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Abstract— The study addresses the foundational and chal-
lenging task of peg-in-hole assembly in robotics, where misalign-
ments caused by sensor inaccuracies and mechanical errors
often result in insertion failures or jamming. This research
introduces PolyFit, representing a paradigm shift by transition-
ing from a reinforcement learning approach to a supervised
learning methodology. PolyFit is a Force/Torque (F/T)-based
supervised learning framework designed for 5-DoF peg-in-hole
assembly. It utilizes F/T data for accurate extrinsic pose estima-
tion and adjusts the peg pose to rectify misalignments. Extensive
training in a simulated environment involves a dataset encom-
passing a diverse range of peg-hole shapes, extrinsic poses, and
their corresponding contact F/T readings. The study proposes a
sim-to-real adaptation method for real-world application, using
a sim-real paired dataset to enable effective generalization to
complex and unseen polygon shapes. Real-world evaluations
demonstrate substantial success rates of 96.7% and 91.3%,
highlighting the robustness and adaptability of the proposed
method. Videos of data generation and experiments are avail-
able online at https://sites.google.com/view/polyfit-peginhole.

I. INTRODUCTION

Peg-in-hole assembly using robotics is a fundamental yet
challenging task. Misalignment issues often occur between
assembled parts due to sensor inaccuracies and mechanical
errors, potentially resulting in system damages like insertion
failures or jamming. Various methods based on compli-
ance control and heuristic algorithms have been proposed
to address misalignment in peg-in-hole assembly [1]–[4].
However, traditional methods require manual calibration for
specific peg-hole configurations or elaborate modeling of
contact dynamics. Such requirements complicate the devel-
opment of assembly strategies for diverse component shapes
and limit to generalize across various shapes.

Learning-based peg-in-hole methodologies have been pro-
posed to address the aforementioned limitations [5]–[9]. One
study guided a peg into a hole by visually minimizing
the seam through vision-based reinforcement learning (RL),
showcasing adaptability to unseen shapes [5]. However,
vision-based methods are sensitive to external conditions
such as occlusion, varying lighting conditions, and camera
placement.

Meanwhile, methodologies based on Force/Torque (F/T)
sensors operate through direct contact with objects and
exhibit less sensitivity to environments challenging for vi-
sion sensors. Several studies have utilized contact F/T data
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Fig. 1. Schematic illustration of addressing misalignment using the
proposed PolyFit framework for a peg-in-hole task.

sampling in the real world for peg-in-hole tasks, employing
learned contact dynamics and an insertion policy to transfer
to new shapes and validate against untrained ones [6], [7].
Demonstrating adaptability to unseen objects, collecting real-
world data can be challenging due to efficiency reduction
and potential damage risk to the robot. In response to these
challenges, contact-based sim-to-real adaptation has emerged
as a promising strategy to use simulations for data collec-
tion [8], [9]. While simulation environments offer a safer
and richer context for learning, defining and randomizing
dynamic parameters present substantial obstacles to efficient
sim-to-real adaptation.

The proposed PolyFit introduces a significant paradigm
shift in peg-in-hole assembly approaches, moving from a
RL methodology to a supervised learning-based approach.
Addressing the limitations of traditional methods, PolyFit
is an F/T-based supervised learning framework designed for
5-degrees-of-freedom (DoF) peg-in-hole assembly (Fig. I).
The framework undergoes extensive training in simulation
and is adapted for real-world environments. The simulation
dataset includes a diverse array of peg-hole shapes and
extrinsic poses between the peg and hole, utilizing the
concept of extrinsic poses introduced by Ma et al. [10].
This dataset also incorporates corresponding contact F/T
readings. PolyFit utilizes this simulation dataset to estimate
extrinsic poses using only F/T data, enabling it to adjust



Fig. 2. Overview of the proposed PolyFit framework, a supervised learning-based strategy for peg-in-hole insertion.

the peg pose to correct misalignments. A multi-point contact
strategy is implemented to enhance pose estimation accuracy,
considering that identical F/T data can occur in different
poses. PolyFit is trained on polygonal shapes with 4 to
6 vertices, and its robustness is validated through tests on
more complex, unseen configurations with 7 to 10 vertices,
demonstrating its ability to generalize to new configurations.
Sim-to-real adaptation methods are introduced to extend the
model to the real-world. The adaptation method utilizes a
minimal set of sim-real paired data, capturing identical con-
tact F/T and poses in simulated and real environments. This
adaptability is validated through peg-in-hole experiments on
unseen polygon shapes, confirming the model’s precision
and effective adaptability to real-world applications. An
overview of the PolyFit model is presented in Fig. 2. Despite
relative errors induced by perception issues or noise, PolyFit
ensures successful task completion through iterative multi-
point contact and F/T data acquisition.

The contributions of this work can be summarized as
follows:

1) Development of a supervised learning framework for
5-DoF peg-in-hole task, leveraging only F/T data for
extrinsic pose estimation and misalignment correction.

2) Introduction of a sim-to-real adaptation method for a
pose estimation model, and validation of peg-in-hole
assembly in the real-world, demonstrating generaliz-
ability across untrained polygon shapes.

II. RELATED WORK

A. Learning-based Method for Assembly

Vision-based Approach: Significant research has been
conducted on vision-based methodologies for robotic peg-
in-hole tasks [11]–[15]. Studies focusing on specialized re-
ward mechanisms, such as sparse rewards and goal-oriented
images, have been carried out using RL frameworks for
complex industrial insertion problems [11], [12]. However,

these methods have been primarily tested on a limited
number of pegs and holes. Therefore, approaches that utilize
a ”residual policy” have been explored to extend capabilities
across a broader array of assembly components and enhance
efficiency and flexibility in real connectors used in robotic
assembly [13], [14]. However, these strategies encountered
limitations in adapting to new configurations. Offline RL was
employed to reduce the requisite exploration in traditional
RL and facilitate the efficient learning of assembly policies
across various configurations, with online fine-tuning concur-
rently explored for swift adaptation to new configurations
[15]. However, this methodology encountered limitations
owing to the dimensional constraints of the action space
that only considered positional errors. As previously noted,
vision-based methods face challenges due to sensor noise,
occlusion, and variable lighting conditions. In response to
these challenges, the proposed PolyFit framework employs
F/T modalities to execute 5-DoF peg-in-hole tasks, thereby
offering a robust performance that effectively mitigates the
challenges encountered by vision sensors.

Force-based Approach: The limitations of vision-based
methods have led researchers to explore alternative ap-
proaches, particularly those utilizing force-based methods.
RL with F/T information has been employed to learn force
controller action policies, resulting in a precise insertion
strategy [8], [16]. However, this method faced challenges
when dealing with unseen shapes. To overcome this limi-
tation, subsequent research focused on shape generalization
in assembly tasks [6], [17]. A method was developed using
contact data sampling that efficiently learned a dynamic
model using multi-pose F/T state representations, enabling
quick adaptation to new peg-in-hole configurations with min-
imal trials [6]. Offline meta-RL was introduced to enhance
learning across diverse components and accelerate adaptation
through online fine-tuning [17]. Despite these advancements,
significant challenges persist. The acquisition of real-world



data introduces concerns regarding efficiency and safety [6],
[8], [17]. In response to these challenges, this research
proposes a methodology for conducting peg-in-hole tasks
based on F/T, bypassing the inefficiencies and safety con-
cerns of real-world data acquisition by employing a dynamic
simulator for data collection and learning. Consequently, the
proposed method ensures robust performance across different
component geometries and conditions without the necessity
for extensive data collection in the real world.

B. Sim-to-Real Adaptation for Assembly

Adapting from simulation to real-world environments
presents a fundamental challenge in robotics owing to in-
herent discrepancies between the two domains, including
differences in physical dynamics and unmodeled factors.
Various research initiatives aim to identify and mitigate
these disparities, ensuring the effective transfer of learned
behaviors from virtual to physical environments [18]–[21].
Domain-randomization techniques, such as visual random-
ization [5], [12], [22] and dynamic parameter randomization
[8], [9], have demonstrated robustness across a variety of
real-world conditions in assembly tasks. Furthermore, scaled
robot force was output continuously as a strategy [23],
and scripted actions in simulations and reality have been
executed for system identification [24]. However, existing
methods that were focused on adjusting dynamic parameters
between simulations and reality often faced scalability and
flexibility issues due to the complexity of these parame-
ters. The proposed method counters these limitations by
directly adapting contact dynamics through minimal-paired
data, capturing the same contact F/T and pose in sim-real
environments, and enabling swift, data-efficient adaptation
and robust performance across real-world scenarios.

III. PROBLEM DESCRIPTION

This study aimed to develop a framework capable of accu-
rately estimating and correcting extrinsic pose misalignments
during peg-in-hole assembly tasks using F/T measurements
within a supervised learning context.

While peg and gripper poses are known, the extrinsic
pose between the peg and hole remains uncertain, leading
to misalignments and subsequent contact during assembly.
Force control is applied to stabilize F/T readings for the
pose estimation model. Observing F/T in isolation can yield
identical readings for different poses. Therefore, a series of
m rotational actions, referred to as multi-point contact, are
executed to acquire comprehensive contact pose information.
All F/T values discussed in this paper are obtained from
these multi-point contact operations. The model inputs in-
clude forces Fx, Fy and torques Tx, Ty, Tz , excluding the
constant z-direction force Fz . In mathematical terms, F/T is
articulated as C ∈ R5×k, encompassing force F ∈ R2×k

and torque T ∈ R3×k, where k = m + 1 and m signify
the number of additional contact points derived from multi-
point contact. The 5-DoF extrinsic pose of the initial contact
state, denoted as E ∈ R5×1, is estimated without considering
the component pz . It incorporates the relative position p =

(px, py) ∈ R2×1 and orientation o = (ox, oy, oz) ∈ R3×1 of
the peg with respect to the hole. The peg-in-hole procedure
follows a structured framework that sequentially involves
multi-point contact, pose estimation, and peg control based
on an estimated extrinsic pose. This framework demonstrates
applicability in simulated and real-world environments.

IV. METHODOLOGY

A. Simulation Data Generation

Simulation environment: A simulation environment was
established within the Isaac Gym simulator [25], as depicted
in Fig. 3. This environment focused predominantly on the
peg-hole interaction by intentionally omitting robotic ele-
ments. A 6-DoF motion system simulated peg movements,
and compliance parameters were adjusted to mirror real-
world robotic controllers. It should be noted that these
parameters can slightly vary between different real-world
implementations. Contact F/Ts were recorded via a centrally
located F/T sensor on the peg, with measurements averaged
over 50 simulation steps for consistency. Signed Distance
Function (SDF)-based collisions with a set resolution of
512 were employed to accommodate the minimal tolerance
between the peg and hole [26]. Various peg and hole CAD
models were developed for seven polygon configurations
ranging from 4 vertices to 10 vertices, creating 20 unique
shapes per configuration, totaling 140 models. The polygon
geometry was defined by selecting several vertices n and then
randomly assigning radius r and angle θ values, ensuring
the total angle sum of 360°(

∑n
i=1 θi = 360◦). Radius values

{r1, . . . , rn} ranged from 10 to 20 mm. Shapes with angles
summing to 180° across three consecutive vertices were
excluded to ensure diversity. Furthermore, a tolerance of 1
mm was adhered to for pegs and holes.

Peg-hole Misalignment Dataset: In this study, as il-
lustrated in the misalignment data generation process in
Fig. I, we generated peg-in-hole misalignment data to train
an extrinsic pose estimation model. This process involved
extracting a peg from a hole, applying a random pose offset,
and subsequently recording the contact F/T and the extrinsic

Fig. 3. Isaac Gym-based simulation environment for data generation.



pose at the point of contact. A random offset sampling strat-
egy introduced random offsets of position and orientation,
∆p and ∆o, in the peg-hole system to create diverse pose
configurations, enabling comprehensive data collection for
both extrinsic pose E and corresponding contact F/T C. Our
random offset strategy introduced position and orientation
offsets, ∆p and ∆o, within ±10mm and ±5◦, respectively.
Subsequently, the PolyFit framework employed a multi-
point contact strategy, as outlined in Section III, involving
a sequence of m additional contacts. In this study, we set
m to 4. Each defined by a controlled ±10° rotation in
the x and y orientations relative to the contact direction.
This method enhanced the contact F/T data captured in the
matrix C, consolidating measurements from both the initial
C0 and subsequent {C1, . . . , Cm} contacts. Paired with the
extrinsic pose E of the initial contact. The dataset included
448 million data points across 140 distinct shapes, integrating
measurements from m + 1 contact points, which consist of
C and E collected over 20 timesteps. For training purposes,
an single average value derived from these timesteps is
used. Each shape includes 3,200 misalignments, with 1,200
allocated for training and 1,000 for both validation and
testing. The data generation process was conducted on an
RTX 3090 Ti GPU, taking about 3 min per shape.

B. Extrinsic Pose Estimation Network

The architecture for an extrinsic pose estimation network
suitable for robotic operations utilized a lightweight design
with a multi-layer perceptron (MLP), as shown in Fig. 4.
Inputs comprising F/T data C, concatenated with values from
multi-contact points, were processed through distinct three-
layered MLP encoders, generating separate feature sets for
F/T. These feature sets were then concatenated and passed
through a fusion module consisting of a three-layered MLP
to produce a unified feature. The network’s outputs, the
extrinsic pose Ê at the misalignment, were estimated by
two separate three-layered MLP heads. Implemented using
PyTorch, the network employed the Mean Absolute Error
(MAE) as the loss function and the Adam optimizer with an
initial learning rate of 0.001. A cosine annealing scheduler
was used in 100-epoch cycles for learning rate management
during the 300-epoch training. The training, with a batch
size of 256, was executed on an RTX 3090 and completed
in approximately 30 min.

Fig. 4. Architecture of the extrinsic pose estimation network.

C. Sim-to-Real Adaptation for Extrinsic Pose Estimation
Network

Sim-to-real adaptation is crucial for addressing the perfor-
mance decline of models trained solely in simulations when
applied to real-world tasks. These models often underperform
in real scenarios, despite being well-trained in simulations.
This issue arises mainly due to the differences in patterns
between simulated and real-world data. Considering the
significant effort and resources required to amass a diverse
set of real-world training data, an approach was developed
to align real-world contact F/T and feature extraction ca-
pacity of extrinsic pose estimation models with those from
simulations. To address this, the proposed approach utilized
sim-real paired data capturing contact F/T data with identical
shapes and poses in simulated and real environments, as
illustrated in Fig 5. Proposed sim-to-real adaptation method
include data-level adaptation (DLA), feature-level adaptation
(FLA), and real pose fine-tuning (RPF).

For DLA, an MLP-based conversion model trained on a
sim-real paired dataset transformed real-world contact F/T to
the matched F/T simulation data. The transformation model
consisted of two three-layer MLP encoders that used real-
world force (FR) and torque (TR) as inputs. The features
extracted from each encoder were concatenated and passed
through a three-layer MLP for fusion. The fused feature was
then utilized to output simulation force and torque through
separate three-layer MLP generation heads. The model was
trained through the MAE loss with the simulation F/T data
(FS and TS) as the ground truth for sim-to-real adaptation,
as illustrated in Fig 5. In the FLA, the simulation model was
assumed to have the ability to extract essential features for
pose estimation that were robust to shapes and poses. The
feature extraction capability was transferred to the real-world
model using knowledge distillation through cosine similarity
loss. The targets of knowledge distillation were force, torque,
and fusion features, as shown in Fig.4. Finally in the RPF
phase, the model was fine-tuned for the downstream task
using only real-world contact F/T and pose data extracted
from sim-real paired datasets.

Fig. 5. Conceptual illustrations of the sim-real paired dataset and sim-
to-real adaptation method. The sim-real paired dataset are utilized in the
sim-to-real adaptation, represented with the same color and shape.



V. EXPERIMENTS

A. Experimental Environment Setup

The Isaac Gym simulator was used as the simulation
environment for evaluating the peg-in-hole task, with po-
sition control based on extrinsic pose estimation ensuring
consistency in data generation and task execution. For real-
world validation of the proposed approach, a 6-DoF UR5e
universal robot equipped with a built-in F/T sensor at the
wrist was used to capture contact data during the peg-in-hole
task execution, as depicted in Fig. 6. The task utilized a 3D-
printed peg with an integrated groove, manipulated securely
with a Robotiq 2F-85 parallel gripper, to ensure reliable
grasping. In this real-world context, compliance control was
implemented for the peg-in-hole task following extrinsic
pose estimation that utilized forward dynamic compliance
control (FDCC) [35]. The robot system operated at a control
frequency of 120 Hz and the F/T sensor sampled data at a
rate of 500 Hz. Communication between the control archi-
tecture and hardware was facilitated through the ROS (robot
operating system) framework. To overcome inaccuracies in
pose estimation when transitioning from simulation to real-
world applications, we utilized a method that decomposes the
estimated extrinsic pose into directional (u⃗) and magnitude
(m) components. This approach allows for determining u⃗ and
m needed to manage minor pose errors. These components
are used to guide the robot’s motion adaptively through
compliance control, enabling continuous adjustments to the
robot’s trajectory based on real-time calculations of travel
distance.

B. Simulation Evaluation

Extrinsic Pose Estimation Evaluation: The model,
trained on polygons with 4-6 vertices, was tested on both
seen and unseen polygons with 7-10 vertices, using MAE
for pose error evaluation. The test set consisted of 20
polygons for each n-vertices. For seen polygons, average
positional and orientational errors were 1.51 mm and 0.23°,
respectively, as listed in Table I. Despite these averages
exceeding the 1 mm peg-hole tolerance, successful assembly
is achievable within individual trial tolerances, as detailed
following section. Compared to seen polygons, unseen poly-
gons showed slightly higher errors at 1.85 mm for position
and 0.44° for orientation. These results indicate the model’s
effective generalization across different polygonal shapes,
maintaining consistent performance for shapes not included
in the training.

Extrinsic Pose Estimation Network Feature Analysis:
To ensure consistent performance on unseen shapes, the
deep learning model must be capable of extracting features
analogous to those from seen shapes. To verify this ability,
the fusion features in the extrinsic pose estimation model
were extracted from the test dataset and visualized using
t-SNE as shown in Fig. 7(a). The t-SNE distribution was
mapped in red-green-blue (RGB) according to the orientation
XYZ of the peg in the upper row and colored in red-green
(RG) according to the position XY in the lower row. The

Fig. 6. Setup of the real-world peg-in-hole experiment featuring a UR5e
robot with an integrated F/T sensor and a 3D-printed peg-hole sets.

TABLE I
EXTRINSIC POSE ESTIMATION AND PEG-IN-HOLE RESULTS, FEATURING

MAE METRICS: POSITION MAE (PMAE) AND ORIENTATION MAE
(OMAE), SUCCESS RATE (SR) AND AVERAGE NUMBER OF TRIALS (AT).

Vertex PMAE [mm] OMAE [°] SR [%] AT

Seen
Polygons

4 1.63 0.22 96.03 2.31
5 1.51 0.23 97.50 2.36
6 1.41 0.24 98.48 2.16
Avg 1.51 0.23 97.33 2.27

Unseen
Polygons

7 1.85 0.44 96.73 2.47
8 1.82 0.43 95.90 2.30
9 1.82 0.45 95.98 2.39
10 1.91 0.47 96.63 2.46
Avg 1.85 0.44 96.30 2.40

features of the seen and unseen polygons were expressed
together and drawn as circles and X markers, respectively.

In the model’s feature analysis, orientation distributions,
represented in RGB in Fig. 7(a)’s upper row, display a
globally continuous gradation, indicating that similar orien-
tations yield comparable feature values. Contrarily, position
distributions, shown in the lower row, present a more discrete
coloration, yet closer inspection reveals a local continuity in
the gradient. This suggests that orientation predominantly
influences the initial phase of position estimation, with
subsequent feature extraction being locally modulated based
on position. In addition, the distribution of the circle and
X markers in the enlarged area in Fig.7(a) indicates the
feature distributions of the seen and unseen polygons. The
two markers have similar colors in adjacent areas and are
evenly mixed without distinction between markers. This
demonstrates that the feature extraction capability was robust
to shapes, even those not seen during the training phase.



Fig. 7. t-SNE visualization of feature. (a) t-SNE visualization of simulation data features. Circles and X symbols indicate features of seen and unseen
polygons, respectively. The upper images are colored with min-max normalized orientations. Euler X, Y, and Z are mapped to red, green, and blue,
respectively. The red and green colors in the lower images are mapped to positions X and Y of the peg, respectively. All t-SNE distributions in the images
are the same but colored differently. (b) Visualization of simulation features, where the green circle, red cross, and black triangle represent the sim feature,
without sim-to-real, and with sim-to-real, respectively. The t-SNE distribution is the same as the distribution in (a).

TABLE II
EXAMPLE OF PEG-IN-HOLE EVALUATION IN SIMULATION, SHOWING

MAXIMUM ABSOLUTE POSITION ERROR (MA-P) AND MAXIMUM

ABSOLUTE ORIENTATION ERROR (MA-O). THE BOTTOM ROW

VISUALIZES THE PEG INSERTION AT THE ESTIMATED POSES.

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5

MA-P [mm] 1.46 1.67 0.91 - -
MA-O [°] 1.63 0.47 0.49 - -
S/F Fail Fail Success - -

Result of Trials 1 (Fail) Result of Trial 3 (Success)

Peg-in-hole Evaluation in Simulation: Initial misalign-
ments were randomly generated in the simulated peg-in-hole
evaluation, within the same variation range as used during
data generation, initiating a multi-point contact strategy for
pose estimation and subsequent peg manipulation according
to the inferred poses. Each of the 200 test scenarios allowed
for a maximum of 5 trials. Successful peg insertion within
these trials was recorded as a success, with performance
evaluated based on the overall success rate. The evaluation
resulted in a 97.3% success rate for seen polygons and 96.3%
for unseen polygons, demonstrating robust performance and
shape generalization, as presented in Table I. Moreover, the
system completed tasks in an average of 2.27 and 2.40 trials
for seen and unseen polygons, respectively, showcasing con-
sistent performance across both familiar and novel polygon
configurations.

Considering a tolerance of 1 mm, the relationship between
the performances of pose estimation and peg-in-hole is
shown in Table II. The table illustrates the maximum values
of absolute errors for position XY and orientation (MA-P,
-O) and peg-in-hole results for each trial when evaluating
a 5-vertices shape. The initial two trials failed as the pose
estimation error exceeded the tolerance. However, in the third
trial, the error was reduced to within the tolerance, indicating
the success of the peg-in-hole task. As the trials progressed,
with a decrease in pose error, the probability of successful
insertion increased. Consequently, the proposed framework
demonstrated elevated peg-in-hole success rates based on the
average trials of 2.27 and 2.40 for seen and unseen polygons.

C. Real-world Adaptation

Sim-Real Paired Dataset: In the real-world setting, poly-
gons from the simulation dataset were 3D printed and utilized
to generate a paired sim-real dataset. Similar to the extrinsic
pose estimation model training set, only polygons with 4 to 6
vertices were used for sim-to-real adaptation. Misalignment
data for peg-hole interactions in 40 random poses for each
4 to 6 vertices polygon were gathered in both simulation
and real-world scenarios. Additionally, data from 15 poses,
involving both seen and unseen polygons, were collected

TABLE III
POSE ESTIMATION ERRORS OF SIM-TO-REAL ADAPTATION METHODS.

BOLD AND UNDERLINE INDICATE THE FIRST AND SECOND BEST.

Seen Polygons Unseen Polygons

Method PMAE [mm] OMAE [°] PMAE [mm] OMAE [°]

w/o Adaptation 4.98 6.89 5.00 9.14
DLA 2.76 1.16 3.39 1.93
FLA 4.94 2.12 4.98 2.19
RPF 1.67 0.57 4.06 1.43
DLA + FLA 2.56 1.07 3.19 1.85
Ours 1.21 0.68 2.48 1.64



TABLE IV
REAL-WORLD PEG-IN-HOLE EVALUATION RESULTS ON SEEN (4 TO 6 VERTICES) AND UNSEEN (7 TO 10 VERTICES) POLYGONS.

Success rate of seen polygons [%] Success rate of s unseen polygons [%] Average Trials

Method 4-vertices 5-vertices 6-vertices 7-vertices 8-vertices 9-vertices 10-vertices

Spiral Search [3] 15.0 (3/20) 20.0 (4/20) 20.0 (4/20) 25.0 (5/20) 20.0 (4/20) 20.0 (4/20) 15.0 (3/20) -
PolyFit (w/o AD) 30.0 (6/20) 40.0 (8/20) 45.0 (9/20) 35.0 (7/20) 30.0 (6/20) 20.0 (4/20) 30.0 (6/20) 3.11
PolyFit (w/ AD) 100.0 (20/20) 100.0 (20/20) 90.0 (18/20) 95.0 (19/20) 95.0 (19/20) 85.0 (17/20) 90.0 (18/20) 2.49

for evaluating pose estimation in real-world scenarios. The
process of collecting real-world data for each shape took
approximately 10 min.

Extrinsic Pose Estimation in Real World: For qual-
itatively verifying DLA, real-world contact F/T was con-
verted to their corresponding simulation counterparts using
an MLP-based network. Torque data examples from the real-
world, simulation, and converted with DLA, are illustrated
in Fig. 8 with red, green, and blue lines. In both seen
and unseen polygons, the converted torque data exhibited
a similar pattern to that observed in the simulation. In FLA,
three types of features are extracted and visualized with t-
SNE in Fig. 7(b): the features of simulation data are shown as
green circles; the features of real-world data, extracted from
the model without adaptation, are shown as red crosses; and
the real-world features extracted with sim-to-real adaptation
through knowledge distillation are shown as black triangles.
The red cross indicates a separate distribution from the
green circle and black triangle. However, the black triangles
shifted the distribution among the green circles, suggesting
that real-world features aligned with simulation features after
knowledge distillation.

The extrinsic pose estimation performance was evalu-
ated using a collected real-world dataset after sim-to-real
adaptation with PMAE and OMAE as shown in Table III.
Significant pose errors in position and orientation, occurred
when applying a pose estimation model to a real-world

Fig. 8. Examples of data-level adaptation (DLA) on seen and unseen
polygons. Red: real data, Blue: simulation data, Green: data distribution
after applying the proposed DLA method to align real data with simulation.

data without any adaptation shown as w/o adaptation. Each
individual adaptation method, when reported separately, ex-
hibited an improved pose estimation performance compared
to the w/o adaptation. The RPF method demonstrated com-
mendable performance on seen shapes with 1.67mm and
0.57°. However, it showed a lack of generalization on unseen
polygons, where the position error significantly increased.
When used alone, the FLA methodology did not signifi-
cantly improve performance in terms of position, but when
applied together with the DLA, it demonstrated enhanced
performance including unseen polygons.

The proposed comprehensive methodology that incorpo-
rated all data achieved the best performance in position
estimation and achieved the second-best performance in
orientation with a slight margin. This indicates that aligning
both the input data and feature extraction capability can pre-
vent performance degradation during sim-to-real adaptation.
The results were consistent for both seen and unseen poly-
gons, demonstrating the generalization capability has been
achieved in sim-to-real transfer with effectively collected
sim-real paired dataset.

Peg-in-hole Evaluation in Real World: The peg-in-hole
tasks were evaluated in a real-world environment using the
proposed sim-to-real adapted pose estimation model. Each
shape was evaluated 20 times using the same protocol as
that in the simulation. Polygons of 4 to 6 vertices were
classified as seen shapes and utilized for domain adaptation,
while those with 7 to 10 vertices were designated as unseen,
as shown in Fig. 6. Comparative benchmarks encompassed
three methods: a standard spiral-search method [3], Poly-
Fit without adaptation that was solely dependent on linear
scaling between simulated and real data, and PolyFit with
sim-to-real adaptation. The results for the adapted model
demonstrated a substantial enhancement in performance,
evidenced by success rates of 96.7% and 91.3% for seen
and unseen polygons, respectively, as listed in Table IV. The
success rates achieved by PolyFit with adaptation markedly
exceeded those obtained without adaptation, 38.3% for seen
shapes and 28.8% for unseen shapes. Additionally, these
figures represent a substantial improvement over the success
rates of 18.3% for seen shapes and 20.0% for unseen shapes
achieved by the spiral search method. This notable difference
emphasized the capability of the proposed pose estimation



model to accommodate unseen polygon shapes and validated
the successful transition and adaptability of the simulation-
trained model to real-world challenges.

VI. CONCLUSIONS

This study introduces an F/T-based framework capable of
executing 5-DoF peg-in-hole assembly, effectively address-
ing key challenges in robotic assembly tasks. The extrinsic
pose estimation model exhibits noteworthy performance on
both seen and unseen polygonal shapes, achieved through ex-
tensive simulation-based training. The introduction of sim-to-
real adaptation, leveraging a sim-real paired dataset, proves
instrumental in maintaining high-performance levels with
unseen polygons. This underscores the framework’s versatil-
ity across diverse geometries and operational environments.
The findings of this research have the potential to mitigate
inefficiencies and safety concerns associated with real-world
data acquisition in the future. By utilizing a dynamic simu-
lator for learning and data collection, the framework ensures
robust performance across various component geometries
and conditions, eliminating the need for extensive real-world
data collection. Future work will focus on incorporating a
closed-loop framework to enhance robustness and extend the
application to more practical assemblies, such as connectors
and cables.
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