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ABSTRACT 1. INTRODUCTION

This paper proposes a sound event detection (SED) model oper-
ating on heterogeneous labeled and/or unlabeled datasets, such as
the DESED and MAESTRO datasets. The proposed SED model
is based on a frequency dynamic convolution (FDY)-large kernel
attention (LKA)-convolutional recurrent neural network (CRNN),
and it is trained via mean-teacher-based semi-supervised learning
to handle unlabeled data. The FDY-LKA-CRNN model incorpo-
rates bidirectional encoder representation from audio transformer
(BEATSs) embeddings to improve high-level semantic representa-
tion. However, the contribution of the BEATSs encoder to the per-
formance of the combined SED model is over-emphasized rela-
tive to that of the FDY-LKA-CRNN, which limits the overall per-
formance of the SED model. To prevent this problem, an auxiliary
decoder is applied to train the SED model with BEATs embed-
dings. Additionally, to accommodate the different recording char-
acteristics of sound events in the two datasets, multi-channel log-
mel features are concatenated in a channel-wise manner. Finally,
a maximum probability aggregation (MPA) approach is proposed
to address the different labeling time intervals of the two datasets.
The performance of the proposed SED model is evaluated on the
validation dataset for the DCASE 2024 Challenge Task 4, in terms
of class-score-based polyphonic sound detection score (PSDS)
and macro-average partial area under the receiver operating char-
acteristic curve (MpAUC). The results show that the proposed
model performs better than the baseline. In addition, the proposed
SED model employing the multi-channel log-mel feature, auxil-
iary decoder, and MPA outperforms the baseline model. Ensem-
bling several versions of the proposed SED model improves
PSDS and MpAUC, scoring 0.038 higher in the sum of PSDS and
MpAUC compared to the baseline model.

Index Terms— Sound event detection (SED), semi-super-
vised learning, auxiliary decoder, multi-channel log-mel feature,
maximum probability aggregation

* This work was supported in part by Hanhwa Vision Co. Ltd., the Institute of
Information & communications Technology Planning & Evaluation(IITP)
grant funded by the Korean government (MSIT) (N0.2022-0-00963), and the
“Practical Research and Development support program supervised by the
GTI” grant funded by the GIST in 2024.
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Sound event detection (SED) aims to localize and classity individ-
ual sound events originating from acoustic signals, along with their
corresponding timestamps. In recent years, the use of deep learn-
ing for SED has been widely researched [1]. While the perfor-
mance of SED is satisfactory in some applications, such as [2, 3],
a major challenge for developing deep learning-based SED models
still remains in view of the preparation of label audio data with
timestamps, which is expensive and time-consuming. This has
prompted the development of weakly supervised and semi-super-
vised learning techniques [4] based on weakly labeled and unla-
beled datasets [5]. Recently, a soft label-based dataset, called the
Multi-Annotator Estimated STROng labels (MAESTRO) dataset
[6], has also been employed to reduce the overall cost of annotat-
ing strong labels while maintaining the timestamps of sound
events.

However, the use of mixtures of differently labeled data for
SED yields a time misalignment problem that an inconsistency
arises in the time recording units between the heterogeneously la-
beled datasets. In other words, soft labels contain label infor-
mation over 1 s recording unit, whereas weakly labeled and unla-
beled datasets, e.g., the Domestic Environment Sound Event De-
tection (DESED) dataset, contain sound events recorded over
shorter units than 1 s. In addition to this time misalignment prob-
lem, there is another mismatch problem in the recording charac-
teristics of sound events in the different datasets.

Thus, this paper proposes a maximum probability aggrega-
tion (MPA) approach for SED to address the time misalignment
between the DESED and MAESTRO datasets. In addition, to ac-
commodate time-frequency patterns according to different re-
cording characteristics, a multi-channel log-mel feature is ex-
tracted to help the SED model capture sound events from two dif-
ferent datasets.

The proposed MPA and multi-channel log-mel feature are
applied to an SED model, named a frequency dynamic convolu-
tion (FDY) [7]-large kernel attention (LKA) [8]-convolutional re-
current neural network (CRNN) model, which was developed for
the DCASE 2023 Challenge Task 4A [9]. The FDY-LKA-CRNN
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Figure 1. Illustration of the proposed SED model training procedure, focused on maximum probability aggregation.

model is trained via mean-teacher-based semi-supervised learning
to handle unlabeled data, and it incorporates bidirectional encoder
representation from audio transformer (BEATSs) [10] embeddings
to improve high-level semantic representation. However, the con-
tribution of the BEATSs encoder to the performance of the com-
bined SED model is over-emphasized relative to that of the FDY—

LKA-CRNN. To further improve the overall performance of the

SED model, an auxiliary decoder [11] is applied to train the SED

model with BEATs embeddings.

Our contributions can be summarized as follows:

e To deal with the time misalignment issue between the
DESED and MAESTRO datasets, we propose MPA, which
effectively aligns the time intervals between the predicted
strong labels of the SED model and the soft labels in the
MAESTRO dataset, thereby improving the overall perfor-
mance of the SED model.

e To extract the heterogeneous time-frequency patterns of the
sound events between the two datasets, we propose a multi-
channel log-mel feature extraction method. Especially the
feature improves a metric about MAESTRO dataset.

e Finally, we incorporate an auxiliary decoder to balance the
contributions of the convolutional block and pretrained

model by providing additional loss weighting during training.

Consequently, the proposed auxiliary decoder-based training
improves SED performance in both datasets.

The remainder of this paper is organized as follows: Section
2 describes the dataset and input features of the SED model de-
veloped in this study. Section 3 proposes a multi-channel log-mel
feature and MPA, and also incorporates the auxiliary decoder for
SED model training. Section 4 evaluates the performance of the
developed SED model on the DCASE 2024 Task 4 validation da-
taset and compares the SED performance according to different
combinations of the proposed approaches. Finally, Section 5 con-
cludes this paper.

2. DATASET

Unlike in 2023, the database for the DCASE 2024 Challenge Task
4 comprises the DESED and MAESTRO datasets. The DESED
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dataset, which is identical to that for the last year’s DCASE Chal-
lenge, contains several types of data such as weakly labeled data,
unlabeled in-domain training data, strongly labeled synthetic data,
and strongly labeled real data. All the audio clips span 10 seconds
each. The weakly labeled dataset is composed of 1,578 clips with
only class labels. The unlabeled in-domain training dataset con-
tains 14,412 audio clips. Finally, the strongly labeled real and syn-
thetic datasets contain 3,470 and 10,000 clips, respectively, where
the strongly labeled synthetic dataset is created using Scraper [12].
Note that the number of audio event classes is 10 in this dataset.

The original MAESTRO dataset contains audio clips longer
than 180 seconds. However, to balance the length of audio clips
in this dataset with that in the DESED dataset, the audio clips are
cropped to 10 s, allowing a 9 s overlap between consecutively
cropped audio clips. Each cropped audio clip is softly labeled into
10 vectors, where each vector is assigned to every segment of 1 s
with a dimension of 19 for representing 19 audio event classes.
Notice that the event classes in the DESED dataset are different
from those in the MAESTRO dataset, except for two classes, e.g.,
“Speech” in DESED and “People Talking” in MAESTRO, and
“Dishes” in DESED and “Cutlery and dishes” in MAESTRO. Af-
ter merging the similar two classes, there are 27 classes in total.

The mono-channel signals in the two datasets are first
resampled from 44.1 to 16 kHz to extract audio features. Then,
the audio signals are segmented into frames of 2,048 samples with
a hop length of 160 samples. A 2,048-point fast Fourier transform
is applied to each frame, followed by a 128-dimensional mel-fil-
terbank analysis. Each 10 s audio clip comprises 1,001 frames.
Hence, the input feature dimensions are 1001x128. The retrieved
mel-spectrogram features are then normalized based on the mean
and standard deviation for all training audio samples. When ex-
tracting the multi-channel log-mel feature, we use identical pa-
rameters for preprocessing.

3. PROPOSED METHOD
The SED model is based on the FDY-LKA-CRNN architecture

that was proposed in [9], and it is trained via semi-supervised
learning in a mean-teacher framework. Fig. 1 shows the proposed
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Figure 2. Illustration of the proposed multi-channel log-mel fea-
ture extraction procedure for obtaining the heterogeneous time-
frequency patterns of the sound events.

SED model training procedure, where the newly proposed ap-
proaches, such as MPA and the multi-channel log-mel feature, are
exaggerated. In addition to MPA and the multi-channel feature,
the auxiliary decoder is intrinsically used for training the student
and teacher models shown at the bottom of the figure. The follow-
ing subsections sequentially describe MPA, the multi-channel
feature, and the auxiliary decoder in detail.

3.1. Multi-channel log-mel feature

As mentioned in Section 2, there are different recording environ-
ments between the DESED and MAESTRO datasets, which are
recorded in almost clean and noise conditions, respectively. To
capture the diverse acoustic properties of the two datasets, we ex-
tract the multi-channel log-mel feature composed of 1) a log-mel
spectrogram extracted using the Torchaudio framework, 2) a log-
mel spectrogram extracted using Kaldi within the Torchaudio
framework, and 3) the mel-frequency cepstral coefficient (MFCC)
feature extracted using Kaldi within the Torchaudio framework.

Fig. 2 illustrates the proposed multi-channel log-mel feature
extraction procedure for obtaining the heterogeneous time-fre-
quency patterns of the sound events. First, three different feature
vectors, as described above, are extracted and then concatenated
channel-wise to create a multi-channel log-mel feature. This con-
catenated feature vector is input to the SED model during both
training and inference. By leveraging multiple configurations to
extract the log-mel features, it is expected that we create a robust
input representation that effectively bridges the gap between the
DESED and MAESTRO datasets.

3.2. Length-adjustable maximum probability aggregation

The FDY-LKA-CRNN-based SED model was developed for the
DESED dataset, where audio data labels were assigned in seg-
ments less than 1 s. To accommodate different labels for sound
events as in the MAESTRO dataset, we need to incorporate new
techniques into the SED model. This is because the difference in
labeling presents a significant challenge due to the mismatch in
time intervals between the label information of the MAESTRO
dataset and DESED dataset.

To deal with such a time misalignment problem, we propose
the MPA. Compared to the labels in the DESED dataset, the soft
labels in the MAESTRO dataset do not guarantee that a sound
event entirely exists within each 1 s segment. The output of the
SED model consists of predictions for 25 frames, which corre-
sponds to a duration of 1 s. As shown in Figure 3, we select the
highest probability value among these 25 frames and use this
value as the class probability for the corresponding 1 s segment.
This approach ensures that the time interval for the MAESTRO
dataset would be aligned with the soft labels. This MPA is per-
formed only during the training step.
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3.3. Auxiliary decoder

The BEATS encoder can extract the embedding corresponding to
high-level semantic information, resulting in providing improved
SED performance [9]. However, the contribution of the BEATSs
encoder to the performance of the combined SED model is over-
emphasized relative to that of the FDY-LKA-CRNN. Thus, we
incorporate an auxiliary decoder to balance the contributions be-
tween the convolutional block and BEATSs encoder by providing
additional loss weighting during training.

Fig. 4 shows the network architecture of the proposed auxil-
iary decoder applied to train the FDY-LKA-CNN-based SED
model with BEATs embeddings. The proposed auxiliary decoder
mirrors the structure of the main decoder, consisting of two bidi-
rectional gated recurrent units (Bi-GRUs) designed to capture
temporal context information, followed by a fully connected (FC)
classifier that uses a sigmoid function to calculate class probabil-
ities. The auxiliary decoder does not share weights with the main
decoder. Also, it is activated only during the training step, and a
higher weight is assigned to the auxiliary loss in the initial training
steps than the main loss. This guides the learning process so that
the convolutional blocks are well-trained compared to without us-
ing the auxiliary decoder. During inference, the main decoder is
only operated to generate the output of the SED model.

4. EXPERIMENTAL RESULTS

4.1. Model training

The parameters of the FDY-LKA-CRNN-based SED model were
initialized through Xavier initialization [13]. The minibatch-wise
adaptive moment estimation optimization technique [14] was em-
ployed, which involved decoupling the weight decay from the
gradient-based updates. In addition, a dropout method [15] was
applied to the FDY-LKA-CRNN model at a rate of 0.5. The learn-
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Table 1: Performance comparison of the baseline and various versions of the proposed SED model on the validation dataset of DCASE

2024 Challenge Task 4.
Auxiliary Maximpm cl\}ﬁfrirél Validation Dataset
Model decoder probabll}ty Jog-mel Ensemble Class-score- Sum of
aggregation feature based PSDS MpAUC metrics
Baseline: CRNN-based
mean-teacher model [22] - - 0.49+£0.004 0.73 £0.007 1.22
FDY-LKA-CRNN - - - - 0.4799 0.665 1.144
FDY-LKA-CRNN-A N - - - 0.4922 0.673 1.164
FDY-LKA-CRNN-M - v - - 0.4959 0.692 1.187
FDY-LKA-CRNN-C - - \ - 0.4663 0.709 1.175
FDY-LKA-CRNN-AM N v - - 0.5092 0.709 1.218
FDY-LKA-CRNN-MC - \ v - 0.4832 0.733 1.216
FDY-LKA-CRNN-AC v - \ - 0.4795 0.712 1.191
FDY-LKA-CRNN-AMC N \ v - 0.5018 0.740 1.241
FDY-LKA-CRNN-AMC(E) v \ \ \ 0.5162 0.742 1.258

ing rate was set based on the ramp-up strategy [4], with the max-
imum value reaching 0.001 after 50 epochs. Several augmentation
techniques were applied to the train data, including time-fre-
quency shift [16], time mask [17], mix-up [18], and filter augmen-
tation [19].

4.2. Discussion

The performance of the proposed SED model was evaluated using
the measures defined in the DCASE 2024 Challenge Task 4 [20]:
class-score-based polyphonic sound detection score (PSDS) [21]
and macro-average partial area under the receiver operating char-
acteristic curve (MpAUC).

Table 1 compares the performance of the baseline with those
of various versions of the proposed SED model on the validation
dataset of the DCASE 2024 Challenge Task 4. As shown in the
table, there are nine different versions in this study. The FDY—
LKA-CRNN is the SED model identical to that in [9], which was
developed in the DCASE 2023 Challenge. Then, we applied each
of the three proposed approaches, such as auxiliary decoder, MPA,
and multi-channel log-mel feature that are abbreviated as A, M,
and C, respectively. For example, FDY-LKA-CRNN-A means
the FDY-LKA-CRNN-based SED model trained using the pro-
posed auxiliary decoder. The FDY-LKA-CRNN-AMC(E) means
an ensemble model combined with the FDY-LKA-CRNN-
AMC s obtained from 16 different checkpoints.

First of all, we observed the performance of FDY-LKA-
CRNN SED model was degraded compared to that of the baseline
model. This was because FDY-LKA-CRNN model was opti-
mized to the labeling of the DESED dataset, as mentioned earlier.
Then, we applied each of the three proposed approaches (A, M,
and C) to FDY-LKA-CRNN. As shown from the third to fifth row
in the table, any FDY-LKA-CRNN-X improved MpAUC com-
pared to FDY-LKA-CRNN, while FDY-LKA-CRNN-C pro-
vided a little lower class-score-based PSDS than FDY-LKA-
CRNN. However, combining any two out of three approaches
achieved higher or comparable class-score-based PSDS and
MpAUC to FDY-LKA-CRNN.

Next, we combined all the three approaches to construct
FDY-LKA-CRNN-AMC. Then, it was revealed that FDY-LKA-
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CRNN-AMC yielded better than FDY-LKA-CRNN as well as
the baseline model.

Finally, we constructed an ensemble model, FDY-LKA-
CRNN-AMC(E), and compared its performance with the baseline
and FDY-LKA-CRNN-based single models. As shown in the ta-
ble, this ensemble model outperformed the baseline as well as the
other single models. This superior performance was ascribed to
the inherent advantages of ensemble modeling, such as reduced
overfitting and improved model robustness.

5. CONCLUSIONS

In this paper, we proposed maximum probability aggregation and
a multi-channel log-mel feature to improve SED performance
when the training datasets were heterogeneously recorded and la-
beled. In addition, the auxiliary decoder-based training approach
was proposed to balance the contributions of different representa-
tions prior to a classifier. In particular, our baseline model was
FDY-LKA-CRNN with BEATs embeddings; thus, the auxiliary
decoder could help the classifier get balanced information between
the CNN block and the BEATSs encoder. In summary, the auxiliary
decoder enhanced the performance of the convolutional block, en-
abling it to extract semantics. MPA was applied to the MAESTRO
dataset to match the time alignment between the output of the SED
model and the soft labels. The multi-channel log-mel feature could
help the SED model accommodate the various time-frequency pat-
terns from the two different datasets used in this challenge. We
constructed the SED model according to the rules of the DCASE
2024 Challenge Task 4. The experimental results showed that the
SED model trained with the multi-channel log-mel feature, MPA,
and auxiliary decoder increased the PSDS and MpAUC by 0.0118
and 0.01, respectively, compared to the baseline SED model. An
ensemble model derived from the model checkpoints also im-
proved the sum of PSDS and MpAUC by 0.038 over the baseline
model.

In future work, we will investigate the effectiveness of the pro-
posed approaches according to different neural architectures of
SED models.
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