2024 AMSM

Anisotropic Design of Materials for Sensors and Actuators in Soft Robotic Applications

Minjeong Ha

Intelligent Materials and Devices Laboratory School of Materials Science and Engineering

GIST

2024.10.28

Need for Soft Robotics

1

Need for Soft Robotics

Need for Soft Robotics

Quality of life

Limitations of Current Robots

Limited recognition

ben/

Limited operation

Sense and Response

Materials' anisotropy helps robots handle different situations!

Touch sensing

Kinaesthesia

Index Middle Thumb II Ring T1 I2 P1 T2 M2 P1 R2 P2 Wrist

Smart glove

Proximity sensing

Response and Actuation

anna

-

Approaches for Soft Robotic Sensors and Actuators

~	Hun	d's Rule	s Mome	nts	2+ Valence	$4f^{0}$ Sm ²⁺ J = 0 (L = S) $g_{J} = 0$ $\mu_{cal} = 0 \mu_{B}$	$4f^{7}$ Eu ²⁺ $J = S = 7/2$ $g_{J} = 2$ $\mu_{col} = 7.94 \mu_{B}$ $\mu_{000} = 7.9 \mu_{B}$						$\begin{array}{c} 4 {f'}^{23} \\ Tm^{2+} \\ J = {^7/_2} \\ g_J = {^8/_7} \\ \mu_{col} = 4.54 \ \mu_B \\ \mu_{tets} = 4.5 \ \mu_B \end{array}$
3+ Valence	$\begin{array}{c} 4/^{7} \\ \textbf{Ce^{3+}} \\ J = \frac{5}{2} \\ g_{J} = \frac{6}{7} \\ \mu_{col} = 2.54 \ \mu_{B} \\ \mu_{cos} = 2.5 \ \mu_{B} \end{array}$	$4/^{2}$ Pr³⁺ J = 4 $g_{J} = 4/_{5}$ $\mu_{out} = 3.58 \mu_{B}$ $\mu_{ots} = 3.5 \mu_{B}$	$\begin{array}{c} 4/^{2}\\ \textbf{Nd}^{3+}\\ J=9/_{2}\\ g_{J}=8/_{11}\\ \mu_{col}=3.62\ \mu_{B}\\ \mu_{obs}=3.4\ \mu_{B} \end{array}$	Sr J = 9,1 µ _{ast} = 0 µ _{oss} =	4/ ⁵ n³⁺ = ⁵ / ₂ = ² / ₇ 0.85 μ ₈ = 1.7 μ ₈	$\begin{array}{c} 4 g^{c6} \\ \textbf{Eu}^{3+} \\ J = 0 \ (L = S) \\ g_{i} = 0 \\ \mu_{col} = 0 \ \mu_{B} \\ \mu_{obs} = 3.4 \ \mu_{B} \end{array}$	$\begin{array}{c} 4/^{7} \\ \textbf{Gd}^{3+} \\ J = S = 7/_{2} \\ g_{J} = 2 \\ \mu_{cal} = 7.94 \ \mu_{B} \\ \mu_{stm} = 7.9 \ \mu_{B} \end{array}$	$\begin{array}{c} 4/^{\theta} \\ \textbf{Tb}^{3+} \\ J = 6 \\ g_{J} = 3/_{2} \\ \mu_{cold} = 9.72 \ \mu_{B} \\ \mu_{cold} = 9.5 \ \mu_{B} \end{array}$	$\begin{array}{c} 4f^9 \\ \textbf{Dy^{3+}} \\ J = {}^{15}\!/_2 \\ g_J = {}^{4}\!/_3 \\ \mu_{col} = {}^{10.65} \mu_B \\ \mu_{liso} = {}^{10.6} \mu_B \end{array}$	$\begin{array}{c} 4 {\cal J}^{10} \\ \textbf{Ho^{3+}} \\ J=8 \\ g_J=5 {\cal J}_4 \\ \mu_{cal}=10.61 \ \mu_B \\ \mu_{den}=10.4 \ \mu_B \end{array}$	$\begin{array}{c} 4/^{17} \\ \textbf{Er^{3+}} \\ J = {}^{15}\!/_2 \\ g_j = {}^{6}\!/_5 \\ \mu_{col} = 9.58 \ \mu_B \\ \mu_{obs} = 9.5 \ \mu_B \end{array}$	$\begin{array}{c} 4/^{12} \\ Tm^{3+} \\ J = 6 \\ g_{2} = 7/6 \\ \mu_{cal} = 7.56 \ \mu_{B} \\ \mu_{des} = 7.6 \ \mu_{B} \end{array}$	$\begin{array}{c} 4 f^{73} \\ \textbf{Yb^{3+}} \\ J = 7/_2 \\ g_1 = 8/_7 \\ \mu_{od} = 4.54 \ \mu_0 \\ \mu_{obs} = 4.5 \ \mu_0 \end{array}$
4+ Valence	$4/^{7}$ Pr⁴⁺ $J = \frac{5}{2}$ $g_{J} = \frac{6}{7}$ $\mu_{col} = 2.54 \ \mu_{B}$ $\mu_{dos} = 0.7 \ \mu_{B}$						$4/^{7}$ Tb ⁴⁺ J = S = $^{7}/_{2}$ $g_{J} = 2$ $\mu_{col} = 7.94 \mu_{B}$ $\mu_{000} = 8.0 \mu_{B}$						7

Ferrite magnet

Neodymium magnet

104

100

10

Price (USD/kg) 0 0 0

t]g 3d ⁺ Ti³⁺	High ^{t²_{2g} 3d² V³⁺}	Spin → ^t ² _{2g} 3d ³ Cr ³⁺	$t_{2d}^3 e_g^1 = 3d^4$ Cr²⁺ Mn³⁺ S = 2 $\mu_{col} = 4.90 \mu_B$	$t_{2,0}^3 e_{\rm g}^2 = 3d^5$ Mn²⁺ Fe³⁺ S = 5/ ₂ $\mu_{coll} = 5.92 \mu_{\rm B}$	$t_{2y}^4 e_a^2 = 3d^6$ Fe ²⁺ Co ³⁺ S = 2 $\mu_{cal} = 4.90 \mu_B$	$t_{2d}^{5} e_{g}^{2} = 3d^{7}$ Co²⁺ Ni³⁺ S = $\frac{3}{2}$ $\mu_{cal} = 3.88 \mu_{B}$	$t_{2g}^{0}e_{g}^{2} = 3d^{4} t_{2g}^{0}e_{g}^{3} = 3d^{3}$ Ni ²⁺ Cu ²⁺	
$\begin{split} S &= \frac{1}{2} \\ \mu_{coll} &= 1.73 \ \mu_{B} \\ \mu_{colm} &= 1.6\text{-}1.7 \end{split}$	$\begin{array}{c c} S=1/_{2} & S=1 & S=\\ s=1.73 \ \mu_{B} & \mu_{col}=2.83 \ \mu_{B} & \mu_{col}=\\ t_{tm}=1.6\text{-}1.7 & \mu_{obs}=2.7\text{-}2.9 & \mu_{obs}=\\ \end{array}$	$S = \frac{3}{2}$ $\mu_{cos} = 3.88 \ \mu_{B}$ $\mu_{obs} = 3.7-3.9$ $r \text{ Spin } \rightarrow$	$\label{eq:philos} \begin{split} \mu_{des} &= 4.7 \cdot 4.9 \\ \ell_{2g}^4 & 3d^4 \\ Cr^{2+} \\ Mn^{3+} \\ S &= 1 \\ \mu_{cal} &= 2.83 \ \mu_{B} \\ \mu_{obs} &= 3.2 \cdot 3.3 \end{split}$	$\begin{array}{l} \mu_{obs} = 5.6\text{-}6.1\\ t_{2g}^{5} & 3d^{5}\\ \hline Mn^{2+}\\ Fe^{3+}\\ S = 1/_{2}\\ \mu_{cal} = 1.73 \ \mu_{ll}\\ \mu_{cte} = 1.8\text{-}2.1 \end{array}$	$\begin{array}{l} \mu_{obs} = 5.1-5.7\\ t_{Sg}^{e} & 3d^{e}\\ \hline Fe^{2+}\\ Co^{3+}\\ S=0\\ \mu_{cal}=0 \ \mu_{B}\\ \mu_{obs}=0 \ \mu_{B} \end{array}$	$\begin{array}{l} \mu_{obs} = 4.3{\text{-}}5.2\\ t_{2g}^{6} e_{\mathrm{S}}^{1} & 3d^{7}\\ \hline & \mathbf{Co^{2+}}\\ \mathbf{Ni^{3+}}\\ \mathrm{S} = 1/_{2}\\ \mu_{cal} = 1.73 \ \mu_{\mathrm{B}}\\ \mu_{obs} = 1.7{\text{-}}1.9 \end{array}$	$\begin{array}{ll} S = 1 & S = 1/_2 \\ \mu_{cal} = 2.83 \ \mu_{B} & \mu_{cal} = 1.73 \ \mu_{B} \\ \mu_{obs} = 2.9\text{-}3.3 & \mu_{obs} = 1.7\text{-}2.2 \end{array}$	

Hard-magnetic

Ultra-Thin Nanomagnets for Highly Compliant Motion Sensors with Touchless Manner

Approaches for Flexible Magnetic-Field Sensors

[7] Nat. Commun. 2015, 6, 6080.

Approaches for Flexible Magnetic-Field Sensors

Soft robots

Virtual reality

Flexible magnetic-field sensors

Printed GMR sensor for on-skin electronics

Giant magnetoresistance

[Py/Cu]₃₀ paste Printed [Py/Cu]₃₀ Drying Printing Binding elastomers GMR sensor

[1] Mater. Horiz. 2019, 6, 1138 [2] Nat. Electron 2018, 1, 589.. [3] Adv. Mater. 2008. 20. 3224. [4] Nano Lett. 2011, 11, 2522.

[5] Lab Chip 2014, 14, 4050. [6] Adv. Mater. 2015, 27, 1274. [7] Nat. Commun. 2015, 6, 6080.

Printable Giant Magnetoresistive Sensors

1 cm

1 cm

Need for highly compliant GMR sensors

Stretchable & excellent mechanical stability

On-Skin Electronics for Human-Machine Interaction

Omnidirectional magnetic field sensing

Remote control of objects

Ultimate Goal of Robots

Reconfigurable Hingeless Magnetic Origami

Designs for shape-morphing soft actuators

Adv. Intell. Syst. 2019, 1, 1900059.

Issue

Requirement of predefined parameters and hinges

Rigid Plate

Foldable and hingeless magnetic origami

Magnetic Origami Capable of Lifting

Lifting the targets to a specific position, regardless of weight changes

Magnetic Origami Capable of Self Shape-Morphing

Supervising sequence and order of actuation for customized folding process

Stimuli-Responsive Intelligent Materials

Stimuli-Responsive Intelligent Materials on a Scale

Perspective of Flexible Electronics and Soft Robotics

Applications

Acknowledgement

Ms. Yeonhee Yang Mr. Sungsu Bang Mr. Hyeokju Kwon Mr. Yubin Kim Ms. Minsun Oh Mr. Dongyoung Kim Mr. Yumin Kwon

Prof. Hyunhyub Ko Dr. Denys Makarov Prof. Gwangun Jeong Prof. Jiyun Kim Prof. Bo Ram Lee

*This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT). (No. 2710006244, RS-2023-00207836, 2022R1C1C1004845)

Thank you for your attention!