essential role of 
cellular components in the TIME. However, the identifi-
cation of immune cells is based on limited cell markers 
with the aid of immunohistochemistry. Transcriptomic 
atlases of individual immune cells are required to explore 
distinct immune cells and their corresponding functions. 
In addition, cell evolution is a dynamic process in which 
cellular alterations gradually accumulate. To understand 
this evolutionary process and its determinants, it is nec-
essary to observe the transcriptomic fluctuation of every 
single cell simultaneously, which requires the application 
of scRNA-seq.

New discoveries concerning the TIME explored 
by scRNA‑seq
Clustering and annotation are essential in interpreting 
scRNA-seq data and exploring the TIME. The data are 
partitioned based on cell similarities [85–87], and the 
challenge is to estimate the intrinsic cluster number or 
density without providing a priori knowledge [88]. A pos-
sible solution is to adopt hierarchical clustering methods 
to reveal the hierarchical structure of cells [89], which 
is also consistent with cell ontologies. Given a data par-
tition result produced by clustering methods, cell type 
annotation is needed to provide biological meanings. 
The primary challenge of annotation is determining how 
many cell types are present in each cluster and whether 
currently undiscovered cell types exist [90]. In prac-
tice, researchers typically first identify marker genes of 
each cluster and then annotate them based on expertise 
and literature. To avoid subjective annotations, certain 
tools can automatically annotate cells based on evident 
or probabilistic similarities, leveraging a wide range of 
marker repositories as references [91–93]. This variant 
of annotation methods builds on the transfer learning 
paradigm [94]. Specifically, a cell type classifier is trained 
based on previously annotated scRNA-seq data, which 
can directly map gene expression to cell type [95, 96]. A 
similar approach is to match query cells with annotated 
ones to establish correspondences [97, 98]. However, 
these methods might produce suboptimal results when 
data are heavily confounded with batch effects; thus, pre-
liminary batch integration would be necessary. Here, we 
mainly focus on studies that annotated clusters by identi-
fying marker genes based on expertise and the literature.

scRNA-seq has enabled researchers to classify immune 
cells into subpopulations with distinct functions at a 
higher resolution, which depicts the heterogeneity of 
conventional subtypes of immune cells. Novel clusters 

of lymphocytes (T and NK cells), myeloid cells (mac-
rophages and dendritic cells), and fibroblasts discov-
ered with the help of scRNA-seq are concluded in Fig. 2. 
scRNA-seq of human and mouse samples indicated that 
CAFs could be categorized as antigen presentation CAFs 
(apCAFs), iCAFs, or myCAFs. apCAFs uniquely express 
major histocompatibility complex (MHC) class II genes, 
including CD74, which activates CD4+ T cells [99]. A 
similar subpopulation of apCAFs has also been observed 
in colorectal cancer [100]. scRNA-seq of fibroblasts in 
a genetically engineered mouse model of breast cancer 
further identified vascular CAFs (vCAFs), matrix CAFs 
(mCAFs), developmental CAFs (dCAFs), and cycling 
CAFs (cCAFs) [101]. vCAFs, mCAFs, and dCAFs seem to 
originate in a perivascular location when resident fibro-
blasts and malignant cells undergo epithelial-mesenchy-
mal transition (EMT) [102]. cCAFs are the proliferating 
portion of the vCAFs population. vCAFs and mCAFs 
were also found in other mouse models, were conserved 
in patient breast tumour samples, and were found to 
increase the metastasis of breast cancer cells [103]. 
Improving the resolution of CAFs provides biomarkers 
for the development of drugs that precisely target CAFs. 
Another scRNA-seq study of breast cancer divided Tregs 
into five clusters: Tregs coexpressing Cytotoxic T lym-
phocyte-associated antigen-4 (CTLA-4), T cell immuno-
receptor with Ig and ITIM domains (TIGIT), and GITR 
and other Tregs mutually or exclusively expressing the 
same genes, which presented distinct functions [104]. 
Patients with different prognoses have different propor-
tions of Treg clusters, providing targets for personalized 
therapy. More detailed pan-cancer research focusing on 
the T cells and myeloid cells in the TIME revealed the 
existence of granzyme K (GZMK)+ Tem, interferon-
stimulated genes (ISG)+ T cells, killer cell immunoglob-
ulin like receptor (KIR)+ NKT cells, transcription factor 
7 (TCF7)+ CD8+ T cells, ficolin 1 (FCN1)+ conventional 
DC (cDC)2, secreted phosphoprotein 1 (SPP1)+ TAMs, 
and folate receptor beta (FOLR2)+ TAMs in the tumour 
microenvironment [105, 106].

Based on scRNA-seq data, novel subpopulations of 
immune cells have also been discovered in the TIME. 
scRNA-seq of uveal melanoma identified previously 
unrecognized cell types, including CD8+ T cells that 
predominantly express the checkpoint marker LAG3 
instead of programmed death-1 (PD-1) or CTLA-4 [107]. 
Meanwhile, clonal enrichment of infiltrating exhausted 
CD8+ T cells and Tregs with high expression of layilin 
(LAYN) was found in hepatocellular carcinoma [108]. 
These studies provide novel targets for cancer immu-
notherapy, as CD8+ T cells are the main constituents 
involved in elimination of malignant cells. scRNA-seq 
of colorectal cancer identified C-X-C motif chemokine 
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ligand (CXCL)13+ basic helix-loop-helix family mem-
ber E40 (BHLHE40)+ Th1-like cells associated with the 
interferon-γ (IFN-γ)-regulating transcription factor 
BHLHE40. These cells were found to have a favourable 
response to immune checkpoint blockade in microsat-
ellite-instable tumours [109], potentially increasing the 
efficacy of immunotherapy.

DCs are essential for presenting antigens to acti-
vate T cells in the TIME. scRNA-seq of gastric cancer 
revealed a novel DCs cluster expressing indoleamine 
2,3-dioxygenase 1 (IDO1) and the chemokines C–C 
motif chemokine ligand (CCL)22, CCL17, CCL19, and 
interleukin (IL)-32, which are involved in the recruit-
ment of T cells [110]. scRNA-seq of pancreatic ductal 

adenocarcinoma also identified DCs clusters that 
highly expressed IDO1 in addition to conventional cell 
markers. IDO1 is essential for catalysing tryptophan 
depletion and kynurenine production, inhibiting T-cell 
proliferation and cytotoxicity [99], which reveals the 
close interactions between DCs and T cells. Moreover, 
lysosomal associated membrane protein 3 (LAMP3)+ 
DCs were identified by scRNA-seq and appeared to be 
the mature form of classical DCs. LAMP3+ DCs can 
migrate to lymph nodes and highly express ligands that 
interact with T cells [111]. The discovery of these novel 
DCs clusters expressing specific markers provides a 
new perspective for cancer immunotherapy because of 
their strong communication with T cells.

Fig. 2  New resolution of immune cell clusters revealed by scRNA-seq. With the help of scRNA-seq, novel cell clusters of CAFs, T cells, TAMs and 
DCs have been identified. CAFs cancer-associated fibroblasts, cCAFs cycling CAFs, dCAFs developmental CAFs, apCAFs antigen-presenting CAFs, 
iCAFs inflammatory CAFs, myCAFs myofibroblastic CAFs, mCAFs matrix CAFs, TAMs tumour-associated macrophages, DCs dendritic cells, cDC 
conventional DC, FCN1 ficolin 1, LAMP3 lysosomal associated membrane protein 3, SPP1 secreted phosphoprotein 1, FOLR2 folate receptor Beta, 
Tregs regulatory T cells, NK natural killer, CSG cell surface glycoprotein, GZMK granzyme K, CXCL13 C-X-C motif chemokine ligand 13, BHLHE40 
basic helix-loop-helix family member E40, Th1 T helper 1, KIR killer cell immunoglobulin like receptor, LAYN layilin, TCF7 transcription factor 7, LAG3 
lymphocyte activating 3
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Novel signature genes of TAMs, including trigger-
ing receptor expressed on myeloid cells 2 (TREM2), 
CD81, macrophage receptor with collagenous structure 
(MARCO), and apolipoprotein E (APOE), were discov-
ered in lung adenocarcinoma using scRNA-seq [112]. 
Furthermore, scRNA-seq of breast cancer indicated that 
the angiogenesis factors plasminogen activator, urokinase 
receptor (PLAUR) and IL-8 were expressed in TAMs in 
addition to M2-type genes, such as CD163, membrane 
spanning 4-domains A6A (MS4A6A), and transform-
ing growth factor beta-1 (TGF-β1) [113]. These novel 
gene signature profiles in TAMs are associated with 
patient survival and provide new potential targets for 
cancer therapy. scRNA-seq of tumour samples revealed 
that a subpopulation of TAMs presented with high 
expression of SPP1, the macrophage scavenger receptor 
MARCO, and MHC II class genes. MARCO and SPP1 
are anti-inflammatory and immune-suppressive sig-
natures in macrophage activation, while MHC II class 
genes are related to proinflammatory functions [99, 
100]. Additional scRNA-seq studies have indicated that 
TAMs frequently present with both proinflammatory 
and anti-inflammatory signatures [104]. This phenom-
enon suggests that macrophage activation in the tumour 
microenvironment is not consistent with conventional 
M1/M2 polarization, which is further discussed in the 
next section.

Evolution of immune cells suggested by single‑cell data
Most immune cells are in the process of cellular devel-
opment. An abundance of immune cells are in tran-
sient states of developmental trajectories rather than 
the discrete states of well-differentiated cells. With the 
help of scRNA-seq and in-depth analyses, research-
ers can explore the characteristics of differentiated cells 
and the transition of a specific cell type and its possible 
mechanisms.

The most commonly used computational method is the 
pseudotime trajectory. The pseudotrajectory describes 
the developmental processes of cells, characterized by 
cascading changes in gene expression. A branching point 
represents a significant divergence in cellular differentia-
tion. Various machine learning computational methods 
have been utilized to construct trajectories, including 
Monocle3 [114], DTFLOW [115], DPT [116], SCORPIUS 
[117], and TSCAN [118], which have been evaluated and 
compared in a separate review [119]. As TAMs and T 
cells represent the most abundant immune cell types in 
the TIME, we mainly focus on these two cell types.

scRNA-seq of various tumours revealed that TAMs 
frequently coexpress M1 genes, including TNF-α, and 
M2 genes, such as IL-10 [104], and that the differen-
tiation and states of TAMs are directly correlated with 

their antitumor effects. Pseudotime trajectory analysis 
confirmed that TAMs transition continuously between 
M1 and M2 phenotypes (Fig. 3a). The transcription fac-
tors IRF2, IRF7, IRF9, STAT2, and IRF8 seem important 
in determining TAMs differentiation [120] and could be 
utilized as epigenetic targets to induce M1 polarization 
of TAMs, resulting in proinflammatory and antitumor 
microenvironments.

T-cell phenotypes were determined using environmen-
tal stimuli and antigen T-cell receptor (TCR) stimulation. 
The overlap of TCR repertoires between cells in differ-
ent states, known as TCR sharing, can also be utilized 
to study the evolution of T cells. Combining scRNA-seq 
and TCR tracking in colorectal cancer identified 20 T-cell 
subsets with distinct functions [109]. An exhaustion sig-
nature of 28 genes, including TIGIT, TNFRSF9/4-1BB, 
and CD27, was identified in exhausted T cells in mela-
noma tumours and was also found to be upregulated in 
high-exhaustion cells in most tumours [121]. Another 
study on T cells further identified other exhaustion mark-
ers in CD8+ T cells, such as LAYN, pleckstrin homology 
like domain family A member 1 (PHLDA1), and Synapto-
some associated protein 47 (SNAP47) [108]. Pseudotime 
trajectory analysis indicated that T cells are in continu-
ous activation and terminal differentiation (exhaustion) 
states in the TIME (Fig. 3b) [104]. Additional studies have 
been performed to study the evolution of exhausted T 
cells and potential targets to reverse T-cell exhaustion. 
scRNA-seq combined with TCR analysis demonstrated 
that dysfunctional exhausted T cells and cytotoxic T cells 
might be developmentally related in the TIME [122].

Consequently, studies have focused on the transition 
process of CD8+ T cells from effector to exhausted T 
cells [108]. Two CD8+ T-cell clusters were identified by 
scRNA-seq as pre-exhausted T cells in non-small cell 
lung cancer (NSCLC). The pre-exhausted to exhausted 
T cell ratio is associated with a better prognosis in lung 
adenocarcinoma. Thus, interrupting pre-exhausted T 
cells before exhaustion may be essential for cancer immu-
notherapy [123].

Due to the close interactions between immune cells 
and malignant cells, the evolution of malignant cells also 
plays a crucial role in immune cell evolution. Pseudo-
time trajectory analysis has indicated that the trajectory 
branch of metastatic lung adenocarcinoma is distinct 
from normal differentiation towards ciliated cells and 
alveolar-type cells [124]. Affected by the evolution of 
malignant cells, normal resident myeloid cell populations 
are replaced with monocyte-derived macrophages and 
novel dendritic cells (CD163+ CD14+ DCs). T cells have 
also been found to undergo exhaustion, constructing an 
immunosuppressive tumour microenvironment [124]. 
Similarly, another study demonstrated that anaplastic 
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Fig. 3  Evolution of tumour-associated macrophages and T cells. a Tumour-associated macrophages (TAMs) coexpressing M1 and M2 genes might 
evolve from M1 or M2 macrophages. b Naïve T cells can develop into effector CD8 T cells, which might develop into pre-exhausted T cells and 
further into exhausted T cells. TNF-α tumor necrosis factor-α, TREM2 Triggering receptor expressed on myeloid cells 2, MARCO macrophage receptor 
with collagenous structure, APOE apolipoprotein E, SPP1 secreted phosphoprotein 1, IL-10 interlukin-10, FOXO1 forkhead box O1, CXCL13 C-X-C 
motif chemokine ligand 13, TIGIT T cell immunoreceptor with Ig and ITIM domains, TNFRSF9 TNF receptor superfamily member 9, LAYN layilin, 
PHLDA1 pleckstrin homology like domain family A member 1, SNAP47 synaptosome associated protein 47
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thyroid cancer cells are derived from a subcluster of pap-
illary thyroid cancer cells, where a distinct TIME was 
constructed, leading to significantly worse prognoses 
[125].

Communications between various cells in the TIME
Cell communication in the TIME is related to tumour 
progression. Ligand-receptor interactions, a vital type 
of cell communication, are essential for constructing the 
TIME and identifying potential therapeutic targets [126]. 
scRNA-seq was conducted on a cellular basis, making it 
feasible to investigate undiscovered cellular interactions. 
Many analytical tools for investigating ligand-receptor 
interactions based on scRNA-seq data have been devel-
oped (Fig.  4a), including iTALK [127], CellTalker [128], 
and CellPhoneDB [129]. These tools take advantage of 
databases of known ligand-receptor pair interactions. 
Among them, CellTalker utilizes differentially expressed 
genes, while CellPhoneDB includes the subunit archi-
tectures of ligands and receptors. Other tools, such as 
NicheNet, also consider the alterations in downstream 
pathways in receiver cells [130]. Other reviews have pre-
sented a detailed comparison of different computational 
approaches [131, 132].

During tumour progression, malignant cells lead to 
the recruitment and dysfunction of immune cells, which 
reciprocally influence tumorigenesis and the evolution 
of malignant cells [133], forming a vicious cycle (Fig. 4b). 
TAMs were found to interact with malignant cells via the 
epidermal growth factor receptor (EGFR)-amphiregulin 
(AREG) ligand-receptor pair. Modulation of AREG in 
a basal-like breast cancer cell line led to recruitment of 
anti-inflammatory TAMs [134]. Meanwhile, an EGFR-
associated feedback loop was discovered to promote pan-
creatic adenosquamous carcinoma progression based on 
single-cell transcriptomics [135]. Oncostatin M (OSM) 
derived from TAMs also interacts with its receptor on 
malignant cells to activate signal transducer and activator 
of transcription 3 (STAT3) [136]. Researchers discovered 
communications between CAFs and gastric cancer cells 
via integrin receptor interactions with collagen, fibronec-
tin, thrombospondin 1 (THBS1) ligands, and leucine rich 
repeat containing G protein-coupled receptor 4 (LGR4)- 
R-spondin 3 (RSPO3), which regulate stemness [110]. In 
addition, scRNA-seq of pancreatic ductal adenocarci-
noma revealed interactions between TIGIT and hepatitis 
A virus cellular receptor 2 (HAVCR2) in T and NK cells, 
as well as their corresponding ligands PVR and LGALS9 
in malignant cells, resulting in immune cell dysfunction 
and pancreatic cancer progression [137]. Hence, explor-
ing cellular interactions between immune cells and 
malignant cells based on single-cell data offers possible 

therapeutic targets to disrupt the vicious cycle of tumour 
progression.

In addition to malignant cells, scRNA-seq and subse-
quent analysis also predicted the interactions between 
immune cells in the TIME, which presented opposite 
functions (Fig.  4b). For instance, TAMs were found to 
have decreased CXCL12- C-X-C motif chemokine recep-
tor (CXCR)3 and CXCL12-CXCR4 interactions and 
enhanced CD86-CTLA-4 interactions between cytotoxic 
T cells and Tregs in nasopharyngeal carcinoma, result-
ing in a TIME that aggravates cancer progression [138]. 
In addition, CAFs recruit Tregs by secreting CXCL12 and 
are correlated with M2 macrophages via periostin [139]. 
In murine melanoma, researchers found that myeloid 
populations displayed the function of T cells recruitment 
via cytokine-receptor signals, including CXCL10, CCL22, 
and CCL5, and suppressed T-cell function via the pro-
grammed death-ligand 1 (PD-L1)-PD-1 axis [140]. On the 
other hand, some interactions between immune cells can 
induce an antitumor TIME. NK cells that recruit cDC1 
cells via the chemokine receptor X-C motif chemokine 
receptor 1 (XCR1) were identified and found to promote 
cancer immune control [140, 141]. Thus, perturbation of 
interactions between immune cells might reconstruct the 
TIME, possibly slowing tumour growth.

The spatial location of cells is vital for cell communica-
tion. The application of scRNA-seq in studying physical 
interactions is limited because of the destructive process 
of tissue dissociation. Computational tools involving Cel-
lular Spatial Organization mapper (CSOmap) have been 
presented to recapitulate the spatial organization of cells 
in the TIME [142]. Sequencing of physically interacting 
cells (PIC-seq) also helped in better depicting cell inter-
actions. With the help of PIC-seq, Tregs have been dis-
covered as a major T-cell type that interacts with DCs, 
suggesting that Treg-DCs interactions are important for 
sustaining an immune tolerance environment [143]. With 
the development of spatial transcriptomics techniques 
[144], the data of transcriptomics and spatial locations 
of cells are combined. Integrating single-cell and spatial 
transcriptomics helps us explore cell communications at 
a new level [145, 146]. However, spatial transcriptomics 
cannot reach the single-cell level. In  situ transcriptom-
ics at single-cell resolution might become possible in 
the future. Although commercially available methods, 
including Visium, cannot achieve the single-cell level, 
recent technologies enable transcriptomics research 
at single-cell or even subcellular resolution [147, 148]. 
Additionally, cell interactions occur at the protein level. 
scRNA-seq-based interaction predictions may not be 
mirrored accurately because scRNA-seq cannot directly 
reflect protein levels. Fortunately, single-cell proteomics 
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Fig. 4  (See legend on next page.)
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and multiomics techniques have advanced dramatically 
[149, 150], which helps researchers better characterize 
cell communications.

Clinical application and potential targets in the TIME based 
on scRNA‑seq
Quantification of the TIME has been adopted in clini-
cal practice for decades to predict patient survival and 
response to treatments. The immunohistochemistry-
based immune score, which quantifies in  situ immune 
cell infiltration in tumours, was proposed before scRNA-
seq. The immune score is a better prognostic factor than 
the TNM classification in colorectal cancer [151]. The 
immuno-score is also associated with responses to differ-
ent treatments [152], which emphasizes the essential role 
of the TIME in clinical applications.

Compared with the traditional immuno-score, scRNA-
seq provides an unprecedented resolution of infiltrated 
immune cells in the TIME. Novel immune cell clusters 
related to prognosis have been identified. For instance, 
a distinct phenotype of low cytotoxic innate-like CD8+ 
T cells has been identified in early relapse hepatocellu-
lar carcinoma. These T cells overexpress KLRB1 while 
downregulating costimulatory and exhaustion-related 
molecules, including tumor necrosis factor recep-
tor superfamily, member 9 (TNFRFS9), CD28, induc-
ible T cell co-stimulator (ICOS), TIGIT, CTLA-4, and 
HAVCR2. The infiltration of this cluster of T cells is cor-
related with a poor prognosis in liver cancer [153]. In 
addition, scRNA-seq-based cellular interactions were 
also counted in the prediction model. Machine learn-
ing models have been constructed based on intercellular 
communication-associated genes (ICAGs) to predict the 
recurrence of lung adenocarcinoma. Combining eight 

ICAGs and patients’ clinical information achieved an 
area under the receiver operator characteristic (ROC) 
curve of 0.841 [154]. In addition to prognosis predic-
tion, unique cellular interactions in the TIME are also 
related to responses to immunotherapy. scRNA-seq 
analysis found distinct cell–cell communication networks 
between responders and non-responders to anti-PD-1 
therapy, potentially predicting patient response to anti-
PD-1 therapy [155]. As a result, patient prognosis and 
responses to immunotherapy were more precisely pre-
dicted with the help of scRNA-seq.

Taking advantage of scRNA-seq is inspiring in preci-
sion medicine, such as assisting targeted therapy to over-
come drug resistance. For instance, physicians applied 
scRNA-seq of patient-derived xenografts (PDXs) before 
and after treatment in non-CR muscle-invasive blad-
der cancer patients treated with tipifarnib. Upregula-
tion of PD-L1 was found in post-treatment PDXs and 
reduced the antitumor effects of immune cells. Accord-
ingly, additional treatment with a PD-L1 inhibitor (ate-
zolizumab) was chosen. Subsequently, patients achieved 
favourable responses [156]. In addition, novel immune 
subtypes were identified via scRNA-seq in monother-
apy-resistant tumours. Blocking TAMs with anti-colony 
stimulating factor 1 receptor (CSF1R) failed to decrease 
tumour progression in cholangiocarcinoma. scRNA-
seq identified compensatory enrichment of granulocytic 
myeloid-derived suppressor cells expressing APOE, 
which mediated T-cell inhibition. Dual inhibition of 
TAMs and granulocytic-Myeloid-derived suppressor 
cells (G-MDSCs) combined with anti-CSF1R and anti-
lymphocyte antigen 6 complex, locus G (Ly6G) therapy 
augmented immune checkpoint blockade efficacy in a 

(See figure on previous page.)
Fig. 4  Cell communication between various cells in the tumour immune microenvironment. a Principles of analytical tools for investigating 
ligand-receptor interactions based on scRNA-seq data. These tools take advantage of databases of known ligand-receptor pair interactions. Some 
tools also consider the alterations in downstream pathways in receiver cells. b Malignant cells closely interact with immune cells. Tumour-associated 
macrophages (TAMs) were found to interact with malignant cells via the epidermal growth factor receptor (EGFR)-amphiregulin (AREG) 
ligand-receptor pair. oncostatin M (OSM) derived from TAMs also interacts with its receptor on malignant cells. T cells and malignant cells interact 
through T cell immunoreceptor with Ig and ITIM domains (TIGIT)-PVR and hepatitis A virus cellular receptor 2 (HAVCR2)-galectin 9 (LGALS9). 
CAFs and malignant cells interact through interlukin (IL)-6-IL6R, integrin receptor interactions with collagen and fibronectin, thrombospondin 
1 (THBS1) ligands, and leucine rich repeat containing G protein-coupled receptor 4 (LGR4)-R-spondin 3 (RSPO3). Interactions between immune 
cells in the TIME have also been demonstrated. Cancer-associated fibroblasts (CAFs) recruit Tregs by secreting C-X-C motif chemokine ligand 
12 (CXCL12) and are also correlated with M2 macrophages via periostin. TAMs show decreased CXCL12- C-X-C motif chemokine receptor 3 
(CXCR3) and CXCL12- C-X-C motif chemokine receptor 4 (CXCR4) interactions and enhanced CD86-CTLA-4 and programmed death-ligand 
1 (PD-L1)-programmed death-1 (PD-1) interactions with T cells. TAMs also secrete CXCL10, CCL22, and CCL5 to recruit T cells. TAMs and CAFs 
interact through C3a and C3aR. Therapeutic interventions, such as perturbation of complement C3a (C3a) and complement C3a receptor (C3aR), 
antibodies targeting triggering receptor expressed on myeloid cells 2 (TREM2), and IL-17 blockade, have displayed promising outcomes. TAMs 
tumour-associated macrophages, EGFR epidermal growth factor receptor, AREG amphiregulin, OSM oncostatin M, TIGIT T cell immunoreceptor 
with Ig and ITIM domains, HAVCR2 hepatitis A virus cellular receptor 2, LGALS9 galectin 9, IL interlukin, THBS1 thrombospondin 1, LGR4 leucine rich 
repeat containing G protein-coupled receptor 4, RSPO3 R-spondin 3, CAFs cancer-associated fibroblasts, CXCL C-X-C motif chemokine ligand, CXCR 
C-X-C motif chemokine receptor, PD-L1 programmed death-ligand 1, PD-1 programmed death-1, C3a complement C3a, C3aR complement C3a 
receptor, ECM extracellular matrix, TREM2 triggering receptor expressed on myeloid cells 2, CCL C–C motif chemokine ligand
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murine model, which is promising for clinical practice 
[157].

In addition to treating drug-resistant tumours, the 
application of scRNA-seq in the TIME has also high-
lighted potential novel targets that require further inves-
tigation. T cells are the most essential immune cells 
for removing malignant cells in the TIME. However, 
exhausted CD8+ T cells contribute to an unfavourable 
prognosis in different tumours. In addition to well-
known immunosuppressive checkpoints, scRNA-seq 
identified exhausted CD8+ T cells highly expressing pre-
melanosome protein (PMEL), tyrosinase related protein 
1 (TYRP1), and endothelin receptor type B (EDNRB), 
which could serve as novel potential targets [158]. Mye-
loid cells are essential for recruiting immune cells in 
the TIME [159]. TREM2/APOE/complement compo-
nent 1, q subcomponent (C1Q)-positive macrophage 

infiltration was identified by scRNA-seq as a prognos-
tic biomarker for clear cell renal carcinoma recurrence 
[160]. Another study confirmed that antibodies target-
ing TREM2 in mice were associated with scant MRC1+ 
and CX3CR1+ macrophages and an expansion of mye-
loid clusters expressing immunostimulatory molecules, 
which promoted T-cell responses and led to a better 
prognosis [161]. Cellular interactions can also be used as 
therapeutic targets. scRNA-seq of intrahepatic cholangi-
ocarcinoma revealed crosstalk between vCAFs and intra-
hepatic cholangiocarcinoma (ICC) cells. IL-6 secreted by 
vCAFs induces epigenetic alterations in ICC cells, which 
enhance malignancy [162]. Hence, the interruption of 
IL-6 signaling in ICC has become quite intriguing. Poten-
tial targets for cancer therapy as indicated by scRNA-seq 
are summarized in Table 2.

Table 2  Potential targets in the TIME indicated by scRNA-seq

“–” no evidence applied by studies, TIME tumour immune microenvironment, NK natural killer, TREM2 triggering receptor expressed on myeloid cells 2, TAMs tumour-
associated macrophages, PD-L1 programmed cell death-Ligand 1, APOE apolipoprotein E, G-MDSCs granulocytic-myeloid-derived suppressor cells, CAFs cancer-
associated fibroblasts, vCAFs vascular CAFs, ICC intrahepatic cholangiocarcinoma, PLVAP plasmalemma vesicle associated protein, VEGFR2 vascular endothelial growth 
factor receptor 2, ECs endothelial cells, FOLR2 folate receptor beta, ICOSL inducible T-cell co-stimulator ligand, HIF-1α hypoxia induced factor-1α, ADAR1 adenosine 
deaminase RNA specific 1, MUC1-C mucin 1 C-terminal subunit, PDIA5 protein disulfide isomerase family A member 5, PMEL premelanosome protein, TYRP1 tyrosinase 
related protein 1, EDNRB endothelin receptor type B, FOXO1 forkhead box O1, KDM5B lysine demethylase 5B, MAF macrophage activating factor, IKZF2 IKAROS family 
zinc finger 2, SOX4 SRY-box transcription factor 4, BCL3 β-cell CLL/lymphoma 3, TNFRSF18 TNF receptor superfamily member 18, TIGIT T cell immunoreceptor with Ig 
and ITIM domains, HAVCR2 hepatitis A virus cellular receptor 2, VEGF vascular endothelial growth factor, TGF-β transforming growth factor beta, TGF-βR transforming 
growth factor beta receptor, IL-6 interleukin 6

Potential targets Mechanisms Potential targets Therapeutic intervention

Malignant cells Inactivation of antigen presentation ADAR1 [163] –

Depletion and dysfunction of CD8+ 
T cells

MUC1-C [164] –

Macrophage exhaustion PDIA5 [165] –

Inhibition of ICOSL+ B-cells CD55 [166] –

Exhausted CD8+ T cells Dysfunction of T cells PMEL, TYRP1, and EDNRB [158] –

CD8+ T cells Transcriptional regulators determin‑
ing T cell fates

FOXO1, KDM5B, MAF, IKZF2, SOX4, 
and BCL3 [110]

–

NK cells Inhibitory and costimulatory 
molecules

TNFRSF18 (GITR), CD96, and 
KIR2DL4 [110]

–

HIF-1α, reducing antitumor effects HIF-1α inhibitor [167] –

Immature myeloid cells Immune suppression – Tyrosine kinase inhibitor cabozan‑
tinib [168]

TREM2+ TAMs Associated with T-cell response – Antibodies targeting TREM2 [160, 
161]

PD-L1+ TAMs and APOE+ G-MDSCs T-cell inhibition induced by TAMs 
and G-MDSCs

– anti-CSF1R and anti-Ly6G antibod‑
ies [157]

vCAFs/ICC Enhancement of malignancy IL-6 [162] –

CAFs/malignant cells Immune evasion PVR-TIGIT, LGALS9-HAVCR2, and 
TGF-β-TGF-βR axis [169]

–

PLVAP/VEGFR2 ECs/FOLR2 TAMs Onco-foetal reprogramming of the 
tumour ecosystem

VEGF/NOTCH [170] –

Malignant cells/IL-17-producing 
T cells

Activation of angiogenesis and sup‑
pression of CD8+ T cells

– IL-17 blockade [171]

CXCL13+ T cells/B cells Associated with prognosis CXCL13/CXCR5 [172] –
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Application of scRNA‑seq in the future
Even though the application of scRNA-seq has made 
great progressions in TIME studies, the promotion and 
popularization of single-cell sequencing technology 
are limited by high sample quality requirements, lim-
ited throughput, inevitable technical errors and high 
costs [173]. It is hoped that with the development of 
scRNA-seq technology, the threshold will become lower, 
accelerating the widespread application of scRNA-seq. 
Currently, single-cell analysis has been extended beyond 
transcriptomics to genomics, proteomics, and epigenet-
ics [149, 174, 175]. The actual spatial structure of cells 
in tumour tissues can be reconstructed [176]. Moreover, 
frozen specimens and paraffin-embedded tissues can be 
analysed in addition to fresh tissues [177, 178]. These 
technique improvements shed light on construction of 
large single-cell datasets with high resolution.

The application of single-cell analysis to precision 
medicine is promising. Several studies have revealed the 
substantial value of using scRNA-seq in clinical prac-
tice. scRNA-seq of the skin and blood of a patient with 
drug-induced hypersensitivity syndrome/drug reaction 
with eosinophilia and systemic symptoms (DiHS/DRESS) 
identified central memory CD4+ T cells enriched in 
human herpesvirus 6b DNA and the Janus kinase-signal 
transducer and activator of transcription (JAK-STAT) 
signaling pathway as potential targets. Subsequent treat-
ment with tofacitinib and antiviral agents was successful 
in this individual patient [179]. scRNA-seq also provides 
potential targets for cancer therapy. Increased intratu-
moral heterogeneity was discovered in therapy-resistant 
small-cell lung cancer, emphasizing the importance of 
combination therapies for treatment-naïve tumours 
[180].

Conclusions
The unprecedented power of scRNA-seq has started a new 
era in TIME research. A comprehensive cellular atlas of 
the TIME has been drawn, providing a novel perspective 
for clinical application in various tumours. In addition, cel-
lular compositions and communications in the TIME pro-
vide potential targets for cancer therapies and contribute 
to the development of precision medicine. We believe that 
advances in technology and wide application of single-cell 
analysis can lead to the discovery of novel perspectives on 
cancer therapy and that scRNA-seq can subsequently be 
implemented more frequently in clinical practice.
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