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Abstract: Frames are recognized for their importance in many fields of communications, signal
processing, quantum physics, and so on. In this paper, we design an incoherent tight frame by
selecting some rows of a matrix that is the Kronecker product of Fourier and unitary matrices. The
Kronecker-product-based frame allows its elements to have a small number of phases, regardless of
the frame length, which is suitable for low-cost implementation. To obtain the Kronecker-product-
based frame with low mutual coherence, we first derive an objective function by transforming
the Gram matrix expression to compute the coherence. If the Hadamard matrix is employed as a
unitary matrix, the objective function can be computed efficiently with low complexity. Then, we
find a subsampling index set for the Kronecker-product-based frame by minimizing the objective
function. In simulations, we show that the Kronecker-product-based frames can achieve similar
mutual coherence to optimized harmonic frames of a large number of phases. We apply the frames to
compressed sensing (CS) as the measurement matrices, where the Kronecker-product-based frames
demonstrate reliable performance of sparse signal recovery.

Keywords: compressed sensing; incoherent tight frame; kronecker product; mutual coherence

1. Introduction

A frame is a set of vectors in Hilbert space that spans the whole space [1]. The concept
of a frame is useful to represent an overcomplete spanning system, which means that a
frame has more vectors than the dimension of the space [2]. Frames have been widely
applied to various fields of quantum physics/computing [3], communications [4], graph
theory [5], algebraic geometry [6], spherical codes [7], and so on.

A frame with incoherent characteristics, where the frame vectors have low similarity
to each other, is desired in many applications. The mutual coherence [8] is used as an
indicator of how similar each frame vector is to each other. For example, the low mutual
coherence of a frame enables sparse signal recovery from incomplete measurements [9] in
compressed sensing (CS), accurate target scene recovery in radar sensing [10], low multiple
access interference in synchronous code-division multiple access (CDMA) [11], and reliable
angular momentum analysis in quantum mechanics [12]. However, the mutual coherence
cannot be reduced indefinitely close to 0 when the number of frame vectors N is larger than
the frame length m. There exists a theoretical lower bound on mutual coherence, which is
called the Welch bound [13]. If all the vectors in a frame have unit norm, and the magnitude
of the inner product of each pair meets the Welch bound equality, the frame is called an
equiangular tight frame (ETF) [14].

ETFs have been studied for a long time, but they are known to be notoriously difficult
to design [15–17]. Therefore, a frame with nearly optimal coherence, which is a good
alternative to ETF, has been actively studied. A variety of algebraic methods have been
exploited in [18–25] to design various incoherent frames with nearly optimal coherence
in a constructive way. In addition, there have been numerous algorithmic approaches for
obtaining incoherent frames. Alternating projection methods were used in [26–29], which
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solved the singular value decomposition (SVD) to minimize the maximum magnitude of the
Gram matrix of a frame. To reduce the computational complexity of implementing SVD, the
algorithms that optimize the coherence of a frame without solving SVD problems [30–33] or
using only matrix–vector multiplications [34] were proposed. In [35], the authors utilized
the discrete stochastic approximation method, using the Kronecker product of two Fourier
matrices for near-optimal codebook design under spatially correlated 3D channels. In [7],
incoherent tight frames were designed by the distance optimization algorithm for spherical
code construction. In [36], incoherent unit-norm frames were designed by the alternating
minimization penalty method. In [37], high-dimensional incoherent frames were designed
by linear programming exploiting the minorization maximization technique [38]. In [39],
the authors optimized the coherence of a dictionary matrix by a greedy algorithm based
on a quasi-Newton method [40]. Finally, real/complex-valued, sparse, and harmonic
incoherent frames were designed in [41] by using sequential iterative decorrelation convex
optimization (SIDCO) or iterative reweighted l1 optimization (IRL1) [42]. Especially, the
incoherent harmonic frames were designed by subsampling the indices of the Fourier
matrix by solving an l1-optimization problem using IRL1 and exploiting a local search
method.

In this paper, we design incoherent tight frames by subsampling rows from the
matrices generated by the Kronecker product with unitary and Fourier matrices. In this
Kronecker-product-based frame, each frame vector has the elements that have a small number
of phases, which allows low implementation complexity. We show that the Gram matrix
of the frame is block-wise circulant due to the structure of the Fourier matrix. Using
this feature, we derive an objective function that calculates the mutual coherence of the
Kronecker-product-based frame equivalently. Furthermore, we show that if the unitary
matrix of the frame is closed under column-wise multiplication, such as the Hadamard
matrix from the Sylvester’s construction [43], we can calculate the objective function
more efficiently with low computational complexity, which is reduced drastically from
that of the whole Gram matrix. Finally, an optimization problem is formulated to find
subsampling row indices of the Kronecker product using the objective function. We exploit
the Algorithm 2 in [41] to solve the optimization problem, which ultimately yields the
Kronecker-product-based frames with low mutual coherence.

We conduct extensive simulations to investigate the mutual coherence of the Kronecker-
product-based frames for various m and N. We demonstrate that the Kronecker-product-
based frames can achieve similar mutual coherence to the optimized harmonic frames [41],
although ours have a smaller number of phases. Furthermore, we found two ETFs in
dimension N = 64 and frame length m = 28, which have 4-phase and 8-phase, respectively.
To the best of our knowledge, these ETFs are new ones that have never been reported. More-
over, these ETFs with a small number of phases can be easily generated by the Kronecker
product of Fourier and Hadamard matrices, which is suitable for practical applications.
Finally, we apply the Kronecker-product-based frame to CS as the measurement matrix
to recover sparse signals from incomplete measurements, which demonstrates reliable
performance of sparse signal recovery. In conclusion, we show that the Kronecker-product-
based frames designed by our novel objective function have low mutual coherence and a
small number of phases, which can be a good alternative to optimized harmonic frames in
practical applications.

2. Background
2.1. Frame Fundamentals

Definition 1 ([1]). A collection of vectors ( f j)j∈J in a Hilbert space H is called a frame if there
exist two constants 0 < A ≤ B < ∞, such that for all f ∈ H,

A‖ f ‖2
2 ≤ ∑

j∈J
|
〈

f , f j
〉
|2 ≤ B‖ f ‖2

2, (1)

where J is an countable index set [44], 〈·, ·〉 denotes inner product, and ‖·‖2 denotes l2-norm.
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In this paper, we consider H = R or H = C. If the frame bounds are A = B, the
frame is called an A-tight frame and, if the frame bounds are A = B = 1, the frame is a
normalized tight frame. Furthermore, if the frame ( f j)j∈J meets the condition for being a
tight frame and if

∥∥ f j
∥∥

2 = 1, ∀j ∈ J, this frame is called a unit-norm tight frame.

Definition 2 ([8]). Suppose that a frame ( f j)j∈J has the frame vectors f j ∈ Rm or Cm for ∀j ∈ J,
where the index set size is |J| = N . Then, the frame ( f j)j∈J is called an equiangular tight frame if
it satisfies following conditions.

1.
∥∥ f j
∥∥

2 = 1,

2. |
〈

f j, fk
〉
| =

√
N−m

m(N−1) , for j 6= k where ∀j, k ∈ J.

2.2. Mutual Coherence

Suppose that the frame size is |J| = N and the frame length is m. We can deal
with a frame ( f j)j∈J as a matrix that has the frame vectors as its columns, i.e., A =

[ f1, f2, · · · , f J ] ∈ Cm×N . Then, the mutual coherence [8] of A is given by

µ(A) = max
1≤i<j≤N

∣∣aH
i · aj

∣∣
‖ai‖2

∥∥aj
∥∥

2

, (2)

where ai is the ith column vector of A. The coherence of a frame is bounded by

µ(A) ≥
√

N −m
m(N − 1)

, (3)

which is called the Welch bound [13], and the right-hand side term of (3) is called the Welch
bound equality (WBE).

2.3. Kronecker Product

The Kronecker product [45] of A ∈ Ca×b and B ∈ Cc×d is,

A
⊗

B =




a1,1B · · · a1,bB
...

aa,1B · · · aa,bB


 ∈ Cac×bd, (4)

where A = [ai,j|1 ≤ i ≤ a, 1 ≤ j ≤ b].

2.4. Other Notations

A and AH denote the complex conjugate and the conjugate transpose of a matrix
A, respectively. AT denotes the transpose of a matrix A. The support set of a vector
x = [x1, · · · , xN ] is defined by supp(x) = {i|xi 6= 0}. CN (µ, σ2) denotes the complex
Gaussian distribution with mean µ and standard deviation σ. The Fourier matrix Fq is
given by Fq = [ω(i−1)(j−1)|1 ≤ i, j ≤ q], where ω = e−2π j/q. The Hadamard matrix
Hn satisfies Hn ·HT

n = nI [46]. As an example, the Hadamard matrix from Sylvester’s
construction [47] is given by

H2n =

[
Hn Hn
Hn −Hn

]
, (5)
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where H1 = [1] and I is an n× n identity matrix. For a matrix A ∈ Cm×N , the operator
vec(A) returns a vector a ∈ CmN×1 by stacking the columns. The operator circ(a) returns a
matrix by circularly shifting a input vector a = [a1, · · · , aN ]

T , i.e.,

circ(a) =




a1 aN aN−1 · · · a2
a2 a1 aN · · · a3
a3 a2 a1 · · · a4
...

...
...

. . .
...

aN aN−1 aN−2 · · · a1



∈ CN×N . (6)

The operator diag(a) returns a diagonal matrix that has the vector a as its diagonal
entries. The operator

⊙
denotes a column-wise multiplication operator, i.e.,

a
⊙

b = [a1b1, · · · , ambm]
T (7)

where a = [a1, a2, · · · , am]T ∈ Cm×1 and b = [b1, b2, · · · , bm]T ∈ Cm×1. The operatorM(A)
returns the maximum magnitude of a matrix A.

3. Problem Formulation for Kronecker-Product-Based Frames

To find a Kronecker-product-based frame with low mutual coherence, we select m
rows from an N × N matrix from the Kronecker product between unitary and Fourier
matrices. As a subsampled unitary matrix is equivalent to a tight frame [2], the Kronecker-
product-based frame also becomes a tight one.

3.1. Problem Formulation

In this paper, we consider a unitary matrix U = [ui,j|1 ≤ i, j ≤ p] ∈ Cp×p, where
|ui,j| = 1. Let K = U

⊗
Fq ∈ CN×N , where Fq ∈ Cq×q is a Fourier matrix. We define a

row selection operator RΩ ∈ {0, 1}m×N to select m rows out of K, where the selected row
indices are specified by Ω ⊂ {1, · · · , N} with |Ω| = m. Let RΩ = [RΩ1 , · · · , RΩp ], where
RΩi ∈ {0, 1}m×q. Selecting the row indices of Ω from K, we obtain KΩ = RΩ ·K ∈ Cm×N ,
where

KΩ = [
p

∑
k=1

uk,1RΩk · Fq, · · · ,
p

∑
k=1

uk,iRΩk · Fq, · · · ,
p

∑
k=1

uk,pRΩk · Fq]. (8)

The Gram matrix of KΩ is G = KH
Ω ·KΩ = KH · RT

Ω · RΩ ·K ∈ CN×N . By definition
of (2), the mutual coherence of KΩ is clearly determined by the maximum magnitude of
off-diagonal elements of the Gram matrix G. Therefore, we can formulate a problem to find
a subsampling index set Ω for the Kronecker-product-based frame KΩ with low mutual
coherence by

min
Ω⊂{1,··· ,N}

M(m−1KH · RT
Ω · RΩ ·K− I). (9)

3.2. Kronecker Product with Unitary Matrix

In this section, we show that the original problem of (9) can be represented by a new
equivalent problem to find a subsampling row index set Ω.

Theorem 1. Define a binary matrix B̃ = [b̃1, · · · , b̃p] ∈ {0, 1}q×p, where diag(b̃k) = RT
Ωk
·RΩk .

Moreover, define Uc by including distinct column-wise multiplications from all possible pairs of
column vectors of U and U, i.e.,

Uc = [1p, u1
⊙

u2, · · · , ui
⊙

uj, · · · , up−1
⊙

up], (10)
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where 1 ≤ i < j ≤ p and 1p = {1, · · · , 1}T are all one vector of length p. Then, the problem (9)
can be equivalently converted into

min
B̃∈{0,1}q×p

M(m−1FH
q · B̃ ·Uc − E), (11)

where all elements of E = [ei,j|1 ≤ i ≤ q, 1 ≤ j ≤ p] are zero except e1,1 = 1.

Proof of Theorem 1. For convenience of analysis, we assume that the selected row indices
of Ω are sorted in ascending order. Recall RΩ = [RΩ1 , · · · , RΩp ], where RΩi ∈ {0, 1}m×q.
Then, we can write the Gram matrix G using submatrices Gi,j, i.e., G = [Gi,j|1 ≤ i, j ≤ p],
where

Gi,j =
p

∑
k=1

p

∑
l=1

u∗l,iuk,jF
H
q · RT

Ωl
· RΩk · Fq. (12)

Since RT
Ωl
· RΩk = 0 for l 6= k and RT

Ωk
· RΩk = diag(b̃k), we have

Gi,j =
p

∑
k=1

u∗k,iuk,jF
H
q · diag(b̃k) · Fq. (13)

Since FH
q · diag(b̃k) · Fq = circ(bk), where bk = FH

q · b̃k, Gi,j in (13) becomes

Gi,j =
p

∑
k=1

u∗k,iuk,jcirc(bk). (14)

Thanks to the circulant feature of (14), we only need to evaluate the first column vector
of each submatrix Gi,j for mutual coherence, instead of all the columns. The first column
vector of the submatrix Gi,j can be written as

p

∑
k=1

u∗k,iuk,jbk =
p

∑
k=1

u∗k,iuk,jF
H
q b̃k = FH

q · B̃ · (ui
⊙

uj), (15)

where B̃ = [b̃1, · · · , b̃p] ∈ {0, 1}q×p. Moreover, we only need to check the subma-
trices Gi,j for 1 ≤ i ≤ j ≤ p, since the Gram matrix G is symmetric in its magni-
tude. Note that ui

⊙
ui = 1p for all i, as each element of U has unit magnitude. To

evaluate the mutual coherence, it is thus sufficient to check the first column vectors
of Gi,j in (15) only for the column-wise multiplications in Uc. As a result, the original
problem (9) to find a subsampling index set Ω can be equivalently represented by (11).

3.3. Kronecker Product with Special Unitary Matrix

As a special case, we may consider a unitary matrix U that is closed under column-
wise multiplication, i.e., Uc = U. In (10), the matrix Uc has at most (p

2) + 1 distinct columns,
which can make the problem (11) computationally expensive for large p. However, if U is
closed under column-wise multiplication, the number of columns of Uc is reduced to p. A
typical example of this unitary matrix is the Hadamard matrix generated by Sylvester’s
construction [43].

Corollary 1. Let Hp ∈ {0, 1}p×p, p = 2v be the Hadamard matrix that is closed under column-
wise multiplication. Recall a binary matrix B̃ = [b̃1, · · · , b̃p] ∈ {0, 1}q×p where diag(b̃k) =
RT

Ωk
· RΩk . Then, the problem of (11) is equivalent to

min
B̃∈{0,1}q×p

M(m−1 FH
q · B̃ ·Hp − E). (16)



Appl. Sci. 2022, 12, 11055 6 of 14

The optimization problem (16) is a non-convex problem that we should solve to find a
subsampling index set for the Kronecker-product-based frame with low mutual coherence.

3.4. Computational Complexity of Objective Function

In general, the number of calculations for the objective function of (9) is O(mN2). The
computational complexity of the equivalent objective function (11) is O(N(p2 + p log q)),
which is still quite high. However, if U is the Hadamard matrix, the computational
complexity for the objective function of (16) can be reduced drastically. By exploiting
the fast Fourier and Hadamard transform algorithms, we can achieve the computational
complexities of O(pq log q) for multiplication with Fq and O(pq log p) for multiplication
with Hp, respectively, where pq = N. Therefore, the computational complexity of the
objective function in (16) is O(pq log q + pq log p) = O(N log N). As a result, we can
compute the objective function of (16) fast and efficiently to find a subsampling index
set Ω by using the features of the Kronecker-product-based frame. The computational
complexities of these objective functions are summarized in Table 1.

Table 1. The computational complexities of several objective functions for the frames from Kronecker
product, where N = pq.

Objective Function Computational Complexity Components of Kronecker
Product

(9) O(mN2) General matrices
(11) O(N(p2 + p log q)) Unitary and Fourier matrices

(16) O(N log N)
Hadamard and Fourier

matrices

4. Algorithm for Solving Optimization Problem

In Section 3, we derived a novel objective function that calculates the mutual coherence
with lower computational complexity than the typical Gram matrix computation. In this
section, we use the Hadamard matrix as a unitary matrix, i.e., U = Hp for the Kronecker
product. We use an existing algorithm, Algorithm 2 in [41], to solve the optimization
problem (16) to find a subsampling index set for the Kronecker-product-based frame with
low mutual coherence. We give a brief sketch of Algorithm 2 in [41], and readers are
referred to [41] for more details.

Since the objective function of (16) is non-convex, we relax the binary constraint of B̃
by finding X̃ ∈ Rq×p instead with the elements between 0 and 1, similar to the relaxation
of [41]. Then, we begin with an optimization problem, which is based on IRL1 [42], given
as

minX̃M(m−1 FH
q · X̃ ·Hp − E1) + λ

∥∥∥diag(w) · vec(X̃)
∥∥∥

1

subject to x̃1 = 1, ∑N
i=2 x̃i = m− 1, 0 ≤ x̃i ≤ 1, x̃k = 0, k ∈ Ω0,

(17)

where λ is a regularization parameter and vec(X̃) = [x̃1, · · · , x̃N ]
T . To obtain a stable

solution of (17), some elements of X̃ at random positions are fixed to zero. The index set of
positions fixed to zero is denoted as Ω0 ⊂ {2, 3, · · · , N}, where |Ω0| = dζ(N −m)e for 0 <
ζ < 1. Moreover, x̃1 is fixed to 1 for a unique solution. In (17), the l1 weight regularization
term

∥∥∥diag(w) · vec(X̃)
∥∥∥

1
promotes the sparsity of X̃, where w = [w1, · · · , wN ]

T with each
element used in Algorithm 2 [41], i.e.,

wk = (x̃k + ε)−1. (18)

We solve this optimization problem via CVX [48].
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Next, we quantize the solution of (17) to obtain the binary solution B̃. Let vec(B̃) =
[b̃1, · · · , b̃N ]

T , where each element is obtained by

b̃i =

{
1, if x̃i ≥ δ

0, if x̃i < δ
(19)

for 2 ≤ i ≤ N, and the support set of vec(B̃) is denoted by Ω. Note that Ω may contain m
or more indices with sufficiently small δ in (19), which requires an additional step to reduce
the number of indices to m. As in Step 5 of Algorithm 2 [41], we eliminate some indices
iteratively until m indices remain in Ω, where an index i ∈ Ω will be eliminated at each
iteration if Ω \ {i} causes the lowest increase in mutual coherence. Finally, we conduct
a local brute-force search to maximally reduce the mutual coherence of the Kronecker-
product-based frame, which updates Ω by replacing its β indices by those in {1, · · · , N} \Ω.
As in the previous step, the mutual coherence is computed by (16) for the local brute-force
search. The whole process to find a subsampling index set for the Kronecker-product-based
frame is summarized in Figure 1.
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Solve (17) to find X̃.

Update w by (18).
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No
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Figure 1. The optimization process for obtaining the Kronecker-product-based frame. In this process,
eliminating redundant elements in B̃ and implementing local brute-force search are carried out by
Steps 5 and 6 of Algorithm 2 in [41], respectively.

5. Results

In simulations, we demonstrate the performance of the Kronecker-product-based
frames by examining the mutual coherence and evaluating the recovery performance of
compressed sensing with the frames.

For the algorithm of Section 4, we set the parameters ζ = 10−1, ϵ = 10−7, λ = m−1 and
δ = 10−8. We tried the local brute force search to change up to β = 3 indices for N < 128,
β = 2 for N = 128, and β = 1 otherwise. These parameters are chosen as the same
ones as Algorithm 2 [41] that our approach is based on. We set Iter = 30 for solving the
optimization problem of (17) via CVX. We repeated the whole process in Figure 1 10 times
and then chose the frame with the lowest mutual coherence at each (m, N). For comparison,

Figure 1. The optimization process for obtaining the Kronecker-product-based frame. In this process,
eliminating redundant elements in B̃ and implementing local brute-force search are carried out by
Steps 5 and 6 of Algorithm 2 in [41], respectively.

5. Results

In simulations, we demonstrate the performance of the Kronecker-product-based
frames by examining the mutual coherence and evaluating the recovery performance of
compressed sensing with the frames.

For the algorithm of Section 4, we set the parameters ζ = 10−1, ε = 10−7, λ = m−1

and δ = 10−8. We tried the local brute force search to change up to β = 3 indices for
N < 128, β = 2 for N = 128, and β = 1 otherwise. These parameters are chosen as
the same ones as Algorithm 2 [41] that our approach is based on. We set Iter = 30 for
solving the optimization problem of (17) via CVX. We repeated the whole process in
Figure 1 10 times and then chose the frame with the lowest mutual coherence at each
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(m, N). For comparison, the optimized harmonic frames are designed by Algorithm 2
in [41]. As remarked in [41], the optimized Hadamard-based frames are also designed
using the same algorithm by exploiting the Hadamard matrix instead of the Fourier matrix.
Moreover, random Kronecker-product-based frames, which are labeled by random KP-
based frames in each figure, are designed by randomly selecting m rows from N × N
Kronecker product matrix K = Hp

⊗
Fq, where the frames with lowest mutual coherence

among 10 random trials are selected. The Kronecker-product-based frame designed by
the algorithm of Section 4 is called the optimized Kronecker-product-based frame in this
section, which is labeled as optimized KP-based frame in each figure.

5.1. Mutual Coherence

In Figure 2, we show the mutual coherence of the Kronecker-product-based frames
with N = 64 and 256, respectively. The optimized Kronecker-product-based frames have
the number of phases q = 4, 8, and 16, respectively. For q = 4, the mutual coherence is
unstable about the frame length m. However, for q = 16, the optimized Kronecker-product-
based frames show similar mutual coherence with the optimized harmonic frame. This
result demonstrates that the optimized Kronecker-product-based frames of a small number
of phases q� N can perform similarly to the optimized harmonic frames of the number
of phases N. This means that the optimized Kronecker-product-based frames are more
suitable for practical applications, thanks to the small number of phases. In particular, we
found ETFs with the number of phases q = 4 and q = 8 in dimension N = 64 and frame
length m = 28 by the algorithm of Section 4. As far as we know, these have never been
reported. As witnessed by Figure 3 in [41], we also observed a small increase in mutual
coherence at some m from the optimized Hadamard-based frames, despite the increase
in the frame vector length, which is due to the restricted, binary entries of the Hadamard
matrix.

In Figure 3, we designed the Kronecker-product-based frames with various dimensions
N for fixed frame lengths m = 32 and 64, respectively, where p = 4, 8 and 16. For the
optimized Hadamard-based frames, we examined the mutual coherence for N = 128, 160,
and 192, where the Hadamard matrices exist. As q = N/p, the number of phases of the
Kronecker-product-based frames are p times lower than that of the optimized harmonic
frames. We observe that the mutual coherence of the optimized Kronecker-product-based
frames is similar to those of the optimized harmonic frames in various N, even if they have
significantly lower number of phases. The mutual coherence of optimized Hadamard-based
frames is slightly higher than those of the other optimized frames.

5.2. CS Recovery Performance

We apply the optimized Kronecker-product-based frames in CS model to measure
sparse signals, where the orthogonal matching pursuit (OMP) [49] is deployed to recover the
sparse signals. For a sparse signal x, we select the support set K ⊂ {1, · · · , N} randomly,
where |K| = s � N. The non-zero elements are drawn from the complex Gaussian
distribution with zero mean and variance 1.

Then, x is normalized to ‖x‖2 = 1. The linear measurement y ∈ Cm×1 is given as

y = Ax + n, (20)

where A ∈ Cm×N is a measurement matrix. The additive white Gaussian noise (AWGN)
vector is n ∼ CN (0, σ2

NI). The signal-to-noise ratio (SNR) is defined as E(‖Ax‖2
2)/(mσ2

N),
and we fix the SNR to 15 dB. We assume that the OMP has the prior knowledge of the
sparsity s.

We recover Is = 10,000 signals for sparse recovery performance. We denote the ith
original and recovered signal by x(i) and x̂(i), respectively. We also denote the ith original
and recovered support set by K(i) and K̂(i), respectively. The mean squared error (MSE) is
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defined as I−1
s ∑Is

i=1

∥∥∥x(i) − x̂(i)
∥∥∥

2

2
, and the success rate of support set recovery is defined as

|K ∩ K̂|/|K|.

6 8 10 13 16 20 24 28 32

Frame length m

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
u

tu
a

l 
c
o

h
e

re
n

c
e

Optimized harmonic frame

Optimized Hadamard based frame

Optimized KP-based frame (q=4)

Optimized KP-based frame (q=8)

Optimized KP-based frame (q=16)

Random KP-based frame (q=16)

Welch bound

(a)

6 8 10 13 16 20 24 28 32 36 40 45 50 55 60 64

Frame length m

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
u

tu
a

l 
c
o

h
e

re
n

c
e

Optimized harmonic frame

Optimized Hadamard based frame

Optimized KP-based frame (q=4)

Optimized KP-based frame (q=8)

Optimized KP-based frame (q=16)

Random KP-based frame (q=16)

Welch bound

(b)

Figure 2. The mutual coherence of various frames over frame length m. (a) N = 64, (b) N = 256.
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Figure 3. The mutual coherence of various frames over frame dimension N. (a) m = 32, (b) m = 64.

In simulations, the CS measurement matrix A is from the optimized harmonic, op-
timized Hadamard-based, random Kronecker-product-based, and optimized Kronecker-
product-based frames, respectively, where N = 256 and m = 64. For random Kronecker-
product-based and optimized Kronecker-product-based frames, we set q = 16. In Figure 4,
we show the sparse recovery performance for the four frames in CS. If the sparsity s is
small, e.g., s ≤ 19, the optimized harmonic, optimized, and random Kronecker-product-
based frames show almost the same performances of success rate and MSE, respectively.
Meanwhile, if s ≥ 20, the success rate and the MSE of random Kronecker-product-based
frames becomes worse than those of the optimized Kronecker-product-based and opti-
mized harmonic frames due to their high coherence. Figure 4 reveals that the optimized
Hadamard-based frames show the worst performance of success rate and MSE. From the
distribution of inner product magnitudes of all possible frame vector pairs, we observed
that the optimized Hadamard-based frame has discrete magnitudes of inner products, and
many pairs have large magnitudes of inner products, although the largest one is smaller
than that of the random Kronecker-product-based frame. Thus, many frame vectors of large
inner products are likely to be involved in CS measurement process, which will degrade
the CS recovery performance of optimized Hadamard-based frame.

Moreover, if s ≥ 20, we observed the optimized Kronecker-product-based frame
with q = 16 achieves better performance of success rate and MSE than the optimized
harmonic frame. To investigate this observation, we compare the distributions of the
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average magnitudes of inner products for randomly selected 30-frame vectors in the
optimized harmonic and the optimized Kronecker-product-based frames, respectively. We
performed 10,000 random trials of selecting the frame vectors and averaged the inner
product magnitudes to sketch the histogram. Figure 5 shows that if 30-frame vectors are
selected, the optimized Kronecker-product-based frame tends to have lower inner products
on average than the optimized harmonic frame, which implies that OMP will be more
likely to detect a support set of 30 non-zero entries in the optimized Kronecker-product-
based frame. Because the higher sparsity s requires a larger number of frame vectors to
be distinguished, it will be more helpful for CS recovery if the average magnitude of the
inner products of a frame is lower. Therefore, Figure 5 demonstrates that the optimized
Kronecker-product-based frame is advantageous in high sparsity s.

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Sparsity s

0.4

0.5

0.6

0.7

0.8

0.9

1

S
u
c
c
e
s
s
 r

a
te

 o
f 
s
u
p
p
o
rt

 s
e
t 
re

c
o
v
e
ry

Optimized harmonic frame

Optimized Hadamard based frame

Optimized KP-based frame (q=16)

Random KP-based frame (q=16)

(a)

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Sparsity s

10-3

10-2

10-1

100

M
S

E

Optimized harmonic frame

Optimized Hadamard based frame

Optimized KP-based frame (q=16)

Random KP-based frame (q=16)

(b)

Figure 4. Performance of sparse signal recovery for various frames of N = 256 and m = 64. (a)
Success rate of support set recovery, (b) mean squared error (MSE).
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Figure 5. The distribution of average magnitude of inner products for 30-frame vectors randomly
selected from the optimized harmonic and Kronecker-product-based frames, where N = 256 and
m = 64.

6. Conclusions

In this paper, we designed the Kronecker-product-based frame with low mutual
coherence and a small number of phases, which is advantageous in practical applications.
Utilizing the block-wise circulant feature of the Gram matrix, we derived a novel objective
function to optimize the mutual coherence with low computational complexity. To find a
subsampling index set for the Kronecker-product-based frame using the objective function,
we used Algorithm 2 in [41] by modifying the optimization problem for the Kronecker-
product-based frame. Simulation results show that the optimized Kronecker-product-based
frames have similar mutual coherence as the optimized harmonic frames, although ours
have a smaller number of phases. In particular, we obtained the ETFs in N = 64, m =
28 for q = 4, 8. To the best of our knowledge, these ETFs are new ones that have never
been reported. These ETFs with a small number of phases can be easily generated by
the Kronecker product of Fourier and Hadamard matrices, which is suitable for practical
applications. Finally, we applied the Kronecker-product-based frames for sparse signal
recovery in compressed sensing. We demonstrated that the optimized Kronecker-product-
based frames achieve similar performances of success rate in support set recovery and MSE
of the optimized harmonic frames.

The novelty of our work is to present an efficient objective function to optimize mutual
coherence with low complexity for the Kronecker product of Fourier and Hadamard
matrices. Furthermore, the algorithmic method for frame design allows us to obtain the
frames with arbitrary frame vector length m. In conclusion, the Kronecker-product-based
frames designed by a novel objective function can be suitable for practical applications
thanks to the low mutual coherence and a small number of phases. Applying our designed
frames for real-life applications will remain for future work.
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