

Silicon Photocathode with Vertically Aligned TiO₂ Nanorods and Ni Catalyst for Enhancing Photoelectrochemical Nitrate Reduction to Ammonia

Enok Lee and Sanghan Lee*

School of Materials Science and Engineering (SMSE) Gwangju Institute of Science and Technology (GIST)

2.Methods

3.Results

4.Summary

GIST

✓ Essential compound in industry

& agriculture

✓ Consumption of natural gas

✤ Eco-friendly catalytic ammonia synthesis

the waste nitrate

GIS

✓ High ammonia yield & ease of operation

However, e-NO₃RR requires a high potential.

The low yield rate & selectivity remain bottlenecks.

< 4/14 >

Silicon (Si) photoelectrodes

Advantage

- ✓ Narrow band gap (1.12 eV)
 - → High photocurrent density
- Excellent charge carrier mobility
- ✓ Mature fabrication

Drawbacks

- Insufficient photovoltage
- Chemical corrosion in aqueous electrolytes
- Sluggish charge-transfer kinetics
- High light reflection

So, passivation layer & Catalysts are required.

Titanium dioxide (TiO₂)

- ✓ Ultra-Violet light absorption capability
- ✓ Efficient anti-reflection
- ✓ Appropriate band offset with silicon

Nickel (Ni) catalyst

- ✓ Cost effectiveness
- ✓ Stable in alkaline electrolyte
- ✓ Reaction kinetic improvement

TiO₂ nanorods + Ni catalyst

"Enhancing PEC NO₃-RR"

2. Methods

3. Ni decoration

- ✤ Sequential deposition by e-beam evaporator
- 1. TiO₂ film (10 nm) 2. TiO₂ n

Surface morphology analysis (Scanning Electron Microscope (SEM) images)

1: Bare p-Si 2: TiO₂ NRs/ TiO₂ film/ p-Si

 \checkmark The vertically grown TiO₂ NRs exhibited uniform length and porosity.

Structural characterizations (X-ray photoelectron Spectroscopy (XPS))

- \checkmark Ni catalysts is embedded in the TiO₂ NRs.
- ✓ The abundant surface oxygen vacancies can further enhance the catalytic activity.

✤ PEC performances for NO₃-RR (TiO₂ NRs/ TiO₂ film/ p-Si photocathode)

 \checkmark The Si photocathodes with TiO₂ NRs exhibited good PEC performance for PEC NO₃-RR.

✤ PEC performances for NO₃-RR (Ni/ TiO₂ NRs/ TiO₂ film/ p-Si photocathode)

 \checkmark Ni catalysts enhanced PEC NO₃-RR with an onset potential of 0.28 V_{RHE}.

✤ Quantitative analyzation for PEC NO₃-RR

 \checkmark At -0.2 V_{RHE}, a Faradaic efficiency of 90.6% and a yield of 1046.6652 µg/h cm² were achieved.

- Using GLAD method by e-beam evaporator, we fabricated silicon photocathode with vertically aligned TiO₂ nanorod arrays and nickel.
- ✓ The decorated Ni on vertically aligned TiO₂ nanorod arrays completely increased the reaction surface area and the enhanced photo-absorption was enabled by the anti-reflection of the 1D nanorod structure.
- ✓ It showed photocurrent of 31.8 mA cm⁻² at -0.2 V_{RHE} and positive onset potential of 0.28 V_{RHE} and 1046 ug/h cm² ammonia yield.

4. Summary

Thank you for your attention

E-mail: enok2257@gm.gist.ac.kr

