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Abstract: This study explores a vision-based formation control algorithm for nonholonomic mobile robots operating
under visibility constraints without relying on inter-robot communication. The camera used to monitor the leading agent
has field of view (FOV) constraints, making it crucial to maintain real-time visibility for effective leading agent tracking.
To address these challenges, we designed a barrier function based on the camera’s pixel coordinates and showed that the
control barrier function based quadratic programming satisfies both the visibility maintenance and nonholonomic property.
The effectiveness of the proposed method is validated through simulations that demonstrate its ability to maintain visibility
and achieve the desired formation.
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1. INTRODUCTION

Formation control is a type of multi-robot control
and has been extensively studied over the past decade.
This approach has various applications, such as explo-
ration [1], mapping [2], and surveillance [3]. Most exist-
ing work on formation control assumes that each robot
shares global position information or a common refer-
ence frame and that inter-robot communication is reli-
able. However, this makes it difficult to apply traditional
formation control methods in environments where GPS
is not available or communication is degraded. To over-
come these problems, control techniques that utilize var-
ious sensors beyond onboard sensing, such as sonar and
LiDAR, have been explored. Among these, visual cam-
eras have become a popular option for formation control
that uses only available relative onboard sensing due to
their low cost, high versatility, and advances in computer
vision technique [4].

There are two main approaches to vision-based for-
mation control: Position-Based Visual Servoing (PBVS)
and Image-Based Visual Servoing (IBVS). The PBVS
method uses image features to calculate relative pose
and then controls the system based on the reconstructed
3D Cartesian space information. In contrast, the IBVS
method directly controls the error between the current
and desired image coordinates. IBVS is computationally
efficient and inherently more robust to camera calibration
and target modeling errors because IBVS does not require
pose reconstruction [5].

Since vision-based formation control does not rely
on robot communication, the leading agent must remain
within the camera’s field of view (FOV) throughout the
control process. Maintaining visibility for real-time vi-
sual feedback of the leading agent is crucial and neces-
sary for generating control inputs. If the follower has non-
holonomic characteristics, the leading agent may move
out of the camera’s FOV. It makes tracking impossible.
Existing IBVS-based studies overcome these challenges
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by designing specific feedback control laws based on the
target’s image coordinates. In [6], the visibility constraint
was characterized by a convex and polyhedral set that en-
codes both position and orientation information, and for-
mation control is performed based on the concept of con-
trol invariance. [7] proposed a method based on a barrier
Lyapunov function and a potential function, and it gener-
ates control inputs that satisfy the constraints to perform
formation control. However, these approaches have dif-
ficulties in ensuring system stability when one agent is
required to follow multiple agents simultaneously. Fur-
thermore, the proposed formations are limited to linear
or V-shaped with a leader that moves at a constant speed
rather than forming a specific shape.

To address these limitations, this paper presents a con-
trol barrier function that represents the FOV constraints
and a vision-based formation control algorithm that uti-
lizes this function. The proposed algorithm uses the con-
trol barrier function to generate control inputs that sat-
isfy both the camera’s FOV and the robot’s nonholonomic
constraints. It allows a single agent to follow multiple
agents simultaneously by simply adding constraint con-
ditions and enables diverse shapes of formation, unlike
existing methods.

The remainder of this paper is organized as follows:
Section 2 provides the necessary preliminaries, that in-
clude notations and background information on forma-
tion control and control barrier function. In Section 3, we
present a vision-based formation control algorithm with a
designed control barrier function and simulation results.
Last, Section 4 is a conclusion.

2. PRELIMINARIES

In this paper, we use following notations. The set of
real number is denoted by R, and the n-dimensional Eu-
clidean space is denoted by Rn. The set of positive real
numbers is denoted by R+. For a given finite set A, |A|
denotes the cardinality of A. For a given vector v, ∥v∥
denotes the Euclidean norm of v.
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2.1 Graph Representation
A directed graph G = (V,E) consists of the vertex set

V and the edge set E ⊆ V × V . An edge eij represents
a unique connection between two vertices i and j. The
notation eij is used when the edge originates from vertex
i and terminates at vertex j. We assume that the graph
contains no self-loops, i.e., eii /∈ E for all i ∈ V , no
multiple edges are joining any two of the vertices, and
is acyclic1. The set of neighbors of vertex i is defined as
Ni = {j ∈ V : eij ∈ E}.

2.2 Acyclic Minimally Persistent Graph
In formation control, each vertex represents the posi-

tion of an agent in Euclidean space; thus, the position vec-
tor of an agent i can be expressed as pi ∈ Rn. Then, we
call p = [p⊤1 . . . p⊤|V |]

⊤ ∈ Rn|V | a realization of G in Rn.
The combination of the graph and its realization, (G,p),
is called a framework.

The frameworks (G,p) and (G,q) with two different
realizations p and q are considered equivalent if

∥pi − pj∥ = ∥qi − qj∥,∀eij ∈ E.

The realizations p and q are congruent if

∥pi − pj∥ = ∥qi − qj∥,∀i, j ∈ V.

If no other point exists for pj , called p′j , then pj is said
to be a fitting for L, where L = {dij ∈ R+ : eij ∈ E}
is a given distance set. The following is a mathematical
representation of fitting.

{(i, j) ∈ E : ∥pi − pj∥ = dij}
⊊ {(i, j) ∈ E : ∥pi − p′j∥ = dij}.

If ∀j ∈ V , pj is fitting for L, then p is referred to as a
fitting realization for L.

When a desired formation framework is given, veri-
fying whether its realization is unique is essential. If the
realization is not unique, the designed controller might
form a different formation from the intended one despite
satisfying the given framework. The property that guar-
antees a framework with a directed graph has a unique
realization is referred to as persistence.
Definition 1 ([8]) For a given framework (G,p) in Rn,
let L be a set of distances given by L = {dij : dij =
∥pi − pj∥, eij ∈ E}. The framework (G,p) is persis-
tent in Rn if there exists ϵ such that every realization
p′ ∈ R2|V | fitting for L, and p′ satisfying d(p,p′) < ϵ
is congruent to p, where d(p,p′) = maxi∈V ∥pi− p′i∥. If
(G,p) is persistent for almost all realizations of G, then
G is generically persistent, and a generically persistent
graph G is minimally persistent if none of the edges can
be removed without losing persistence.

This paper considers the formations with acyclic min-
imally persistent graphs to ensure their uniqueness of re-
alization. The following is the property of an acyclic min-
imally persistent graph.
Proposition 1 ([9]) An acyclic graph having more than
one vertex is minimally persistent in Rn if and only if
1A graph is acyclic if it contains no cycles, it means there is no path
that starts and ends at the same vertex.

• One vertex (the leader) has an out-degree of 0.
• One vertex (the first follower) has an out-degree of 1,

and the corresponding edge is incident to the leader.
• All other vertices have an out-degree of 2.
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Fig. 1.: Acyclic minimally persistent graph.

2.3 Robot Model
When an edge (i, j) ∈ E exists, the robot Ri, i ∈

V , tracks the moving target denoted by the leading robot
Rj , j ∈ Ni. We assume that all robots are nonholonomic
agents. However, for simplicity, robot Ri deals with robot
Rj ∈ Ni as holonomic robots, even though robot Rj is
nonholonomic.

The kinematic model of robot Ri is described by

Ẋi =

ẋi

ẏi
θ̇i

 =

cos θi 0
sin θi 0
0 1

[
vi
ωi

]
= G(Xi)ui, (1)

and the kinematic model of leading robot Rj , estimated
by robot Ri, is represented by[

ẋj

ẏj

]
=

[
vjx
vjy

]
, (2)

where vjx and vjy represent the x-axis and y-axis linear
velocity of the leading robot Rj . Each states are described
in a Ri’s local reference frame.

2.4 Monocular Camera Model
A monocular camera is mounted on the Ri to track the

leading agent Rj . The camera’s optical axis is aligned
with the Ri’s heading direction. Suppose that the Ri’s
body-fixed frame is denoted as Fi, Fc denotes the camera
frame, and the coordinate of the optical center in Fi is
(0, 0, 0). The feature point coordinate (relative position)
of Rj , which is used to calculate tracking errors, can be
described in Ri’s body-fixed frame Fi as follows:xFi

yFi

zFi

 =

 cos θi sin θi 0
− sin θi cos θi 0

0 0 1

xj − xi

yj − yi
h

 , (3)

where (xi, yi) is a state of Ri’s local reference frame,
h > 0 is the fixed height of the leading agent’s feature
point between the optical center, and [xFi

, yFi
, zFi

]T rep-
resents the coordinate of the feature point in Fi.
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A feature point can be converted into a camera frame
point by using the following principle:mn

1

 =
1

zFc

AP (4)

with

A =

am 0 m0

0 an n0

0 0 1

 ;P =

xFc

yFc

zFc

 , (5)

where A is the intrinsic matrix of the camera, and P rep-
resents the coordinate of the feature point in the camera
frame Fc.

Using equation (6), we can find the relationship be-
tween the frames Fc and Ff .

[
m
n

]
=

1

xFi

[
am 0 m0

0 an n0

]−yFi

−h
xFi

 (6)

2.5 Time Varying Control Barrier Function
Consider an affine control system

Ẋ = f(X) +G(X)u (7)

where f and G are locally Lipschitz, X ∈ Rn and u ∈
U ⊂ Rm are the state and control input, respectively.

In safety-critical situations, it is essential to maintain
the stability of a dynamic system and keep it within a se-
cure region. This can be achieved by controlling the sys-
tem’s state within a safe set, which is represented mathe-
matically as:

S(t) = {X ∈ Rn | h(t, x) ≥ 0} (8)

where h : R+ × Rn → R is a continuously differentiable
function.
Definition 2 ([10]) A function h : R+ × Rn → R is a
time-varying control barrier function (CBF) defined on a
set D, if S(t) ⊆ D ⊂ Rn and there exists an extended
class K function2 α : R→ R such that

sup
u∈U

{Lfh(t,X) + LGh(t,X)u+
∂h

∂t
(t,X)}

≥ −α(h(t,X)),

(9)

for all X ∈ D and for all t ≥ 0.
Lemma 1 ([10]) Let h : R+ × Rn → R be the time-
varying CBF defining a time-varying safe set (8). Then,
for the system (7), a Lipschitz continuous control input u
satisfying

Lfh(t,X) + LGh(t,X)u+
∂h

∂t
(t,X)

≥ −α(h(t,X)),
(10)

for all X ∈ S(t) and for all t ≥ 0, renders S(t) forward
invariant for all t ≥ 0.
2An extended class K function is a continuous function α : (−b, a) →
(−∞,∞) for some a, b > 0, strictly increasing and α(0) = 0.

3. TRACKING ALGORITHM DESIGN

3.1 Visibility Constraint
Due to the limited FOV of a camera, the pixel coordi-

nates (m,n) must adhere to the following constraints:

mmin ≤ m ≤ mmax, nmin ≤ n ≤ nmax (11)

where mmin, mmax, nmin, and nmax are fixed parameters
that are determined by the pixel resolution of the camera.

We design a barrier function, h(t,Xi), that reflects the
above FOV constraints, where Xi is the state of the track-
ing robot Ri.

h(t,Xi) = 1−
(
m(t,Xi)

a

)k

−
(
n(t,Xi)

b

)k

≥ 0 (12)

where a = −mmin = mmax, b = −nmin = nmax and
k is arbitrary constant. The larger k, the better the barrier
function approximates the camera frame.

3.2 Vision-based Formation Control Algorithm
The vision-based formation control algorithm utilizes

a quadratic optimization approach incorporating a nomi-
nal controller and control barrier functions. The nominal
controller generates control inputs for formation control
without considering visibility constraints. Subsequently,
a quadratic optimization process determines the control
inputs that satisfy the camera FOV and nonholonomic
constraints while minimizing the variation from the nom-
inal controller’s inputs. The quadratic optimization for-
mulation for each agent is as follows:

u∗
i = argmin

ui

∥ui − ûi∥2

s.t. Lfh(t,Xi) + LGh(t,Xi)ui +
∂h(t,Xi)

∂t
≥ −α(h(t,Xi))

(13)

where ûi represents the control input from the nominal
controller, and the optimized result u∗

i is the actual con-
trol input.

While any formation control law can be used as a nom-
inal controller, these approaches usually do not consider
the agents’ nonholonomic characteristics. Since we as-
sume that all agents have nonholonomic properties, tra-
ditional formation control techniques are not appropriate.
To achieve effective control, using a nominal controller
that includes nonholonomic dynamics is more efficient
because it minimizes the deviation from the actual con-
trol input. The following equation presents a control law
that reflects a nonholonomic nature, as proposed in [11].

ûi =

[
vi
ωi

]
=

[
hT
i

h⊥T
i

]
fi

=

[
cos θi sin θi
− sin θi cos θi

]
fi,

(14)

where hi ∈ Rn is the unit-length heading vector of agent
i, and fi is the original distance-based formation control
input proposed by [9].
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The relative leading agent position is required to com-
pute û. In this paper, the follower tracks a fixed feature
on the leading agent using its camera. It means that the
height of the leading agent’s feature point is constant.
Consequently, as shown in Equation (6), the relative posi-
tion of the leading agent can be determined based on the
camera data. Additionally, to calculate ∂h(t,X)

∂t in Equa-
tion (13), the velocity of the leading agent is necessary.
By using the relative leading agent position, visual odom-
etry (VO), and inertial measurement unit (IMU), we can
obtain the relative leading agent position in a local refer-
ence frame of Ri. This allows us to estimate the leading
agent’s velocity by calculating the change in its position
over time.

3.3 Simulation Results
The first simulation represents a scenario where a fol-

lower tracks a leader. The leading agent R1 begins at po-
sition (3, 0), while the tracking agent R2 starts at position
(1, 0) with an orientation of −36◦. The camera mounted
on the tracking robot has a FOV constraint of ±55◦, and
the desired distance between the tracking robot and the
leading robot is 2.8 units. In this scenario, the leading
agent moves in a uniform circular motion with a radius
of 3 units. Fig. 2 illustrates the tracking performance us-
ing only the nominal controller, whereas Fig. 3 shows the
trajectory of the tracking robot when the proposed algo-
rithm is applied. As shown in the ”after 5s” node of Fig. 2,
R1 falls outside the FOV of R2. In contrast, Fig. 3 demon-
strates that the proposed algorithm consistently maintains
the FOV constraint, which is further supported by the
analysis in Fig. 4.

The barrier function presented in this paper can reach
a maximum value of 1. According to the definition of
a CBF, it must always remain bigger than 0 to satisfy
the constraints. Therefore, the valid range for the barrier
function, where the constraints are satisfied, is between 0
and 1. Fig. 4a represents the barrier function values cor-
responding to Fig. 2, while Fig. 4b corresponds to the
barrier function values shown in Fig. 3. As observed in
Fig. 4a, the barrier function drops below 0 at the begin-
ning and around 5 seconds, which is consistent with the
behavior of the “after 5s” node in Figure 2. On the other
hand, Fig. 4b shows that the barrier function consistently
remains above 0, indicating that the proposed algorithm
successfully satisfies the FOV constraint.

In the second scenario, the first follower R2 follows
the leader R1, and the other agent R3 simultaneously
follows both agents connected by an edge, forming an
acyclic minimally persistent graph. Unlike R2, R3 must
follow both agents simultaneously, so the optimization
problem for R3 has two constraints. Each constraint re-
stricts the position of R1 and R2 on a camera frame; thus,
they do not move out of the FOV. The desired lengths of
the edges are as follows:

∥e21∥ = 2.8, ∥e31∥ = 3.6, ∥e32∥ = 2.1.

The trajectory shown in Fig. 5 demonstrates the ap-
plication of the proposed algorithm for formation control

Fig. 2.: The trajectory using the nominal controller alone.

Fig. 3.: The trajectory using the proposed algorithm.

(a) Fig. 2’s barrier function value (b) Fig. 3’s barrier function value

Fig. 4.: Barrier function values of the first scenario.

over time. Fig. 6a displays the value of the barrier func-
tion over time, illustrating that the constraint is consis-
tently satisfied, even when R3 follows two agents simul-
taneously. Fig. 6b also indicates that the formation error
converges to zero over time, where formation error is the
difference between the actual edge length and the desired
edge length.

4. CONCLUSION

This paper investigates a vision-based formation con-
trol algorithm for nonholonomic mobile robots under vis-
ibility constraints where communication is absent. We
design a barrier function that reflects the camera visibility
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constraint and propose quadratic programming based on
it to form a formation. The proposed barrier function can
be applied to various applications such as surveillance,
tracking, etc.

(a) 0s − 60s (b) 60s − 120s

(c) 120s − 180s (d) 180s − 250s

Fig. 5.: The formation trajectory using the proposed al-
gorithm.

(a) Barrier function value (b) Formation error

Fig. 6.: Barrier function value and formation error.
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