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Background
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 In 2019, 1.27 million deaths were directly 
attributable to antibiotic resistance (AR).

 The greatest number of associated deaths was 
approximately 0.1% of the population in Africa.

 AR is a leading cause of death around the world, 
with the highest burdens in low-resource settings

Murray et al., 2022, The lancet

Deaths attributable/associated with Antibiotic Resistance (AR)

• Attributable: AR directly caused the death
• Associated: AR was one of the causes of the death
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How did antibiotic resistant pathogens acquire AR?

- Mutation
- Vertical transmission
- Horizontal gene transfer (HGT)

Conjugation

Transduction

Transformation

Outer 
membrane 

vesicles

 HGT exchanges antibiotic resistance genes (ARGs) 
faster than vertical transmission and across the 
different species.

 HGT can occur via conjugation, transformation, 
and transduction.

 Plasmids can be independently uptaken by 
bacteria, transferring AR, and replicate 
independently from the genome, which is fast.

 Plasmids encoded e-ARG is regarded as 
concerning environmental contaminants.

IL Brito, 2021, Nature Reviews Microbiology Plasmid encoded e-ARG
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Schematic for transmission paths of e-ARGs

 Humans and livestock consume large amounts of 
antibiotics while developing AR. The e-ARGs 
from their waste are transported to wastewater 
treatment plants (WWTP), which don’t 
completely remove e-ARGs, and discharge them 
into natural water systems.

 The natural water: a potential  drinking water 
source or recreational water. 

 To understand the fate of e-ARGs in natural 
water system is important in mitigation of AR.

TR Walsh, 2018, Nature microbiology
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Sunlight plays an important role in fate of e-ARGs in natural surface water

 There have been different conclusions regarding 
the importance of 1O2, 3DOM*, •OH.

 The importance of each pathway was highly 
dependent on the light spectrum, which makes it 
hard to derive an overall conclusion.

 In case of 1O2 and 3DOM*, even their reactivities 
with ARG have been less understood.

Necessity of this research

koverall kdirect kindirect



Research objective and Scope
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 To advance the understanding of sunlight photolysis mechanisms of e-ARG in aquatic environments

Reaction rates between reactive species (RS) and ARGs 

using model RS systems

Investigation of the contribution of each pathway 

using Sunlight Photolysis Model

Simulation of total photolysis rate of e-ARG and contribution of 

each pathway with environmental conditions

Pathways

Simulation

Reactivity



Material & Method
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 Sunlight photolysis experiment with model DOM
 koverall = kdirect + kindirect

 kindirect
= k•OH&ARG [•OH]ss + k1O2&ARG [1O2]ss + k3DOM*&ARG [3DOM*]ss

 Model Reactive Species (RS) system
 Competition kinetics

Reactivity of 3DOM* & ARG
Contribution

 Simulation model
~ light spectrum, water depth etc.

Total photolysis rate
Contribution change

2nd order rate constant
Reactivity

Pathways

Simulation
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 Estimation of 2nd order rate between RS and e-ARG using competition kinetics

1O2

CO3
•-

•OH

3DOM*

e-ARG

Competitor

Model RS system Reactive 
Species Source of RS / Photosensitizer Competitor (k, M-1s-1) ref

1O2 Rosebengal (RB) Furfuryl alcohol (FFA) (1.0×108) [5]

CO3
•- 4-Carboxybenzophenone (CBBP) Isoproturon (IPT) (3.0×107) [6]

•OH UV>290nm/H2O2
Para-chlorobenzoicacid (pCBA)

(5.2×109) [7]

3DOM*

2-Anthraquinone-sulfonate (AQ2S) Atrazine (ATZ), (1.4×109) [8]

4-Carboxybenzophenone (CBBP) Atrazine (ATZ), (7.2×108) [9]

Benzophenone (BP) 2,4,6-Trimethylphenol (TMP)
(5.1×109) [10]

Methylene blue (MB) Phenol, (1.7×107) [11]
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 Sunlight photolysis experiment of e-ARG with model DOM

 Light source
Sunlight simulator (> 320 nm)
6.5×10-5 Ein/L/s by PNA-pyridine actinometry

 Target e-ARG
Linear pUC19 (ampR) ~ [ampR]0=108 copies/mL (30 ppb)
Qualitative PCR with 849bp amplicon

 RS steady state concentration

Reactive 
Species probe KRS&probe

[M-1s-1]
1O2 Furfuryl alcohol (FFA) 1.0×108

CO3
•- N,N-Dimethylaniline (DMA) 1.85×109

•OH Terephthalic Acid (TA) 3.3×109

3DOM* 2,4,6-Trimethylphenol (TMP) 1.0×109

 DOM list
SRHA II, SRNOM, SRFA II, Effluent
[DOC]0= 6 mgC/L, Phosphate buffer 10 mM (pH 7)

Why > 320 nm ?
: To focus on indirect pathway, we cut off the UVB region 
which is the main contributor to direct DNA damage.

UVB UVA

from Shin & Lee, ES&T Water, 2023



Result and Discussions
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Result & Discussions
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 Second order reaction rate constants between RS & e-ARG

 •OH has the highest reactivity with e-ARG ~ close to 

theoretical diffusion-controlled reaction rate

 4 DOM PSs’ reactivities with e-ARG ~ a positive relation 

with their reduction potential (except CBBP).

 CO3
•- & 1O2 showed a relatively low reaction rate.

Maolida et al., 
2021, Wat Res

This study
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*CO3
•- was excluded due to 

the vulnerability of the 
probe compound to 3DOM*.



 Contribution of each pathway

Result & Discussions
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 No direct pathway (>320 nm): corresponds to kdirect prediction

 3DOM* was a dominant path in NOM.

 Effluent has slightly higher •OH path than 3DOM*.

 Effluent showed 2-fold higher [•OH]ss than NOM 

 Effluent has a low level of NO3
-/DOC ~ photosensitization of 

DOM is the prevailing •OH source [12].

 Effluent produces •OH more efficiently than NOM ~ Effluent 

has a larger amount of Low Molecular Weight DOM (LC-

OCD).

 1% ~ 4%: little contribution of 1O2

(K1O2,ARG×[1O2]ss)/Kobs = 1O2(KOH,ARG× [OH]ss)/Kobs = OH

(kobs-kdirect -k1O2-kOH)/Kobs = 3DOM*(kdirect)/Kobs = Direct



Result & Discussions
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 Estimated k3DOM* & ARG from the RS model

2.0(±0.5)×108 M-1s-1

k3DOM*,ARG = (Kobs– k1O2-KOH)/[3DOM*]ss

 Comparison of k3DOM* & ARG with literature

This study

Peng et al., 
2023, ES&T

Zhang et al., 2022, 
Chemosphere

→ k3DOM*,ARG was calculated using Sunlight photolysis 
model approach to the literature data value.

DOM 
Photosensitizers

Peng et al., 2023, Environmental Science and Technology, 57(18), 7230-7239 
Zhang et al., 2022, Chemosphere, 302, 134879

This study
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 Simulated Photolysis rate & Contribution of each pathway using k3DOM* & ARG 

 At full spectrum, 3DOM* and direct were dominant.
 At UVB cut, 3DOM* was dominant.
 At the top layer, overall photolysis was faster due to less light 

absorption/scattering in the water matrix.
 The half-life of e-ARG was < 5 hours at 5cm depth.
 As DOC level increases, contribution of •OH was significantly 

reduced due to increased rate of •OH consumption by DOM.

Sunlight photolysis prediction model 
in Shin & Lee, 2023, EST Water

(*The coefficient A of f(l) was calculated from the experimental results of k3DOM*,ARG)

• Depth = 5 cm/50 cm
• UVB cut off/full spec
• NO3

- = 0 ppm, pH 7

 Full spectrum, 50 cm  UVB cut off, 50 cm

 UVB cut off, 5 cm Full spectrum, 5 cm
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Conclusions
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 Second-order reaction rates between 3 RSs (1O2, CO3
•-, 3DOM*) and e-ARG were measured.

 Sunlight photolysis model approach estimated k3DOM*&e-ARG of 2.0(±0.5)×108 M-1s-1, consistent
between 4 DOM sources (Effluent, SRHA, SRNOM, SRFA). 

 CBBP well predicts the reactivity of 3DOM* of 4 sources of DOM, so it is recommended as model DOM 
photosensitizers.

 3DOM* contribution to sunlight photolysis was higher in NOM (71±2%)) than in Effluent (33%), but 
the reactivity of 3EfOM* can be varied depending on the photochemical properties of EfOM.

 3DOM* appears to be the most dominant pathway among the indirect pathways and showed 
contributions comparable to the direct pathway when exposed to a full spectrum.

 The roles of 3DOM* in sunlight photolysis of e-ARG is not negligible and needs more investigation 
about the key factors of determining the reactivity between 3DOM* and e-ARG.
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Range of ET and E0* of 3DOM*

Supporting information
1-4: quinones
5-13: aldehydes and ketones
14-18: coumarins, chromones, and related
19-23: Polycyclic aromatic hydrocarbons (PAHs)
Others
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Sunlight spectrum + DNA photoaction spectra+ DOM absorbance  kdirect
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•OH

CO3
•-

1O2 3DOM*
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A: Effluent
B: EfOM
C: SRHA
D: SRNOM
E: SRFA

Supporting information
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 EfOM showed [•OH]ss below LOD ~ guess to be due to residual MeOH, SPE eluents of EfoM.
 EfOM was excluded from further discussions.
 CO3

•- was larger than expected~ probe compound (DMA) was vulnerable to 3DOM* CO3
•- excluded from model

 RS steady state concentration

- Reaction of CO3
2-/HCO3

- with •OH and/or with 3DOM*

- CO3
2-/HCO3

- can be from the CO2 (g) in the air
: At RT, 1 atm, 1×10-5 M of CO2 (g) in water.
: [HCO3

-] ≈ 8×10-6 M and [CO3
2-] ≈ 4×10-9 M at pH 7.

- CO3
•- formation rate is ~ 3.5×10-14 M/s.

- Predicted [CO3
•-]ss ~ 3.5×10-16 ~2.2×10-17M

- Observed [CO3
•-]ss 1,000 times larger than prediction
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Solid Phase Extraction of Effluent Organic Matter (EfOM)

Water matrix DOC, mg-C/L preparation

EfOM 6.7 0.45 mm filtration/acidify & SPE (HLB&Mix catridge) & phosphate buffer 10mM (pH 7)
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Why EfOM show [•OH]ss below LOD?

matrix NO2
-, mg/L NO3

-, mg/L CO3
2-/HCO3

-

Effluent 0.20 11.5 17.82 ppm

EfOM 0.001 0.35 21.6 ppb

Supporting information

 We tested addition of 10ppm NO3
- to 4 DOM solutions

*Dashed bar: w 10 ppm of nitrate

 [•OH ]ss were both below LOD without and with NO3
-.

 During the EfOM preparation using SPE, MeOH was used as final 
eluents, which is commonly used as •OH quencher. So it’s guessed 
that residual MeOH might have quenched •OH produced.

 In all cases, the addition of NO3
- didn’t increase the [•OH]ss.

 NO3
- was not the major source of •OH in effluent.

 EfOM was excluded and Effluent was used in the discussion.
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Effect of Nitrate (10 ppm) to the DNA degradation

Supporting information

 Apply each k3DOM* & ARG to the model and compare with kobs

 Overall, model prediction was good (< 30%) with experimentally determined k3DOM* & ARG, except for EfOM.
 Surprisingly, EfOM showed no degradation of ARG with the addition of NO3

-, while [3DOM*]ss  was 2-fold increased. 
 In Chen et al. [14], the counteraction effect of NO3

- to DOM on photo-inactivation of E.coli was reported. 
 Addition of NO3

- didn't affect the degradation rate of ARG in case of SRNOM & SRFA. For SRHA, a slight decrease of kobs was observed.

NO3
-

NO3
-

NO3
-

NO3
-
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Reaction mechanisms of 4 RSs and e-ARG

Supporting information

1O2: Guanine & phosphate back bone

•OH: All bases & phosphate back bone

CO3
•-: Guanine & phosphate back bone

3DOM*: Guanine & phosphate back bone
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Water quality of effluent

Water quality indicator pH DOC [ppm] SS [ppm] TN [ppm] TP [ppm] NO2
- [mM] NO3

- [mM]

value 7.62 6.2 2.70 (±0.37) 10.36 (±2.82) 0.09 (±0.02) 48.7±0.2 206±0.2

Water treatment trains
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DOM characterization
SUVA E2/E3 EDC fTMP

Effluent 1.05 4.65 0.53 176

EfOM 1.27 6.32 0.79 116

SRHA 7.03 3.45 7.02 31.9

SRNOM 4.44 4.64 3.29 60.4

SRFA 6.19 4.22 4.48 96.3
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DOM characterization: LC-OCD DOM component analysis



Supporting information

The 13th IWA Micropol & Ecohazard Conference

F1: biopolymers; F2: humics; F3: building blocks; F4: LMW humics and acids; F5: LMW neutrals.
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Effluent EfOM
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DNA purification for SRHA & SRFA
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