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ABSTRACT Text-to-speech (TTS) technology is commonly used to generate personalized voices for new
speakers. Despite considerable progress in TTS technology, personal voice synthesis remains problematic
in achieving high-quality custom voices. In addressing this issue, fine-tuning a TTS model is a popular
approach. However, it must be applied once for every new speaker, which results in both time-consuming
model training and excessive storage of the TTS model parameters. Therefore, to support a large number of
new speakers, a parameter-efficient fine-tuning (PEFT) approach must be used instead of full fine-tuning,
as well as an approach to accommodate multiple speakers with a small number of parameters. To this end,
this work first incorporates a low-rank adaptation-based fine-tuning method for variational inference with
adversarial learning for end-to-end TTS (VITS) model. Next, the approach is extended with conditional layer
normalization for multi-speaker fine-tuning, and the residual adapter is further applied to the text encoder
outputs of the VITSmodel to improve the intelligibility and naturalness of the speech quality of personalized
speech. The performance of the fine-tuned TTSmodels with different combinations of fine-tuningmodules is
evaluated using the Libri-TTS-100, VCTK, and Common Voice datasets, as well as a Korean multi-speaker
dataset. Objective and subjective quality comparisons reveal that the proposed approach achieves speech
quality comparable to that of a fully fine-tuned model, with around a 90% reduction in the number of model
parameters.

INDEX TERMS Text-to-speech synthesis, low-rank adaptation, multi-speaker adaptation, parameter-
efficient fine-tuning, residual adapter, conditional layer normalization, variational inference with adversarial
learning.

I. INTRODUCTION
Text-to-speech (TTS) technology synthesizes speech wave-
forms from input texts through several processes, including
text analysis, linguistic feature extraction, acoustic fea-
ture prediction, and waveform generation [1]. With recent
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advances in deep learning, TTS models have significantly
improved the quality of synthesized speech compared with
traditional statistical parametric models. At present, they
can generate natural and human-level quality speech after
being trained for several hours on single-speaker or multi-
speaker recordings [2], [3], [4], [5]. This advancement has
made TTS technology attractive across diverse speech-related
applications.
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Recently, there has been a growing interest in using TTS
for personalized voice assistants and broadcasting [6] with
personalized custom voices. In these applications, generating
personalized voices for new speakers not included in training
data presents a challenge. This challenge arises because of
the quality gap between the synthesized speeches of a trained
speaker and those of a new speaker. This gap is often caused
by factors such as the lack of training data for the new
speaker or characteristics of the speaker that do not match the
data used during training [7]. To address the issue associated
with such a quality gap, speaker adaptation techniques have
been applied to better adapt to new speakers not included in
training data.

Two main methods are being studied for generating speech
for new speakers: speaker adaptation methods based on zero-
shot learning [8] or fine-tuning a pretrained TTS model to
personalize the natural voices of new speakers [9], [10].
Zero-shot learning utilizes a single pretrained model to
imitate unseen speech patterns and features. Significant
advances have been achieved by applying zero-shot learning
to TTS [11], [12], [13], [14]. However, the zero-shot approach
generates a relatively inconsistent personalized voice with
distorted naturalness for a given new speaker. Additionally,
when the speakers pronounce strong accents or nonstandard
pronunciations, the similarity of the synthesized speech fur-
ther decreases [15]. In contrast, the fine-tuning approach
generally adapts a pretrained TTS model by optimizing all
the parameters of the TTS model using a limited amount of
new-speaker data.

Although adapting the TTS model for a target speaker
can improve the synthesized speech quality, several prob-
lems arise. First, fine-tuning all the parameters of the TTS
model incurs significant computational cost and time con-
sumption [6]. Second, the adapted TTS model for each
target speaker needs to be stored individually, which requires
considerable storage space [16], [17]. Therefore, reduc-
ing the number of adaptation parameters is necessary for
fine-tuning.

To mitigate the abovementioned problems, parameter-
efficient fine-tuning (PEFT) approaches have been proposed.
For instance, AdaSpeech leverages acoustic condition
modeling and conditional layer normalization (CLN) at
the mel-decoder stage to achieve parameter efficiency
while fine-tuning TTS models [6]. Meanwhile, Meta-
StyleSpeech [18] employs metalearning techniques for style
modeling, enabling fast adaptation to a new speaker’s style
with minimal data. Furthermore, adapter-based methods have
been introduced as PEFT [19], [20], [21], and they achieve
efficiency by selectively fine-tuning only a subset of param-
eters rather than the entire model, thereby reducing the
computational load and storage requirements. However, these
approaches have typically focused on fine-tuning the acoustic
models of two-stage TTS models [4], [22], [23]. Because
acoustic feature representation and waveform synthesis in
two-stage TTS models are processed independently, the TTS

performance is limited because of the independence of the
fine-tuned intermediate features [24].
In recent years, end-to-end (E2E) TTS models have been

widely studied to provide higher-quality expression com-
pared with two-stage TTS models. One representative E2E
TTS model is variational inference with adversarial learning
for E2E TTS (VITS) model [24], which mainly comprises a
variational autoencoder (VAE) augmented with normalizing
flow (NF) [25], [26] and is trained through adversarial train-
ing [27]. Another notable E2Emodel is Your-TTS [11], which
builds upon the VITS framework and incorporates a speaker
encoder for zero-shot multi-speaker adaptation and multi-
lingual training. Additionally, NaturalSpeech [12] achieves
high-quality single-speaker TTS by modifying the VITS
model structure, introducing a bidirectional NF alongside
differentiable duration modeling and phoneme pretrain-
ing, which significantly enhances the synthesized speech’s
expressiveness and naturalness. However, an issue persists
when PEFT is applied to these VITS-based models. The
connection between the modules in the VITS-based model
is represented by a probability distribution. Thus, applying
PEFT to a specific module in the VITS model can change the
probability distribution of the output of the module. However,
whether this updated probability distribution is suitable for
the input of the subsequentmodule is uncertain.Withoutmore
sophisticated fine-tuning, high-quality synthesized speech
cannot be guaranteed.

To address this issue, a recent study [15] proposed a
zero-shot learning and PEFT method for VITS-based mod-
els, which improved the zero-shot adaptation performance
by altering the VAE model structure to prevent overfit-
ting and introducing a specific discriminator for speaker
information, thereby enhancing the overall model perfor-
mance. In addition, the speaker encoder was based on the
ECAPA-TDNN architecture [28], which was modified to
extract speaker embeddings and pretrained to effectively cap-
ture speaker characteristics. In this model [15], the baseline
TTS model was trained using speaker embeddings extracted
from the pretrained speaker encoder to aid the model’s flow
and duration predictor during training. PEFT was applied
through adapters to the prior encoder, specifically target-
ing the flow-based decoder and text encoder. This approach
demonstrated impressive performance in speaker adaptation.
However, this method relied on a pretrained speaker encoder,
did not consider multi-speaker adaptation, and only applied
the adapter to the prior encoder.

Thus, this paper presents a PEFT approach in VITS mod-
els and demonstrates the effectiveness of applying PEFT
to multiple specific modules within the E2E architecture,
providing a new method for improving TTS performance for
multi-speaker adaptation. To further enhance this approach,
we propose three specific strategies to realize PEFT for
the VITS model. First, we incorporate low-rank adapta-
tion (LoRA) [29] for fine-tuning the VITS model. LoRA
is a method for reducing the complexity of neural network
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parameters by decomposing them into lower-dimensional
representations [30]. Consequently, it adapts only a subset
of model parameters using a low-rank matrix rather than the
entire model parameters. In this study, LoRA is applied to
several modules: the attention network of the text encoder, the
WaveNet [2] structure in both the flow network and posterior
encoder, the HiFi-GAN generator [31], and two linear pro-
jection layers. Second, LoRA-based fine-tuning is expanded
with CLN [6] for multi-speaker fine-tuning. This is because
LoRA alone does not capture diverse speaker-specific varia-
tions, resulting in suboptimal performance in multi-speaker
adaptation. CLN uses a small conditioning layer to obtain
scale and bias vectors for normalization instead of standard
layer normalization, and it is applied to the text encoder and
the stochastic duration predictor (SDP) of the VITS model
by replacing layer normalization (LN). Lastly, to achieve
intelligibility and naturalness of speech quality as in full fine-
tuning, the degree of expressiveness of the prior distribution
should be increased [12]. Therefore, this work additionally
applies themodified version of the residual adapter [22], [32],
[33], which can be flexibly inserted into the output of any
module. In our model, we inserted the residual adapter into
the text encoder outputs of the VITS model to enhance the
representation of the prior distribution of the text encoder
output.

We conducted experimental evaluations on the widely
adopted multi-speaker VCTK [34] and Libri-TTS-100 [35]
datasets to measure the voice quality of the proposed
fine-tuning method against several objective and subjective
metrics. These datasets were chosen to test the robust-
ness of our process to different data characteristics. The
VCTK dataset was characterized by many audio samples
per speaker and a generally calm and consistent tone of
voice. In contrast, the Libri-TTS-100 dataset comprised sig-
nificantly more speakers despite similar sample numbers,
with variations in the tone of each speaker. Because VCTK
and Libri-TTS-100 were composed of controlled and stable
speeches, we repeated experiments using the Common Voice
datasets [36] to evaluate the performance of the proposed
PEFT method under various accent conditions, which was
essential for building personalized custom voices. More-
over, we conducted additional experiments using a Korean
multi-speaker dataset to further investigate the model’s
adaptability to different languages. Using these datasets,
we verified the performance of our multi-speaker fine-tuning
method with four speakers. The speech performances of dif-
ferent models, where fine-tuned TTS models were evaluated
according to different combinations of fine-tuning modules
(e.g., LoRA, CLN, and residual adapter), were compared in
terms of the number of tuning parameters and speech quality
measures. To measure speech quality, we used five objective
metrics: speaker embedding cosine similarity (SECS) [37],
word error rate (WER), character error rate (CER) [38],
nonintrusive objective speech quality assessment for TTS
(NISQA-TTS) [39], and mean opinion score (MOS) predic-
tion by a fine-tuned wave2vec2.0 model (WV-MOS) [40].

In addition, to measure reliable TTS perception quality in
terms of human-level quality, we used a comparative mean
opinion score (CMOS) as a subjective metric [41].

The main contributions of this study are as follows:

• To implement PEFT in the VITS model, we applied
LoRA to the prior encoder and other specific modules
within the E2E model, achieving speech quality com-
parable to that of a fully fine-tuned model with a 90%
reduction in model parameters.

• To handle speaker-specific variation with improved
multi-speaker PEFT performance, CLN replaced the LN
in the text encoder and the SDP, allowing the model to
train an additional speaker with only 0.02M parameters.

• To improve the expressiveness of the prior distribution,
the residual adapter was integrated into the text encoder
output. With only 0.15M parameters, this integration
improved the WER, CER, and NISQA-TTS scores.

The remainder of this paper is organized as follows.
Section II provides helpful background knowledge to help
readers understand our work. Section III describes the
VITS model architecture used as the baseline TTS model.
Section IV proposes the PEFT method using LoRA, CLN,
and residual adapter for multi-speaker adaptation. Section V
evaluates the performance of the VITS models with the
proposed PEFT, including several ablation studies and visual-
ization experiments. Finally, Section VI concludes the paper.

II. BACKGROUND
This section provides helpful background knowledge to help
readers understand our work. First, we give a general review
of TTS models. Next, we explain the flow-based generative
models used in TTS systems.

A. OVERVIEW OF TEXT-TO-SPEECH MODELS
Recently, neural TTS systems have made significant
advances in terms of performance. Two-stage TTS structures
are commonly used to generate speech. These systems use
acoustic models to predict predetermined acoustic features,
such as mel-spectrograms, and then synthesize waveforms
using a vocoder [31], [42]. When predicting these acoustic
features, acoustic models can be categorized into two groups:
autoregressive (AR) and non-autoregressive (NAR) TTS
systems. Typically, sequence-to-sequence AR-TTS systems
include models such as WaveNet [2] and Tacotron1, 2 [3],
[22]. Transformer TTS [23] is the first model to use a trans-
former network in TTS. These AR-TTS systems sequentially
generate frames of a mel-spectrogram by relying on the pre-
vious frame to effectively capture long-term dependencies.
However, such a system can lead to a compromise in terms of
inference speed and robustness errors, such as missing words
and repetition. Thus, NAR-TTS systems have been developed
to address these problems. For instance, FastSpeech [43]
overcomes problems such as repetition in AR-TTS and par-
allelizes the process with a duration predictor to improve
the speed and robustness of speech synthesis. FastSpeech2

VOLUME 12, 2024 190713



C. Hong et al.: Leveraging LoRA for PEFT in Multi-Speaker Adaptive TTS Synthesis

[4] refines this setup using a variance adaptor for pitch and
energy, although it still depends on an external text and
speech alignment tool. Meanwhile, Glow-TTS [5] advances
the field by learning alignment directly during training using
monotonic alignment search (MAS).

Despite the progress in NAR-TTS systems, the above-
mentioned cascaded acoustic/vocoder model pipeline still
has problems. In two-stage models, the latter model is
trained on samples generated by earlier models or lever-
ages pretrained models without modification. In addition,
fine-tuning for high-quality speech synthesis is problem-
atic because the two models must be trained separately.
Furthermore, training–inference mismatches occur for both
the mel-spectrogram and the duration as the models are
trained with ground-truth values but rely on predicted val-
ues during inference. High-quality speech synthesis requires
fine-tuning. Because of this problem, E2E models utilizing
efficient training methods have been widely studied [44],
[45]. Among these models, VITS [24] has succeeded in
producing more natural speech than two-stage models by
integrating the TTS model and a neural vocoder within an
E2E framework using a VAE to enhance the synthetic speech
quality. Moreover, VITS addresses the one-to-many problem
of TTS by employing an SDP, enabling the generation of var-
ied rhythms. Consequently, there have been widely adopted
E2E models based on the VITS architecture [11], [12], [46].

B. FLOW-BASED GENERATIVE MODEL
Flow-based models are increasingly being used in differ-
ent models because of their ability to compute the exact
likelihood of data by applying inverse transformations [47].
To estimate the exact density, the latent variable of a gener-
ative model should be as simple as a Gaussian distribution.
This leads to NF [25], which transforms a simple distribution
into a complex distribution by applying a sequence of invert-
ible transformations. This transform is iteratively replaced by
changing the following variables:

log pθ (c) = log pθ (z) +

k∑
i=1

log
∣∣∣det (J (

f −1
i (c)

))∣∣∣ , (1)

z = f −1
k of −1

k−1o . . . f −1
1 (c) (2)

where K is the number of layers in the flow-based decoder,
o is a composition operator, and J (·) is a Jacobian operator.
When implementing NF, two conditions must be satisfied.

The Jacobian matrix of the transformation should be easily
calculated, and the NF should be able to perform the inverse
transformation easily. These requirements have been effec-
tively addressed using the affine coupling layer proposed
previously [48], simplifying the Jacobian computation and
ensuring invertibility. The affine coupling layer operates by
partitioning the input into two parts, transforming one part
conditionally according to the other, facilitating the simple
calculation of the Jacobian determinant. Additionally, the
limitations of the unchanging dimensions of the affine cou-
pling layer have been overcome upon the introduction of the

FIGURE 1. Block diagrams of the baseline VITS model.

1 × 1 invertible convolution method [49], which facilitates
feature permutation (mixing between channels) and enhances
the model’s flexibility.

The WaveGlow model [50] further extended these struc-
tures by incorporating the WaveNet architecture and sig-
nificantly enhancing its capabilities in modeling complex
audio signals. The model structure was utilized to compose
the baseline model, VITS, incorporating VAE with its NF
framework. This integration improved the expressiveness of
the prior distribution and significantly improved the quality of
speech synthesis by leveraging the ability of flow, allowing
the construction of complex probability distributions with a
simple distribution. More detailed explanations are provided
in Section III.

III. BASELINE TTS MODEL
In this section, we explain the VITS model [24], which is
employed as the baseline model in this work, with a focus
on the network architecture and training process. VITS is
a parallel E2E model that utilizes a VAE to learn latent
variables that serve as intermediate representations between
the acoustic model and the waveform generator in a fully inte-
grated training process. This integration improves the smooth
flow of information from the acoustic model to the waveform
generator, resulting in the consistency of the personalized
voice quality.

Fig. 1 depicts the training procedure of the baseline
VITS model, which comprises three primary components: a
prior encoder, a posterior encoder, and a HiFi-GAN gener-
ator [31]. The prior encoder comprises a transformer-based
text encoder, a flow-based decoder, MAS [5], and an SDP.
The text encoder uses multiple feed-forward transformer
blocks [51] to transform the input phonemes ctext into hid-
den representations htext. These representations are then
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processed by a linear projection layer to generate fθ (c) with
the mean µθ (c) and variance σ 2

θ (c), which are used to con-
struct the prior distribution. Here, c is defined as [ctext,A],
where A is the alignment between the text c and target
speech x, selected from all potential alignments through
MAS. In parallel, the SDP is trained using speaker embedding
g, the alignment A, and the hidden representation htext of the
text encoder output, as depicted in Fig. 1. During inference,
the SDP estimates the alignment based on the text. The SDP
aligns the text by incorporating two random variables, u and
v, into the duration d , in view of variational Bayes estimation.
The two random variables are sampled from an approximate
posterior distribution of the text to optimize a variational
lower bound on the log-likelihood of the phoneme duration.
The training loss Ldur is the lower bound of the calculated
negative variation:

log pθ (d |Ctext) ≥ Eq∅(u,v|d,Ctext)

[
log

pθ (d − u, v|Ctext)

q∅ (u, v|d,Ctext)

]
.

(3)

The flow-based decoder is constructed by arranging a stack
of WaveNet [2] residual blocks in a stack of affine coupling
layers [47]. The probability of the latent variables conditioned
on the text, pθ (z | c) , can be expressed as

pθ (z|c) = N (fθ (z) ; µθ (c) , σθ (c))

∣∣∣∣det∂fθ (z)
∂z

∣∣∣∣ (4)

where fθ (z) is the output of the flow-based decoder. To cal-
culate the inverse probability, the Jacobian determinant in
equation (4) is computed as

∣∣∣det ∂fθ (z)
∂z

∣∣∣ .
The posterior encoder and the Hi-Fi GAN generator,

as shown in Fig. 1, correspond to the encoder and decoder
of VAE, respectively. The former extracts the latent represen-
tation z from the waveform x,whereas the latter generates the
reconstructed waveform x̂ according to z:

z = Enc (x) ∼ q (z | x) , (5)

x̂ = Dec (z) ∼ p (x | z) . (6)

The training loss for a conditioned VAE is derived from the
evidence lower bound of the marginal log-likelihood pθ (x|c)
and maximized as

log pθ (x|c) ≥ Eq∅(z|x)

[
log pθ (x|z) − log

q∅ (z|x)
pθ (z|c)

]
(7)

where pθ (z|c) represents the prior distribution of z in
equation (4), q∅ (z|x) is an approximate posterior distribu-
tion, and logpθ (x|z) is the likelihood function for a data
point x. Equation (7) is decomposed into a reconstruc-
tion loss measured in the output of the HiFi-GAN and a
Kullback–Leibler (KL) divergence loss. The reconstruction
loss Lrecon is defined as the L1 loss between the target and the
predicted mel-spectrograms—xmel and x̂mel, respectively—as
follows:

Lrecon = ∥xmel − x̂mel
∥∥
1 . (8)

FIGURE 2. Block diagrams of the proposed fine-tuned VITS.

In addition, the KL loss in the latent space is defined using
the output of the priority distribution pθ and the posterior
distribution qφ of the baseline model as follows:

LKL = log qφ(z|xlin) − log pθ (z | c) (9)

where xlin is a linear spectrogram of x, as shown in the bottom
left part of Fig. 1.

Finally, the HiFi-GAN generator G synthesizes the pre-
dicted speech x̂ according to the intermediate representation
z. In the VITS framework,G comprises a series of transposed
convolutions, each followed by a multi-receptive field fusion
module (MRF). The adversarial loss of the HiFi-GAN gener-
ator G is defined as

Ladv (G) = E(z)

[
(D (G (z)) − 1)2

]
(10)

where D is the discriminator for GAN, composed of a
multi-period discriminator and a multiscale discriminator,
as shown in the top right part of Fig. 1, and it is trained using
the adversarial loss of

Ladv (D) = E(x,z)

[
(D(x) − 1)2 + (D(G(z)))2

]
. (11)

In addition to Ladv (G) ,a feature-matching loss Lfm (G) is
used as a reconstruction loss of the discriminator of the
HiFi-GAN by summing all the L1 losses between the feature
maps extracted from the intermediate layers of each discrimi-
nator. Consequently, the total loss function of the VITSmodel
is a combination of VAE and GAN loss, which is configured
to facilitate E2E learning; it is expressed as follows:

Ltotal = Lrecon + Lkl + Ldur + Ladv (G) + Lfm (G) . (12)

IV. PROPOSED METHOD
This section proposes three approaches to fine-tuning the
baseline VITS model. First, we incorporate LoRA for
fine-tuning the VITS model to reduce the complexity of

VOLUME 12, 2024 190715



C. Hong et al.: Leveraging LoRA for PEFT in Multi-Speaker Adaptive TTS Synthesis

FIGURE 3. Network architectures of (a) LoRA applied to a weight matrix, (b) LoRA applied to the attention matrices in the
transformer-based text encoder, (c) LoRA applied to a WaveNet residual block, and (d) LoRA applied to the MRF in the HiFi-GAN
generator.

neural network parameters by decomposing them into lower
dimensional representations. Second, LoRA-based fine-
tuning is expanded with CLN for multi-speaker fine-tuning.
Third, we apply the residual adapter to the text encoder out-
puts of theVITSmodel, which can enhance the representation
of the prior distribution of the text encoder output. Fig. 2 illus-
trates how the parameter-efficient modules—LoRA, CLN,
and residual adapter—are integrated into the VITS architec-
ture, with specific colors used for each module. Compared
with Fig. 1, Fig. 2 also indicates that the latent variable
changes from z to z′ for a given new-speaker embedding g′

after applying such modules in the baseline VITS model.

A. REDUCTION OF MODEL PARAMETERS BASED ON LoRA
Instead of optimizing all model parameters, the LoRA-
based fine-tuning method optimizes the parameters of the
low-rank model [29]. Assuming that the pretrained model
parameter is 80, the fine-tuning process involves finding
8 that maximizes8 =80+18, where 18 is the changed
parameter during the fine-tuning. If we can replace 18

with a low-rank model, 2 (≪ 8) , 8 is expressed as 8 =

80+18 (2).
Fig. 3(a) illustrates an example of the application of LoRA

to a matrix as if it is applied to our fine-tuning process.
For a pretrained weight matrix W∈Rm×d , its update can be
constrained by representing it with a low-rank decompo-
sition W + 1W = W + WupWdw whereWup∈Rm×r and

Wdw∈Rr×d with the rankr ≪ min (m, d). During training,W
is frozen and does not receive gradient updates, where Wup
and Wdw contain the trainable parameters. Both W and
1W = WupWdw are multiplied by the same input, x∈Rd ,
and their respective output vectors h∈Rm can be expressed
as follows:

h = Wx + 1Wx = Wx +WupWdwx. (13)

In this study, the LoRA module is integrated into six dif-
ferent modules of the baseline VITS model, as illustrated in
Fig. 2. In particular, there are two LoRAs for each linear pro-
jection layer and four LoRAs for the attention matrices in the
transformer-based text encoder, each of the two WaveNets,
and an upsampling layer of the generator. The linear pro-
jection layer is an important part of the VITS architecture
because it projects the distribution of the posterior and prior
encoders. Each layer uses a 192 × 384 matrix to split the
384 output channels and derive the mean and variance. LoRA
is applied to the matrix W∈R192×384 with Wup ∈ R192×r and
Wdw ∈ Rr×384, where r is set to 8 throughout this paper
according to the setting described previously [29].

In addition to the linear projection layer, Fig. 3(b) shows
the network architecture of LoRA applied to the attention
matrices in the transformer-based text encoder. As shown
in Fig. 3(b), the self-attention module of each transformer
block includes four weight matrices: Wq,Wk,Wv, and Wo.
Of these, Wq,Wk, and Wv have a size of 192 × 192 and
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project the input features ctextinto queries, keys, and val-
ues, respectively, to handle the dimensionality of the input
and output effectively. Among these four matrices, LoRA
is applied to Wq and Wv, which are crucial for generating
queries and values.

Asmentioned in Section III, theVITS architecture contains
theWaveNet structure in two modules. The posterior encoder
comprises 16 noncausal WaveNet residual blocks, whereas
the flow-based decoder consists of four affine coupling layer
stacks [48], each containing four WaveNet residual blocks.
WaveNet fundamentally works through stacked residual
blocks, each containing a dilated convolution layer, two acti-
vation functions, and a 1× 1 convolutional layer, as shown in
Fig. 3(c). WaveNet uses the gate activation unit method [52],
where each layer consists of a gate, σ (·) that looks at a
feature of the input value as a filter, tanh (·) and decides the
magnitude of this information to be passed to the next layer.
In the VITS model, WaveNet is responsible for embedding
conditional information, which is important for generating
specific speakers’ voices. This is achieved by incorporating
a new speaker embedding g′ as a global condition within the
WaveNet structure. To fine-tune the conditioning part, LoRA
is applied to a 1× 1 convolution layer, Vlora, on each block of
the WaveNet that takes the information of g′. The operation
of the conditional WaveNet can be formulated as follows:

z = tanh
(
Wf ∗ x + Vlorag′

)
σ (Wg ∗ x + Vlorag′) (14)

where ∗ denotes a convolution operation, ⊙ represents
element-wise multiplication, and x is the input.
Finally, we apply LoRA to the generator whose MRF

model structure is described in Fig. 3(d). MRF facilitates
the formation of several different receptive field patterns
to enrich speech with details and textures. Therefore, MRF
fine-tuning is crucial for generating personalized voice; thus,
LoRA is applied to the ConvTranspose layer connected to the
MRF.

B. CONDITIONAL LAYER NORMALIZATION FOR
MULTI-SPEAKER TTS
To handle speaker-specific variations with improved
multi-speaker PEFT performance, we incorporate CLN by
replacing LN [53] in the text encoder and SDP. Fig. 4(a)
shows the conditional network comprising two linear layers:
Wγ and Wβ . These layers project the extracted speaker rep-
resentation onto a scale vector γs and a bias vector βb, which
are essential components of CLN. Specifically, the speaker
embedding vector g′ is processed through Wγ and Wβ ,

which are responsible for producing γs and βb, respectively.
Consequently, the normalization is defined as

γs = g′
×Wγ , βb = g′

×Wβ . (15)

Without CLN, all model parameters for each new speaker
must be stored. However, by adjusting the normaliza-
tion parameters for each speaker, the model can achieve
high-quality adaptation during multispeaker optimization

FIGURE 4. Network architecture of the (a) conditional normalization layer
and (b) residual adapter used for the proposed fine-tuning approach.

while significantly reducing the number of parameters.
Specifically, a storage of only 0.02M parameters for each
speaker is required by applying CLN during fine-tuning,
which corresponds to ∼0.05% of the model parameters
required for full fine-tuning.

C. RESIDUAL ADAPTER FOR EXPRESSIVE TTS
Although the application of LoRA and CNL provided
enhanced performance, limitations in naturalness and pro-
nunciation compared with those of full fine-tuning persisted.
To address this issue, the expressiveness of the prior distri-
bution of the new-speaker data during fine-tuning must be
enhanced [12]. Accordingly, we attempted to increase the
rank of the LoRAmatrix applied to the text encoder; however,
it did not yield performance improvement. Therefore, a resid-
ual adapter [22], [32] was integrated into the text encoder
output.

Fig. 4(b) shows the network architecture of a residual
adapter, a modified version of the vanilla adapter [33], used
for the proposed fine-tuning approach. As shown in Fig. 4(b),
the residual adapter operates by initially projecting the text
encoder output hlora through a down-projection feed-forward
network FFdown, which reduces the dimensionality to a
lower-dimensional bottleneck. A rectified linear unit activa-
tion function [54] is then applied to add the nonlinearity to the
output of FFdown. Next, the dimension is restored by an up-
projection feed-forward network FFup. This residual adapter
requires only 0.15M parameters.

The adapter incorporates a residual connection to ensure
stable training and minimize the disruption to the original
model architecture. This connection enables the original input
hlora to bypass the adapter and merge with the adapter output.
This effectively allows the network to start training from a
near-identity state, which is crucial for maintaining the initial
performance level. Note that we also incorporate dropout and
LN with zero initialization of the final layer to make this
residual adapter operate as an identity function. According to
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the description thus far, the residual adapter can be described
as follows:

hadp = hlora + LN
(
ReLU (FFdown (hlora))FFup

)
. (16)

V. EXPERIMENTS AND RESULTS
A. DATASET
We utilized four datasets—VCTK [34], Libri-TTS-100 [35],
Common Voice [36], and the Korean Multi-Speaker Speech
Synthesis (KMSSS)1—to evaluate the performance of the
TTSmodel using the proposed fine-tuning approaches. These
datasets were selected for their different characteristics. For
instance, the VCTK dataset comprised around 400 sentences
spoken by 109 speakers. The audio format was a 16-bit
PCM with a sampling rate of 48 kHz. This dataset was
characterized by a similar number of speech samples per
speaker and low variability in speech. Meanwhile, the Libri-
TTS-100 dataset had a similar number of speech samples
as VCTK but comprised 247 speakers. The total length of
the audio data was approximately 54 h, with a sampling
rate of 24 kHz. This dataset had fewer samples per speaker,
an inconsistent number and length of speeches per speaker,
and more variability in speech. The Common Voice dataset
consisted of mono-channel, 16-bit MPEG-3 audio files at
a sampling rate of 48 kHz. In this experiment, we orga-
nized a subset of 144 English speakers, each with ∼1,000
samples, to ensure balanced data for fine-tuning. Compared
with VCTK and Libri-TTS-100, this dataset offered a greater
variation in speech, including various accents and dialects,
recorded by volunteers from diverse linguistic backgrounds.
Lastly, to investigate the model’s adaptability to non-English
languages, a dataset was constructed from theKMSSS dataset
by taking 184 speakers, where each speaker spoke 500 utter-
ances at a sampling rate of 48 kHz.

For multi-speaker fine-tuning, a VITS model was pre-
trained using 100 speakers from the VCTK dataset, with five
speakers for validation and four for fine-tuning and testing.
In contrast, we pretrained, validated, and tested the VITS
model with 220, 14, and 13 speakers, respectively, for the
Libri-TTS-100 dataset, where we selected the four speakers
with the highest number of samples in the test data for fine-
tuning. For the Common Voice dataset, the VITS model was
pretrained using 130 speakers, whereas ten and four speakers
were used for validation and testing, respectively. Note that
two out of the four speakers recorded speeches in environ-
ments with slight background noise, adding diversity to the
data. Similarly, for the Korean dataset, we used 160 speakers
for training, 20 for validation, and 4 for testing.

B. EXPERIMENTAL SETUP
In our experimental setup, we resampled all the speech data
at a sampling rate of 22 kHz. Then, we normalized the raw
text sequences and converted the normalized sequences into

1https://aihub.or.kr

the International Phonetic Alphabet sequence using an open-
source phonemizer2 [55].
To obtain our pretrained VITS model, we utilized

the AdamW optimizer [56] with the hyperparameters set
as β1 =0.8, β2 =0.99, and the weight decay λ = 0.01.
The learning rate was initially set at 2×10−4 and followed
a decay schedule of 0.9911/8. The pretraining phase was
conducted over 400 epochs using four NVIDIA A100 graph-
ics processing units (GPUs). In the fine-tuning phase, all
hyperparameters were maintained except for the learning rate
and batch size, which were adjusted to 1×10−5 and 32,
respectively. Each fine-tuning process was run for 150 epochs
on a single A100 GPU. To evaluate the model performance,
we excluded 15 speech samples per speaker from the test
dataset and used the remaining data for fine-tuning. We fine-
tuned four speakers to evaluate the multi-speaker fine-tuning
performance.

C. EVALUATION METRICS
To evaluate the performance of the proposed fine-tuning
approaches, we compared the synthesized speech with the
reference speech using five objective metrics: SECS, WER,
CER, NISQA-TTS3, and WV-MOS4.
SECS measured the cosine similarity between the speaker

embedding of the synthesized speech and the reference
speech audio. This value, which ranged from −1 to 1, indi-
cated how closely the speaker’s vocal characteristics match.
We computed the speaker embedding using the H/ASP
model [37], a publicly available speaker verification model5

trained on VoxCeleb2 [57], a large-scale speech dataset.
WER (%) and CER (%) respectively indicated the

percentages of recognized word and character errors
in the synthesized transcript to the ground-truth text.
For synthesized speech transcription, we used NeMo’s
stt_en_conformer_transdu-cer_large_model6 [38], which
was based on the conformer transducer architecture, and
computed these error rates using the Levenshtein distance
algorithm7 [58]. A lower value suggests fewer pronunci-
ation errors in the synthesized speech, indicating higher
fidelity of the synthesized audio in adhering to the provided
transcription.

NISQA-TTS was designed to predict the naturalness of
synthetic speech, providing a nonintrusive evaluation with-
out needing a reference signal in TTS systems. This metric
predicted the naturalness score on a five-point scale consis-
tent with the human MOS evaluation. Our work used the
NISQA-TTS model to estimate the naturalness of the syn-
thetic speech generated by our TTS system.

WV-MOS evaluated the overall quality of the utterances
generated by each model and provided a score that ranged

2https://github.com/bootphon/phonemizer
3https://github.com/gabrielmittag/NISQA
4https://github.com/AndreevP/wvmos
5https://github.com/clovaai/voxceleb_trainer
6https://huggingface.co/nvidia/stt_en_conformer_transducer_xlarge
7https://pypi.org/project/python-Levenshtein
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TABLE 1. Comparison of the number of trained model parameters and objective quality between the fine-tuned TTS models according to different
combinations of the proposed fine-tuning approaches applied to the VCTK and Libri-TTS-100 datasets.

from 1 to 5 points. For MOS prediction, the WV-MOS
model utilized a neural network architecture, wav2vec2.0,
which was pretrained in a contrastive self-supervised man-
ner, making it useful for various downstream tasks. The
pretrained wav2vec2.0 model was fine-tuned using listen-
ing evaluation results from the Voice Conversion Challenge
2018 dataset [59]. In our study, we usedWV-MOS tomeasure
the overall quality of the generated speech for each fine-
tuning method.

Objective metrics are not always reliable for measuring
the perceived quality of synthesized speech from TTS mod-
els. Therefore, subjective evaluation is required to accurately
assess speech quality. In this study, we compared the qual-
ity of synthesized speech obtained using our fine-tuning
approach with that of the original speech using a CMOS
on a seven-point scale ranging from −3 to 3. Ten people
participated in the subject test by listening to 10 randomly
selected pairs of original and synthesized speeches.

D. PERFORMANCE EVALUATION
To examine the effectiveness of the proposed different
fine-tuning approaches on the objective and subjective quality
of synthesized speech, we generated speech samples from
the TTS models after applying different combinations of
the proposed approaches. Table 1 compares the objective
quality between the fine-tuned TTS models according to dif-
ferent combinations of the proposed fine-tuning approaches.
The rightmost column of Table 1 compares the number of
model parameters trained by each fine-tuned TTS model.
In Table 1, Proj, AT, WN, and MRF denote the LoRA
approach applied to the linear projection layers, attention
matrix in the transformer-based text encoder (shown in
Fig. 3(b)), WaveNet (shown in Fig. 3(c)), and MRF in the
generator (shown in Fig. 3(d)), respectively. In addition, CLN

TABLE 2. Comparison of the subjective scores of the top six fine-tuned
models measured in terms of CMOS.

and ADP signify the proposed approach using the CLN and
residual adapter, as described in Figs. 3(a) and 3(b), respec-
tively. Moreover, to investigate the effect of the fine-tuning
of the projection layers connected to the speaker embeddings
g′ on the performance, four speaker embedding projection
layers in the VITS model were fine-tuned (✓) or frozen (✗),
denoted as SEPL (speaker embedding projection layer) in the
table.

As revealed by Table 1, Model 1, where AT was only fine-
tuned, performed deficiently overall. However, the metric
scores of Model 2 showed that tuning the WN was necessary
to improve the overall speech quality, naturalness, and intelli-
gibility.Model 3, trained by fine-tuning only LoRA, indicated
that it was difficult to capture the unique characteristics
of the speaker’s voice, making it challenging to represent
the speaker accurately. Next, we fine-tuned the SEPLs in
Model 4, which showed that tuning the SEPL increased the
SECS score. Subsequently, we fine-tuned the VITS model
with AT, WN, and SE together to create Model 5, which
showed that fine-tuning the critical parts in the VITS model
resulted in a higher overall quality of the synthesized speech.
Further, Table 1 indicates that Model 6 improved the overall
performance of the generated speech, particularly in terms
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FIGURE 5. Comparison of the t-SNE plots of latent vectors predicted by different models: (a) Model 1, (b) Model 7, (c) Model 11, (d) fully fine-tuned
model, and (e) fully fine-tuned model with CLN, where the latent vectors were obtained from the test speakers on the VCTK dataset.

of naturalness. However, Model 7 provided a lower overall
quality but a higher SECS score than Models 1 to 4, which
implied that SEPL and CLN could contribute to speaker
similarity.

In the observation from Model 7, we applied SEPL and
CLN to the following fine-tuned models from Models 8 to
11. As shown in Table 1, Model 8 demonstrated higher per-
formance than Model 6, highlighting the importance of CLN
in the multi-speaker fine-tuning process with an additional
increase of 0.02M parameters. Meanwhile, Model 9 demon-
strated higher performance in terms of WER, CER, and
NISQA-TTS than Model 8 because of the addition of ADP.
Moreover, Model 10 further improved speaker similarity and
overall speech quality compared with Model 9 because the
MRF was fine-tuned.

Lastly, we employed all the proposed approaches to
fine-tune the VITS model, referred to as Model 11. As shown
in the 11th row of Table 1,Model 11 showed the best objective
performance among other models from Models 1–10, with a
10% increase in the number of model parameters. Interest-
ingly, Model 11 achieved a slightly lower performance than
the full fine-tuning method. Finally, to investigate the effect
of the CLN on the multi-speaker TTS, we fully fine-tuned
the VITS model with the CLN. The last two rows of Table 1
show that the CLN considerably contributed to improving
all the objective metrics compared with the model with full
fine-tuning.

Additionally, we performed a subjective test on the syn-
thesized speeches with the models whose NISQA-TTS
was higher than 3.0. In particular, we chose Models 8–
11 and two models with full fine-tuning with/without CLN
adaptation. Table 2 compares the CMOS of the top six fine-
tuned models, revealing that CMOS was closely related to
either NISQA-TTS or WV-MOS. Although the proposed
approaches had slightly lower CMOS values than the case of
full fine-tuning, the participants’ survey confirmed that they
demonstrated comparable listening results.

E. EFFECT OF SPEAKER-RELATED TECHNIQUES ON
SPEAKER REPRESENTATION
We conducted a series of experiments to understand the effect
of the fine-tuning of speaker-related modules on speaker

TABLE 3. Performance comparison of different LoRA ranks r = 1, 8, and
96 using the NISQA-TTS and WV-MOS metrics averaged across the VCTK
and Libri-TTS datasets.

FIGURE 6. Similarity of eigenvectors between 1W (8) and 1W (96) for
(a) the attention query matrix Wq and (b) the attention value matrix Wv.
The attention map illustrates the similarity between the eigenvectors of
1W (8) and top 8 eigenvectors of 1W

(
96

)
.

representations. Fig. 5 illustrates the t-distributed stochastic
neighbor embedding (t-SNE) [60] plots of the latent vec-
tors z of synthesized speeches from the test speakers in
the VCTK dataset to compare the speaker clustering per-
formance according to different VITS models. As shown
in Fig. 5(a), the latent vectors of Model 1 were distributed
randomly, implying that the speakers were not clustered
anymore. Instead, Model 7 (as shown in Fig. 5(b)) pro-
vided better speaker clustering than Model 1, which implied
that CLN was effective for speaker representation. Then,
we plotted the latent vectors from Model 11, which showed
the best subjective and objective performance, as pre-
sented in Tables 1 and 2, and achieved better speaker
clustering than that of Model 7. Next, we compared the
t-SNE plots of the fully fine-tuned models with and with-
out CLN, as shown in Figs. 5(d) and 5(e), respectively.
Thus, CLN was also demonstrated as effective in speaker
clustering, resulting in better objective and subject quality
scores.
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FIGURE 7. Similarity of eigenvectors between 1W (8) and 1W (96) for
(a) a 1 × 1 convolution layer V lora on a block of the WaveNet and (b) the
ConvTranspose layer CMRF connected to the MRF. The attention map
illustrates the similarity between the singular vectors of 1W (8) and top
8 singular vectors of 1W

(
96

)
.

TABLE 4. Complexity comparison of the average fine-tuning speed and
the RTF according to different TTS models.

F. SETTING THE RANK OF LoRA
This section describes the performance when the rank r= 8
for LoRA-based fine-tuning. To this end, we chose r = 8,
96 for the comparison. As shown in Fig. 3(b), the LoRA
was first applied to Wq and Wv in an attention module in the
transformer-based text encoder because they were crucial for
generating queries and values. Note thatWq andWv both had
(192 × 192) matrices. Then, the LoRA matrix, 1W (r) =

WupWdw with rank = r was applied to Wq or Wv.Then,
either1W (r) forWq or1W (r) forWvwas processed through
singular value decomposition or eigenvalue decomposition
to obtain singular vectors or eigenvectors. We computed the
similarity between the pairs of two vectors obtained from
1W (8) and 1W (96) using the following equation:

∅ (1W (8), 1W (96), i, j) =

∥∥∥(1W (8)i)
T
1W (96)j

∥∥∥2
F

min(i, j)
(17)

where 1W (8)i is the i-th singular or eigenvector of 1W (8)
and 1W (96)j is the j-th largest singular or eigenvector
of 1W (96). Here, we compared r= 8 with r= 96 because
r= 96 provided the same number of elements between Wq
(orWv) and 1W (96) as 192 × 192 = 192 × 96 + 96 × 192.
Fig. 6 depicts the similarity of eigenvectors between 1W (8)
and 1W (96) for the attention query matrix Wq and attention
value matrix Wv. Accordingly, it seems that the rank r= 96
should be reduced to r= 8. Next, we repeated this experiment
by applying 1) LoRA to a 1 × 1 convolution layer Vlora on
each block of the WaveNet and 2) the ConvTranspose layer
CMRF connected to the MRF. Even if Vlora and CMRFwere
(192 × 384) and (192 × 512) matrices, respectively, we

compared r= 8 with r= 96, whereas the sophisticated selec-
tion of r could be 128 or 139 as 192 × 384 = 192 × 128 +

128 × 384 and 192 × 512 ∼= 192 × 139 + 139 × 512. Fig. 7
also depicts the similarity of the singular vectors between
1W (8) and 1W (96) for the WaveNet layer matrix Vlora and
the ConvTranspose layer matrix CMRF,which implies that
rank r= 8 can be more reduced into smaller r . Consequently,
we set r= 8 according to a previous recommendation [29]
and these supporting experiments.

Lastly, we applied the proposed method to fine-tune the
models with LoRA ranks r = 1 to further evaluate the
performance. We measured each model’s performance using
theNISQA-TTS andWV-MOSmetrics. Table 3 compares the
NISQA-TTS andWV-MOS metrics of the TTS models when
different LoRA ranks r= 1, 8, and 96 were applied on the
VCTK and Libri-TTS-100 datasets. The results demonstrated
that increasing the rank did not improve the fine-tuning per-
formance of the TTS model; instead, it led to a performance
decline. Consequently, the TTS model with r= 8 achieved
the highest performance among the three different ranks. This
confirmed that the rank r= 8 was the better choice among our
tested ranks.

G. COMPARISON OF SYNTHESIS AND TRAINING SPEED
We evaluated the speech synthesis and training speed of our
model, focusing on complexity when a new module was
added. We measured two indices: the average fine-tuning
speed per epoch (measured in seconds) and the real-time
factor (RTF). All the measurements were performed on a
single A100 GPU with a batch size of 1, and the fine-tuning
speed was measured using 1,546 sentences over 20 epochs.
Table 4 compares the average fine-tuning speed and RTFs
of the different models. A comparison of Model 8 with
Models 5 and 6 indicated that CLN increased its average
fine-tuning speed from 23.76 to 26.36 s. MRF also increased
the average fine-tuning speed of 2.18 s, as revealed by the
comparison of Models 10 and 8. In particular, the average
fine-tuning speed of Model 11, which was fine-tuned with
all the proposed approaches, was much faster than that of the
fully fine-tuned model. In contrast, the RTF was proportional
to the number of added modules that corresponded to the
additional model parameters given in the rightmost column
of Table 1. As expected, the fully fine-tuned model had the
lowest RTF among all the models compared in Table 4.
However, Model 11, which had the highest RTF among the
proposed PEFTmethods, remained at a real-time level. When
we inferred Model 11 on lower-resource GPUs, such as
NVIDIA TITAN X and RTX 2080 Ti, it was confirmed that
the proposed method could operate in real time under low-
resource conditions.

H. OBJECTIVE QUALITY ACCORDING TO DIFFERENT
DATASETS
In this section, we decompose the performance evaluation
results shown in Table 1 into the results according to each
dataset: VCTK and Libri-TTS-100.We conducted an ablation
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TABLE 5. Comparison of the number of trained model parameters and objective quality between the fine-tuned TTS models according to different
combinations of the proposed fine-tuning approaches applied to the publicly available VCTK dataset.

TABLE 6. Comparison of the number of trained model parameters and objective quality between the fine-tuned TTS models according to different
combinations of the proposed fine-tuning approaches applied to the publicly available Libri-TTS-100 dataset.

study using different fine-tuning methods and assessed the
performance of the proposed method. We compared the
results with those of full fine-tuning and ground truth. Table 5
presents the evaluation results using the objective metrics of
different methods on the VCTK dataset, whereas Table 6
provides the results using the objective metrics on the Libri-
TTS-100 dataset.

As shown in Tables 5 and 6, Model 5, which fine-tuned
AT, WN, and SEPL together, showed a higher overall qual-
ity of the synthesized speech, achieving SECS values of
0.591 and 0.526 and WV-MOS scores of 3.85 and 3.49.
By fine-tuning Proj to Model 5, Model 6 improved the over-
all performance of the generated speech with NISQA-TTS
scores of 2.84 ± 0.17 and 3.11 ± 0.31. However, when it was
applied to fine-tuning using four speakers, the performance

was lower than that for fine-tuning using a single speaker.
Model 7 involved fine-tuning using four speakers, demon-
strating higher performance and highlighting the importance
of CLN in the multi-speaker fine-tuning process. Moreover,
its objective performance was improved compared with that
of Model 6.

Model 10 involved fine-tuning the MRF by LoRA, which
showed an improvement in the overall quality across both
datasets. Model 11 further enhanced this performance by
incorporating ADP to improve the expressiveness of the
prior distribution, resulting in the best performance. Overall,
the VCTK dataset outperformed the Libri-TTS-100 dataset;
however, because of its nature, the Libri-TTS-100 dataset had
a higher naturalness score, and CLN had a more significant
impact during the fine-tuning process.
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TABLE 7. Comparison of the number of trained model parameters and objective quality between the fine-tuned TTS models according to different
combinations of the proposed fine-tuning approaches applied to the publicly available Common Voice dataset.

TABLE 8. Comparison of the number of trained model parameters and objective quality between the fine-tuned TTS models according to different
combinations of the proposed fine-tuning approaches applied to the publicly available KMSSS dataset.

In addition to the VCTK and Libri-TTS-100 datasets,
the performance of the fine-tuned models was evaluated on
the Common Voice dataset to assess the robustness of the
proposed PEFT method against diverse accents and speech
styles. Table 7 presents the evaluation results using the
objective metrics of the different methods on the Common
Voice dataset. Apparently, the WV-MOS score of the ground
truth samples was 3.78, which was lower than the scores
obtained from both the VCTK and Libri-TTS-100 datasets.
This was due to the characteristics of the Common Voice
dataset, such as its various accents and slight background
noise, which increased CER and WER. Compared with the
results in Tables 5 and 6, the tendency of performance vari-
ations according to different combinations of the proposed
fine-tuning approaches was similar to those in the VCTK and

Libri-TTS-100 datasets. In other words, the full fine-tuning
with CLN provided better performance than the conventional
full fine-tuning and also a comparable overall performance to
the ground truth with an SECS score of 0.696, demonstrating
the effectiveness of the fine-tuning process. Moreover, the
performance of Model 11 was the best among the fine-tuned
models using the proposed PEFT method. It also main-
tained WV-MOS and NISQA-TTS scores comparable to
those by the full fine-tuning, suggesting that the proposed
PEFT method could be effective even when applied to more
challenging speech samples.

I. ADAPTATION RESULTS WITH THE KOREAN DATASET
In this section, we apply the proposed PEFT method to
the KMSSS dataset to examine the effect of variations in
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FIGURE 8. 3D t-SNE plots of the latent variables in the kth forward flow and backward flow
(k= 1, · · · , 4): (a) forward flows and (b) backward flows of the flow-based decoder after full
fine-tuning and (c) forward flows and (d) backward flows of the flow-based decoder after applying
LoRA in Model 11. The plots were obtained using 32 samples from the VCTK dataset.

pronunciation and tone across languages on the model’s
adaptability. Table 8 presents the evaluation results using the
objective metrics of the different methods on the KMSSS
dataset. According to the results, although the proposed
PEFT method was applied to fine-tune the pretrained Korean
TTS model, the difference in terms of performance between
Model 11 and full fine-tuning with CLN for the Korean
dataset was consistent with those for the English datasets,
as shown in Tables 5–7. This implied that even if we devel-
oped a PEFT method using English datasets, the proposed
PEFT method could be applied to any language. Instead, the
most critical factor for applying PEFT lies in the ability of
the pretrained TTS model to produce proper synthetic and

personalized speech by applying the proposed fine-tuning
method to achieve optimal performance. In conclusion, the
proposed PEFT method can be effectively applied in various
scenarios, regardless of the language.

J. COMPARISON WITH ZERO-SHOT TTS MODELS
In this section, we compare the performance of our model,
which incorporated the proposed PEFT method, with two
zero-shot TTS models: YourTTS [11] and XTTS [14].
YourTTS is a VITS-based E2E TTS model that utilizes the
H/ASP model’s output as speaker embedding and applies
a speaker consistency loss to ensure high speaker similar-
ity between synthetic and ground truth speech. Meanwhile,
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TABLE 9. Comparison of the objective metrics between Model 11,
Your-TTS, and XTTS. The results are averaged across the test samples from
the VCTK and Libri-TTS.

XTTS builds on Tortoise [61] but introduces several
novel modifications to enable multilingual training, enhance
zero-shot TTS performance, and achieve faster training and
inference. As we aimed to evaluate the performance of the
zero-shot TTS, we utilized the open-source YourTTS8 model
and XTTS-v29 without any fine-tuning. To evaluate these
three TTS models, including our Model 11, we prepared
120 samples by taking 60 samples from each VCTK and
Libri-TTS-100.

Table 9 compares the objective metrics of Model 11,
Your-TTS, and XTTS-v2. Apparently, Model 11 outper-
formed YourTTS in all objective metrics. Meanwhile, XTTS
achieved slightly better WER, CER, and NISQA-TTS values
than Model 11, but Model 11 showed much better perfor-
mance in terms of SECS, which was the most important
metric for personalized speech. Therefore, we concluded that
the proposed PEFTmethod was more effective than zero-shot
TTS models for generating personalized speech.

K. EFFECT OF LoRA ON INFORMATION FLOW IN THE
FLOW-BASED DECODER
Herein, we investigate whether the application of LoRA to
the flow-based decoder did not affect invertibility during
inference. Fig. 8 illustrates the three-dimensional (3D) t-SNE
of each k-th latent variable from fk (·) and f

−1
k (·), as described

in equation (3). The final output (k = 4)was then passed back-
ward through the same layers to obtain the original output
data, as depicted in Fig. 8(b) (full fine-tuning) and Fig. 8(d)
(Model 11).

To measure the difference between the initial forward data
distribution and the final backward distribution, we used the
centered kernel alignment (CKA) [62]. CKA quantifies the
similarity between pairs of neural network representations
and effectively calculates the similarity of representation
distributions invariant to isotropic scaling. Using CKA,
we can robustly assess the similarity of data distributions
before and after passing through flow layers. Note that
the CKA calculations were performed using open-source
data10.
Table 10 compares the CKA accuracy between the latent

variables of the first forward and the last backward layer
outputs applied to the full fine-tuned model, Model 2, and
Model 11. The reason why we compared Model 11 with
Model 2 was that Model 2 was the first attempt to deal with
LoRA to WaveNet in the flow network.

8https://github.com/Edresson/YourTTS
9https://github.com/coqui-ai/TTS
10https://github.com/yuanli2333/CKA-Centered-Kernel-Alignment

TABLE 10. Comparison of the CKA accuracy between the latent variables
of the first forward and the last backward layer outputs, applied to the
full fine-tuned model, Model 2, and Model 11.

As shown in the table, Model 11 achieved a CKA accuracy
of 96.19, whereas the full CKA accuracy of the fine-tuned
model was 96.31. Such a high similarity score of Model 11
demonstrated that the integration of LoRA into the flow-base
encoder yielded flow invertibility. Furthermore, Model 2
achieved a CKA accuracy of 95.98. Although Model 2
showed lower speech performance because of its fewer tuning
parameters, the CKA scores indicated that the invertibility of
the flow transformations was also maintained. These results
confirmed that integrating LoRA did not affect the invertibil-
ity of the flow-based transformations.

VI. CONCLUSION
In this paper, we proposed several fine-tuning approaches
to improve the performance of an E2E multi-speaker TTS
by efficiently adapting it to new speakers. To this end,
we first proposed a LoRA-based fine-tuning approach to
achieve speech quality comparable with that of a fully
fine-tuned model by updating a smaller number of model
parameters. Second, a CLN-based fine-tuning approach was
proposed to handle speaker-specific variation with improved
multi-speaker PEFT performance. Third, the residual adapter
was integrated into the text encoder output to improve the
expressiveness of the prior distribution. We constructed the
VITS models using the VCTK, Libri-TTS-100, Common
Voice, and Korean multi-speaker datasets according to dif-
ferent combinations of the proposed fine-tuning approaches
(i.e., LoRA, CLN, and residual adapter). The model per-
formance was evaluated using five objective measures,
namely, SECS, WER, CER, NISQA-TTS, and WV-MOS,
as well as a subjective listening test involving the mea-
surement of CMOS. The performance comparison revealed
that LoRA improved the overall objective measures but
was limited in improving the subjective quality for multi-
speaker TTS. However, combining LoRA and CLN improved
the speech quality compared to that using only LoRA.
In addition, the VITS model was fine-tuned using all the
proposed approaches, which provided objective and subjec-
tive speech quality compared with the fully fine-tuned model.
Next, we investigated the effect of the proposed fine-tuning
approaches on speaker clustering. The t-SNE comparison
showed that CLN was effective in separating speakers in
the latent space. Finally, the comparison of complexity by
measuring the average fine-tuning speed and RTF showed
that the proposed fine-tuning approaches were realized with
less complexity compared with the full fine-tuning approach.

Despite these promising results, the proposed approaches
have limitations that require future work. First, although the
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proposed PEFT method achieved good performance, it is still
not as effective as full fine-tuning. Second, the baselinemodel
structure has exhibited limited adaptability when dealingwith
challenging datasets such as Common Voice. These limita-
tions can be mitigated by enhancing the adaptability of the
pre-trained model through structural modifications or adding
newmodules to the baselinemodel architecture. Furthermore,
additional adapters can be integrated into various compo-
nents of the system beyond the prior encoder of the VITS to
assess their potential for further performance enhancement.
By focusing on these aspects, we aim to advance the adapt-
ability and efficiency of PEFT approaches in multi-speaker
TTS systems.
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