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Abstract: In this paper, we propose a novel loss function for deep face recognition, called the additive
orthant loss (Orthant loss), which can be combined for softmax-based loss functions to improve
the feature-discriminative capability. The Orthant loss makes features away from the origin using
the rescaled softplus function and an additive margin. Additionally, the Orthant loss compresses
feature spaces by mapping features to an orthant of each class using element-wise operation and 1-bit
quantization. As a consequence, the Orthant loss improves the inter-class separabilty and the intra-
class compactness. We empirically show that the ArcFace combined with the Orthant loss further
compresses and moves the feature spaces farther away from the origin compared to the original
ArcFace. Experimental results show that the new combined loss has the most improved accuracy on
CFP-FP, AgeDB-30, and MegaFace testing datasets, among some of the latest loss functions.

Keywords: deep learning; discriminative feature learning; face recognition

1. Introduction

Face recognition (FR) [1,2] based on deep convolutional neural networks (DCNN) [3-7]
is one of the fields in computer vision that found great success in the 2010s, and it has
been actively studied as a biometric authentication [8-10] technique for face verification
and identification. In particular, deep FR has better recognition accuracy for images with
large variations such as pose, illumination, age, and expression compared to FR without
using DCCNs. The good recognition accuracy of the deep FR comes from the fact that each
DCNN layer is trained on a face image from various perspectives. It is important to design
an efficient loss function that can distinguish identities well using a training dataset with a
limited number of images and identities. To improve the recognition accuracy, various loss
functions [11-17] as well as network architectures [18-21] have been studied.

Many loss functions for FR have been studied based on the softmax function [22] for
image classification problems. In [23,24], the authors first trained a deep face verification
model using the softmax function. Wen et al. [25] proposed the Center loss that uses
both the softmax function and an additive term to improve the intra-class compactness.
Liu et al. [26] proposed a multiplicative angular margin to increase the cosine similarity of
each class. In [27], Wang et al. showed that the cosine similarity can be optimized using
a new scaling constant replacing the magnitudes of the inner product between weight
and feature vectors. Liu et al. [28] proposed the angular softmax function that moves to
the hypersphere manifold through weight normalization. In [29], Gao et al. proposed the
Margin loss that combines an additive term with the Center loss to enlarge the distances
between centers of each class. Wu et al. [30] proposed the Center invariant loss combined
with the center loss to solve a bias caused by imbalanced image data between identities.
In [31,32], the authors proposed a loss function by introducing an additive angular margin
to increase the cosine similarity of each class. Deng et al. [33] proposed the ArcFace
function that performs feature and weight normalizations in addition to the use of an
additive angular margin. In [34], Ou et al. proposed the LinCos-Softmax that replaces the
cosine similarity between feature and weight vectors with an approximated linear angle
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to prevent the angle saturation caused by the nonlinearity of cosine similarity. In [35],
Meng et al. proposed an adaptive loss function that efficiently learns the distributions of
features using the magnitudes of features. Tao et al. [36] proposed the FCGFace loss that
combines the ArcFace with two additive terms to compactly guide profile face features
to each center of the frontal face features. In [37], Wang et al. proposed the RVFace that
drops the noisy feature vectors and adaptively learn the distributions of features using
semi-hard feature vectors to improve the feature discriminative capability. For surveys on
more network structures and loss functions for deep FR, readers are referred to [38,39].

Many recent loss functions [31-34] only use the cosine similarity between weight and
feature vectors in the hypersphere manifold without feature magnitudes. Then, even if
feature vectors have high cosine similarities with weight vectors of their corresponding
class, the feature magnitudes may be small. In this case, the feature vectors have a problem
that the cosine similarity can be changed significantly when the signs of features generated
from images with large variation are changed due to their small magnitudes. On the other
hand, in the property of monotonicity of [35], it has been proven that feature magnitudes
increase with the cosine similarity. It has also been shown that an optimal feature magnitude
exists for a feature by the property of convergence of [35]. Based on the above properties,
we can see that it is necessary to increase the feature magnitude to find an optimal one as
well as to improve cosine similarity.

In this paper, we propose an additive orthant loss function, termed the Orthant loss,
to improve the inter-class separability and the intra-class compactness. The Orthant loss
improves the inter-class separability by increasing the distance between features and the
origin using the rescaled softplus function and an additive margin. Additionally, the 1-bit
quantization and element-wise operation of the Orthant loss simultaneously improve the
intra-class compactness of each feature space by attempting to make the features of the
same identity have the same signs. In this paper, the proposed loss function is termed as
the Orthant loss, since we try to map features of the same identity to an orthant where the
center of the corresponding class is located. The Orthant loss has two major differences
from the Center loss [25]. First, the Center loss requires an additional fully connected layer
to learn the center location of each class, whereas the Orthant loss does not require the layer.
In addition, the Center loss learns the distributions of all features to gather at the center of
each class without considering the feature magnitudes, while the Orthant loss learns the
distributions to efficiently utilize the feature spaces by considering the feature magnitudes.
Since our new loss function has no network modification, it is compatible with many of the
latest softmax-based loss functions. Thus, we construct a final loss function by combining
one of the lastest softmax-based loss functions [33,35] with the Orthant loss.

The experimental results show that a new loss function combining the ArcFace and
the Orthant loss together, termed the ArcOrthFace, has the better accuracy compared to
softmax-based loss functions, e.g., Center loss [25], SphereFace [28], ArcFace [33] and
MagFace [35], respectively, on CFP-FP [40], AgeDB-30 [41] and MegaFace [42] testing
datasets. Additionally, we confirm that the Orthant loss combined with the softmax-based
functions [22,33,35] improves the recognition accuracy in most benchmarks. In conclusion,
the Orthant loss, combined with the latest softmax-based functions, can improve the
accuracy of deep face recognition by enhancing the inter-class separability and the intra-
class compactness of feature spaces.

2. Background
2.1. Deep Face Recognition System

As shown in Figure 1, a deep FR system consists of training and testing phases. In
the training phase, DCNNSs such as AlexNet [3], VGGNet [4] and ResNet [6] are trained to
obtain the discriminative features x of preprocessed face images. The goal of training is
to learn a set of parameters W of the DCNN and the weight matrix W = (wy,--- ,wy) €
RI*M of the last fully connected layer, where [ is the dimension of features and M is the
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number of identities of a training dataset. The optimization problem of the deep FR is
formulated by:
(17\/\, /W) = argmin L(x; W, W),
WW

where £ is a loss function, and V and W are learned parameters of ¥V and W, respectively.
Once the model is trained, verification or identification is performed in the testing phase
using a distance measure, e.g., cosine similarity or Euclidean distance, to determine whether
the feature obtained from a test image is from a registered user of the system.

Training phase

DCNN - : w
felf ¥
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g o
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Figure 1. Deep face recognition (FR) system model.

2.2. Some Known Loss Functions

The softmax function [22] has been mainly used as a loss function, which is given by:

T

1Y ey
ESoftmax = - N Z lo wT x: wlx;
|— Yyt .
i=1 et + Z]#yi e’ 1)
oSi €08 (6y;)

lo ,
] & i cos (6y,) + Zj#yi 51 <08 (6))

z|=
™=

where wy, and w; are the y;th and the jth column of W, respectively, x; is a feature obtained
by inputting the ith image into DCNN, and N is the batch size. In (1), wyTl, X; = sy, cos (0y,)
and w]-Txi = 5;COS (9]-). While Lg,fimax is known in [23] to have good capability to improve
the separability between classes (inter-class separability), it has insufficient capability to
compress the feature space of each class (intra-class compactness).

In order to improve the intra-class compactness, many softmax-based loss functions
have been studied. The Center loss [25] is given by

A N
ECenter = ESoftmax + E Z”xi — €y ||2' (2)
i=1

where ¢y, is the center position of the y;th class, A is a hyperparameter for balancing the
two terms, and ||-|| is the lr-norm of a vector. Lcenter improves the intra-class compactness
by penalizing the distances between features and their corresponding class centers.
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The SphereFace [28] is formulated as:

olIxill(6y;)
ellxillw(6y;) 4 Zj;éyi ellxillcos (6;)

1 N
‘CSphere - N Z log
i=1

where ¢(8y,) = (—1)¥cos(m,0y,) — 2k, 0y, € {%, (kjni)n] and k € [0,m, — 1], in which
my is a multiplicative angular margin. Lsppere uses an multiplicative angular margin to
improve the intra-class compactness on a hypersphere manifold.

The ArcFace [33] has been proposed by:

oS cos (By,+1mq)

1 N
ﬁA F = — = lo
rcrace N Z; g eSCOS

1=

(By,;+mg) + Ejyéy- o5 €08 (ChM

where 1y is an additive angular margin, and s is a scaling constant. £ rcpace improves the
intra-class compactness using an additive angular margin on a hypersphere manifold.
The MagFace [35] is given by:

1 N
»CMagFace = N Z(ﬁMag + /\gg(szH))/
i=1

€08 (ﬂyl-+mg(HxiH))
s cos (Gyierg(HxiH))+E/#yi ¢
function, g(||x;||) is a strictly decreasing function and A is a hyperparameter that controls
the trade-off between Lyiag and g(|[xi]|). LMagFace Uses an adaptive margin mg(||x;||) and
regularization g(]|x;||) to improve the intra-class compactness.

where Lyj,g = — log , in which m¢(||x;|) is a strictly increasing
e

5 COs (9j)

3. Orthant Loss

In this paper, we propose an additive orthant loss, termed the Orthant loss, to im-
prove the inter-class separability and the intra-class compactness. The Orthant loss learns
the distributions of features away from the origin and compresses the feature spaces by
attempting to make the features of the same identity have the same signs. The Orthant loss
is proposed by:

1 —r(X; Wy, )—M¢ 2
Lorn = 37 12 3 a[rlog (14 @) ))] , ®)

where ¥;  is the kth element of a normalized feature X; = H;Z I
and Q; (w) is the 1-bit quantization function, i.e., Q1(w) = +1if w > 0 and —1 otherwise.
In addition, m, is an additive margin, a is a hyperparamter to adjust the size of the loss, r
is a hyperparameter to control the slope of the rescaled softplus function, [ is the feature
dimension and N is the batch size. The proposed algorithm of Loy, is given in Algorithm 1.
The reasoning behind the design of Orthant loss is to make each feature element have
the same sign as the weight vector of each class by making ¥; Q1 (wy,,) > 0 using 1-bit
quantization and element-wise operation, which improves the intra-class compactness. In
addition, the Orthant loss makes the magnitude of each feature element larger than m, to
improve the inter-class separability by using the additive margin and the rescaled softplus
function. Since Loy, only considers the feature and weight vectors of target identity y;
in (3), we combine Loy, with a softmax-based loss Lg.g, taking into account non-target
identities j # y;, which gives a final loss:

Wy, is the kth element of wy,

cFinal = 'CSoft + 'COrth- (4)
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Algorithm 1 The pseudo-code of Orthant loss Loy,

Input: Feature vectors x;, Weight matrix W = (wy, - - - , wy;), Ground-Truth ID y;, Hyper-
parameters a, r and m..
1: Normalize the feature vectors by X; = H%H
2: Clone and detach the weight matrix W to prevent gradient computation by
W = W.clone().detach()
3: Quantize the chosen weight vectors corresponding to y; by

Wy, = [Q1 (wy,1), Q(wy,2),- -+, Qu(wy, 1)
4: Calculate the element-wise magnitudes including margin m. by
u; = Wy, ©X; — m¢, where © is the element-wise product of two vectors.
5: Calculate the proposed loss in (3) using the rescaled softplus function for a batch by

2
Lorth = % 21]11 25(:1 a |:% log (1 + e*mi,k)}
Output: Loss score Loxn

In what follows, we describe the features of the Orthant loss.

Rescaled softplus function. To learn the distributions of features to be well sepa-
rated, we use the rescaled softplus function [43] fs(x) = % log (1+ e~"*), where r controls
the slope of fs(x). As r goes to infinity, fs(x) converges approximately into the hinge
function [44] f;(x) = max (0, —x). In f;,(x), if x > 0, learning no longer proceeds as the
gradient becomes 0. On the other hand, in f;(x), even if x > 0, learning is possible so that
x is farther away from zero since the gradient of f;(x) is not zero. Therefore, we use f;(x)
to improve the inter-class separability by distinguishing features around the origin.

Additive center separating margin. Figure 2a shows that a softmax-based loss func-
tion [28-35] learns the distribution of features centered on w; and wy to improve the
intra-class compactness using an angular margin my, respectively. However, since features
with small magnitudes can easily move to the feature spaces of other classes, the softmax-
based loss function using an angular margin has difficulty in distinguishing these features
correctly. To overcome this problem, this paper uses an additive margin m. to improve
the inter-class separability by pushing the features away from the origin, as illustrated in
Figure 2b. In the Center loss [25], which also uses an additive term, both ambiguous and
discriminative features can be gathered at the center of each class without considering the
feature magnitudes. On the other hand, both ambiguous and discriminative features move
away from the origin in the Orthant loss, which improves the inter-class separability by
increasing their magnitudes.

One-bit quantization and element-wise operation. To improve the intra-class com-
pactness, we quantize each weight vector of the last fully connected layer and perform
element-wise product on the normalized feature vectors. When the weight vectors are not
quantized, the signs of some elements of normalized feature vectors can be easily changed
if the magnitudes of the corresponding elements of the weight vectors are small. Therefore,
we train the DCNN model so that the signs of feature and weight vectors are identical by
multiplying the normalized feature by the 1-bit quantized weight vector. Then, we can
improve the intra-class compactness through the element-wise sign consistency between
feature and quantized weight vectors.

Despite the low computational cost, the 1-bit quantization may reduce the recognition
accuracy due to the inaccurate gradient update [45]. Since 1-bit quantization has zero
gradients on positive and negative sides, weight vectors of the last fully connected layer are
updated in a wrong direction using a surrogate gradient function such as hard hyperbolic
tangent (tanh) function. To maintain the accuracy while reducing the computational cost,
we exclude the 1-bit quantized weight vectors from the gradient calculation. In other words,
the weight vectors are updated using the softmax-based loss Lg.¢ without the Orthant loss
Lorwn in the back-propagation process. Note that the Orthant loss Loy, is combined to a
softmax-based loss when updating the set of parameters JV of the DCNN.
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Q1(w1)
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Figure 2. Geometric interpretation of feature space learned by a softmax-based loss function (a) with-

out and (b) with Orthant loss, respectively.

Squared loss function. As r increases, the gradient for a misclassified feature in the
rescaled softplus function f;(x) is approximately —1. Since f;(x) has the gradient of —1 for
both easy and hard features to distinguish, features do not quickly converge. To improve
the convergence speed, we introduce a squared loss to give a larger weight to a hard feature.
In many studies [44,46], the squared hinge function has been used to give a larger weight
to misclassified features. Inspired by this idea, we introduce a squared softplus function to
expect fast convergence of misclassified features.

In the learning process, 1-bit quantization and element-wise operation of the Orthant
loss make feature vectors have the same sign as the weight vectors of the corresponding
class. However, feature vectors may converge to an orthant of the corresponding weight
vector before the distances between weight vectors are sufficiently large, which fixes the
sign of the weight vectors prematurely. In other words, since the speed at which feature
vectors converge to the corresponding weight vector is faster than the speed at which the
weight vectors move away from each other, the sign of the weight vectors may be fixed
before the distance between the weight vectors increases. To avoid a premature decision of
weight vectors, we apply the Orthant loss after the learning progresses sufficiently. In this
paper, we apply the Orthant loss from 20,000th iteration.

Figure 3 displays 2D and 3D plots of features for the ArcFace and the ArcOrthFace,
respectively. We use the LResNet18E-IR [33], where a = 2, r = 30, and N = 128. In
addition, we use sy, = s; = 4, myg = 0.1 and m. = 1/+/2 for 2D features of Figure 3a,b
and sy, = s; = 8, mg = 0.2and m, = 1/+/3 for 3D features of Figure 3c,d, respectively.
For training and testing, we use a total of 2907 images of top four classes and a total of
4186 images of the top six classes sorted by the number of images in the CASIA-Webface
dataset [47] for 2D and 3D features, respectively. We assume that there ared =4 and d = 6
identities for 2D and 3D features, respectively. Here, we choose the number of identities
by d < 2!, which is valid in practice. In Figure 3, we project features outside the unit
sphere onto the sphere, where the features do not cause inter-class ambiguity due to the
sufficiently high magnitude. In this example, Figure 3a,b have 2907 features, respectively,
while Figure 3c,d have 4186 features, respectively.
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Figure 3. Visualization of features learned by the ArcFace function (a,c) without and (b,d) with the
Orthant loss, respectively. Each class has a different color and each point represents a feature.

In Figure 3b,d, we can see that ArcOrthFace has fewer features in the unit sphere
by attempting to push features away from the origin, compared to ArcFace. It suggests
that ArcOrthFace has improved inter-class separability compared to ArcFace, since the
fewer features cause less inter-class ambiguity around the origin. In specific, for 2D and 3D
features, we can observe that ArcOrthFace reduces the number of features inside the unit
sphere to 278 and 100, while 604 and 344 features remain by ArcFace, respectively. As a
result, ArcOrthFace, which learns the distributions of features away from the origin, shows
the improved inter-class separability, compared to ArcFace.

Figure 3b,d also show that ArcOrthFace has the better intra-class compactness than
ArcFace by compressing feature spaces further at the center of each class through 1-bit
quantization and element-wise operation. The feature spaces learned by ArcOrthFace
are distributed around 1-bit quantized vectors, i.e., {—1, +1}l, which demonstrates the
improved intra-class compactness, compared to ArcFace.

4. Experimental Results

Preprocessing. We use the datasets given in Table 1 for training and testing several
loss functions. All the preprocessed images used for training and testing are obtained
by [33] for fair comparisons. For preprocessing of each face image, five landmarks are
acquired using the multi-task cascaded convolutional networks (MTCNN) [48], alignment
is performed using similarity transformation, and then cropped to the image with a size
of 112 x 112. Each RGB image having a range of [0, 255] is normalized to have a range of
[—1,1] and exceptionally to have a range of [0, 1] on the MagFace [35].
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Table 1. Datasets for Training and Testing.

Datasets Number of Identities = Number of Images Types
CASIA-Webface [47] 10K 05M Training
LFW [49] 5749 13,233 Validation
CFP-FP [40] 500 7000 Validation
AgeDB-30 [41] 568 16,488 Validation
MegaFace(pro.) [42] 530 3530 Testing
MegaFace(dis.) [42] 690 K 1M Testing

Training. Table 2 presents common training setting and hyperparameters. In order to
fairly compare verification and identification accuracies that depend only on loss functions,
we fix the network structure and training dataset. The recognition accuracies for the
methods of comparison may be different from those in the original papers, which used
their own training datasets and network structures. The learning rate starts at 0.1 and
is changed to 0.01 at 20,000th iteration and 0.001 at 28,000th iteration, respectively. We
use a horizontal random flip for data augmentation. For the hyperparameters of Center
loss, SphereFace, ArcFace and MagFace not shown in Table 2, we use the recommended
values of [25,28,33,35], respectively. In Tables 3 and 4, the loss function replacing the suffix
‘max’ or ‘Face’” with ‘OrthFace’, respectively, indicates a combined one with the Orthant
loss. In addition, the loss function replacing the suffix ‘Face’ in ArcFace and MagFace with
‘CentFace’ indicates a combined one with the Center loss.

Table 2. Training Setting and Hyperparamters.

Network model LResNet50E-IR [33]
Batch size N 512

Feature length [ 512

Optimizer SGD Optimizer
Momentum 0.9

Weight decay 0.0005

Total iteration 32,000

Scaling constant s 64

Margin size m, 1/V1

Slope control factor r 30

Margin control factor a 2

Table 3. Verification Accuracy (%) on Several Benchmarks with Various Loss Functions.

Loss Function LFW CFP-FP AgeDB-30
Softmax 99.27 94.67 92.90
SoftOrthFace 99.30 94.94 92.60
N-Softmax 98.47 89.81 89.12
N-SoftOrthFace 98.75 92.96 90.62
ArcFace [33] 99.43 95.57 94.95
ArcCentFace 99.45 95.41 95.13
ArcOrthFace 99.42 95.73 95.18
MagFace [35] 99.18 94.97 94.62
MagCentFace 99.32 95.33 94.88
MagOrthFace 99.42 94.80 94.67
Center loss [25] 99.28 94.84 92.05
SphereFace [28] 99.12 94.49 92.68

Note: The accuracies in bold represent the highest ones among the listed loss functions.
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Table 4. Identification and Verification Results (%) on MegaFace with Various Loss Functions.

Loss Function Rank1 Accuracy Verification Accuracy
ArcFace 91.70 93.95
ArcCentFace 91.39 93.85
ArcOrthFace 91.77 94.32
MagFace 89.54 92.57
MagCentFace 91.22 93.96
MagOrthFace 89.79 92.83
Center loss 79.96 83.45
SphereFace 81.95 88.06

Note: The accuracies in bold represent the highest ones among the listed loss functions.

Testing. In the testing phase, features are extracted using the trained DCNN model,
as shown in Figure 1. To make a feature from a testing image, we add the features obtained
by original and flipped images and then normalize the combined feature. To evaluate the
accuracy for LFW [49], CFP-FP [40] and AgeDB-30 [41], we measure the mean accuracy
of 10 subsets of each dataset using the leave-one-out cross validation [50], following
the unrestricted protocol with labeled outside data [49]. For the MegaFace dataset, we
investigate the true positive rate (TPR) at 10~ false positive rate (FPR) for face verification
and rank-1 accuracy [3] for face identification with 10° distractors, respectively.

Figure 4 shows the training loss of the new loss functions combined with the proposed
Orthant loss function. We can observe that the new combined loss functions reduce the
training loss to make a good-fitting model as training progresses. In particular, at the
20,000th and 28,000th iterations, we use a learning rate decay method to improve the
training speed and model accuracy. In addition, it can be confirmed that the training loss
does not diverge or converge to zero to avoid underfitting and overfitting, respectively,
since we use dropout and weight decay techniques.

45 T T T T I I
; ; ; ; — ArcOrthFace
4O —— MagOrthFace}

35}

Training loss
-t N N w
(&) o [4)] o

—_
(=]

0 0.5 1 1.5 2 25 3
Iteration x 10"

Figure 4. Training loss of the new loss functions combined with the Orthant loss function.

Table 3 shows the verification accuracy of various loss functions for LFW, CFP-FP
and AgeDB-30, respectively. Table 3 demonstrates that the loss functions using Orthant loss
improve the accuracy over the original ones in most benchmarks. This means that Orthant
loss can improve the inter-class separability and the intra-class compactness by combining
it with softmax-based loss functions. Additionally, ArcOrthFace, which combines ArcFace
with Orthant loss, shows the highest accuracy on CFP-FP and AgeDB-30. In addition, it
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References

shows that SoftOrthFace has higher accuracy than Center loss, which demonstrates that
Orthant loss has more discriminative capability than the additive term of Center loss.
Although the accuracies of ArcCentFace and MagCentFace have increased compared to
original ones, it can be seen that ArcOrthFace has the best accuracy in most benchmarks.

Table 4 shows identification and verification results of various loss functions for
MegaFace. Similar to the results in Table 3, it can be seen that the loss functions using
Orthant loss improve identification and verification accuracies. It demonstrates that Orthant
loss makes feature spaces distinguishable by improving the inter-class separability and
the intra-class compactness. In addition, it shows that MagOrthFace has higher accuracy
than MagFace, which demonstrates that Orthant loss can improve the distinguishability of
adaptively learned feature spaces of MagFace. In Table 4, it is shown that MagCentFace
further improves the distinguishability of the adaptively learned feature spaces compared
to MagOrthFace. However, ArcOrthFace shows the highest identification and verification
accuracies compared to all the other loss functions.

5. Conclusions

In this paper, we proposed an additive Orthant loss to improve the inter-class separa-
bility and the intra-class compactness. The Orthant loss uses the rescaled softplus function
and an additive margin to move features away from the origin. In addition, the Orthant loss
uses 1-bit quantization and element-wise operation to map features to an orthant of each
class. Experimental results demonstrated that loss functions combined with Orthant loss
improve the recognition accuracy in most benchmarks compared to original loss functions.
In particular, we showed that the loss function combining ArcFace with Orthant loss has the
best accuracy on MegaFace, a challenging test benchmark containing more than 1 million
distractors. In conclusion, Orthant loss, combined with a softmax-based loss function, can
improve the accuracy of deep face recognition by improving the intra-class compactness
and the inter-class separability. We believe that the proposed Orthant loss can be used as a
loss function in recognition systems using various human characteristics, e.g., fingerprint,
iris, and palmprint, which will require a future study for each recognition system.
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