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Dual-stream hybrid architecture
with adaptive multi-scale
boundary-aware mechanisms for
robust urban change detection in
smart cities
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Urban environments undergo continuous changes due to natural processes and human activities,
which necessitates robust methods for monitoring changes in land cover and infrastructure for
sustainable developments. Change detection in remote sensing plays a pivotal role in analyzing
these temporal variations and supports various applications, including environmental monitoring.
Many deep learning-based methods have been widely investigated for change detection in the
literature. Most of them are typically regarded as per-pixel labeling and show their dominance, but
they still struggle in complex scenarios with multi-scale features, imprecise & blurring boundaries,
and domain shifts between temporal shifts. To address these challenges, we propose a novel Dual-
Stream Hybrid Architecture (DSHA) that combines the strengths of ResNet34 and Modified Pyramid
Vision Transformer (PVT-v2) for robust change detection for smart cities. The decoder integrates a
boundary-aware module, along with multiscale attention for accurate object boundary detection. For
the experiments, we incorporated the LEVIR-MCI dataset, and the results demonstrate the superior
performance of our approach by achieving an mloU of 92.28% and an F1 score of 92.50%. Ablation
studies highlight the contribution of each component by showing significant improvements in the
evaluation metrics. In comparison with existing methods, DSHA outperformed the existing state-
of-the-art methods on the benchmark dataset. These advancements demonstrate our proposed
approach’s potential for accurate and reliable urban change detection, making it highly suitable for
smart city monitoring applications focused on sustainable urban development.
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The dynamic properties of urban environments are continuously influenced by both natural processes and
human activities, resulting in the constant transformation of the Earth’s surface. Understanding and monitoring
these changes has become increasingly critical for urban planning, environmental management, and sustainable
development. Change detection (CD), as a fundamental technology in earth observation, provides an essential
tool for analyzing and quantifying these temporal variations in land cover and urban structures. The basic
objective of CD is to detect and identify significant changes between bi-temporal remote sensing images of
the same geographical region, enabling comprehensive interpretation of surface modifications over time. This
capability has proven invaluable across numerous applications, including urban expansion monitoring, natural
disaster assessment, land-use change analysis, and environmental protection.

In the context of smart cities, CD systems are essential for supporting automated urban planning!, real-time
infrastructure monitoring?, and evidence-based policy decisions®. The integration of robust change detection
systems into smart city frameworks facilitates continuous assessment of urban development patterns and serves
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as a critical tool for urban planners and municipal decision-makers. By providing comprehensive monitoring
capabilities, CD systems enhance informed governance, infrastructure management, and regulatory compliance.
These systems enable data-driven governance through real-time monitoring of urban transformations
and facilitate urban planning and resource allocation that directly support the achievement of Sustainable
Development Goal 11: making cities and human settlements inclusive, safe, resilient, and sustainable*".

Traditional change detection approaches, primarily based on manual feature extraction and pixel-level
comparison, have shown significant limitations in handling complex scenarios and large-scale datasets®. These
methods often struggle with the inherent variability in remote sensing imagery, including illumination changes,
seasonal variations, and atmospheric effects. Moreover, their reliance on hand-crafted features limits their
ability to capture subtle changes and adapt to diverse urban landscapes’. Over the past decade, deep learning
technology has revolutionized the field of change detection through Convolutional Neural Networks (CNNs),
which demonstrate remarkable success due to their superior learning ability and automatic feature extraction
capabilities®®. Early CNN-based approaches focused on adapting semantic segmentation architectures and
treating the change detection as a binary classification problem at the pixel level'”. These methods typically
process bi-temporal images either through a single-stream architecture with early fusion'! or siamese networks
with separate feature extraction paths!2.

The advancement of these deep learning methods employs model fusion that combine different satellite
imagery, like multispectral’®, multi-layer attention mechanisms for precise feature extraction®, generative
models like GANs for improved change mapping in noisy environments!*!>, 3D-CNNs for multi-temporal
analysis'S, and temporal feature refinement for continuous urban monitoring'’. Furthermore, the introduction
of Vision Transformers (ViTs), marks a significant milestone in deep learning advancement for object detection.
A Vision Transformer in principle divides an image into patches, processes them through layers to capture
features, and outputs bounding box coordinates and class predictions for detected objects®!8. Several studies
have explored ViTs in various configurations, and have showed significant improvements in detecting changes
in urban features such as buildings and roads®.

While these deep learning-based approaches have shown promising results, but using them as a single
solution often faces problems. Specially, the CNN-based models often struggle to effectively capture the complex
relationships between temporal features'® and maintain spatial consistency in the change detection results.
Similarly, the transformer-based models alone face challenges in effectively integrating local and global features
while maintaining temporal coherence throughout the network, particularly when dealing with small objects
and complex urban structures®. The primary challenge lies in the networks inability to simultaneously preserve
fine-grained spatial details and capture broader contextual information?!. This limitation often leads to either
over-segmentation or missed changes, particularly in complex urban environments where transformations
occur at various spatial scales?. The situation becomes more complex due to suboptimal handling of multi-scale
temporal relationships and domain shifts between different temporal states, which impacts the system’s overall
robustness and generalization capability?*. When we look at the mathematical formulation of these challenges, it
can be expressed as minimizing the empirical loss L(F'8(X 1, X2),Y"), where X1 and X2 represent bi-temporal
images and Y shows the ground truth change map. What makes this different from regular semantic segmentation
is the need for state-of-the-art mechanisms that can analyze corresponding features at different time points while
dealing with real-world complications like climate changes, preprocessing variations, and different imaging
conditions?*. Although the hybrid models can be a solution to these challenges®, but simple hybrid approaches
still face challenges in achieving robust change detection performance. Issues such as false positives, missed
detections, and boundary blurring persist due to factors like lighting changes and scale differences!>2°.

To address these challenges, we propose a sophisticated hybrid architecture, a novel dual-stream hybrid
architecture that combines the strengths of both CNN and transformer architectures. We introduced a modified
U-Net with a state-of-the-art dual-stream integration mechanism as the backbone, incorporating a customized
PVT-v2 and ResNet34 that work in parallel, where PVT-v2 handles global context through its transformer-based
structure while ResNet34 preserves fine-grained spatial details. This dual-stream approach is enhanced by cross-
attention fusion mechanisms and adaptive boundary-aware modules that enable effective feature interaction
while maintaining the distinctive characteristics of each temporal state, allowing for more precise detection
of changes at various scales. The core innovation lies in our hierarchical feature processing pipeline, which
integrates our carefully designed cross-stream connections and boundary-aware modules within an improved
decoder framework. Our architecture maintains distinct processing streams while enabling controlled interaction
through cross-attention fusion mechanisms, allowing for effective modeling of temporal dependencies. It is
further strengthened by a multi-scale attention mechanism that dynamically processes features across different
spatial scales, enhancing change detection accuracy in urban environments. The main contributions of this work
can be summarized as follows:

o To the best of our knowledge, this is the first work that synergistically combines a customized Pyramid Vision
Transformer (PVT-v2) and ResNet34 in a dual-stream architecture as the backbone for a U-Net framework.
The customization includes modified 6-channel inputs for bi-temporal images, enhanced spatial-channel at-
tention mechanisms in PVT-v2 for global context, and attention gates in ResNet34 for adaptive feature fusion.
This design enables simultaneous capture of both global context and fine-grained details.

« We propose a specialized boundary-aware module (BAM) that integrates Sobel operators with a multi-scale
attention mechanism. Unlike existing fixed edge-detection methods, our approach dynamically adjusts to
different scales of urban changes, ensuring improved boundary detection. We also incorporated a hierarchical
cross-temporal attention (CTA) mechanism that intelligently fuses features across temporal states.

A combined loss function incorporating four losses addresses class imbalance and helps the proposed model
to adjust its weights to improve the segmentation overlap.
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Through experiments, we demonstrate that these innovations work together to achieve superior performance
in challenging urban scenarios, particularly in cases where subtle changes and complex structures are involved.

Related works

CNN-based remote sensing change detection methods

CNN-Based Remote Sensing Change Detection Methods In the recent literature, CNN-based remote sensing
change detection methods are widely employed. In these studies, most approaches adopted an encoder and
decoder architecture along with the Siamese encoder, which extracts deep representation from the bi-temporal
images, followed by a decoder that generates a pixel-wise change map. For example, Zhang et al.”’ proposed a
two-channel CNN with shared weights to generate multi-scale feature difference maps in remote sensing change
detection. Similarly, Mou et al.2® introduced the CNN combined with a recurrent neural network to learn the
temporal dependencies in remote sensing images. On top of this, to capture high contextual information, the
researchers focused on incorporating multiscale feature learning strategies such as deep supervision?® and dense
connection®. For the rich contextual information, the method MFINet* incorporating cross-scale interactions
to improve the change-aware representations, was also used, and other studies®™*? also focused on the cross-
scale feature interaction and feature fusion methods to obtain the change-aware representations.

However, the traditional CNN-based change detection methods often struggled with disintegrated object
boundaries and noise due to pixel-wise classification. To address this problem, object-based methods gained
importance. For instance, Wang et al.** used the ensembled learning on multiple features to preserve object
boundaries in urban environments. Zhang et al.** proposed the squeeze-and-excitation W-Net to fuse the multi-
source data to reduce the noise in prediction changes. Recent advances in CNN architectures have introduced
sophisticated boundary-aware mechanisms to address these limitations. Yang et al.*> proposed an enhanced
hybrid CNN and transformer network (EHCTNet) that integrates dual-branch feature extraction with boundary
refinement modules for robust change detection. Additionally, Li et al.’¢ developed a change detection network
based on transformer and transfer learning, focusing on boundary completeness and internal compactness in
change regions.

Furthermore, attention mechanisms such as multiscale features were developed to capture the object
information at multiple scales from remote sensing images>”*%. The evolution of CNN-based approaches has
led to increasingly sophisticated architectures that address the challenges of arbitrary-oriented object detection
in aerial imagery. Notably, Huang et al.* introduced task-wise sampling convolutions (TS-Conv) for arbitrary-
oriented object detection in aerial images, demonstrating adaptive feature sampling from task-specific sensitive
regions. This approach addresses the inconsistent features between localization and classification tasks that often
constrain detection performance in complex aerial scenes. The existing studies predict the change detection
in remote sensing images using the pixel-wise assignment of changed or unchanged. Although this approach
tries to capture various changes in the bi-temporal images, it often generates the detected objects in fragmented
boundaries and isolated noises due to the convolutional operations.

Transformer-based remote sensing change detection methods

Recent transformers with their self-attention mechanisms have been widely adopted to address the shortcomings
of the CNN-based methods in remote sensing change detection. These models can model the long-range
dependencies in the remote sensing images. Chen et al.* proposed a transformer-based framework to enhance
the performance in capturing global semantic information for remote sensing change detection. Bandra et al.*!
presented a hierarchical transformer encoder for better feature learning. Similarly, Liu et al.2 proposed AMTNet,
a multi-scale transformer network, to combine its strength with CNNs. Likewise, Zheng et al.®3 introduced a
hybrid architecture, L-Former, to get good results on the remote sensing benchmark datasets. In another study**
transformer was used to tokenize the global contextual features obtained into patch-wise features.

The advancement of transformer architectures has led to more sophisticated change detection frameworks that
specifically address the challenges boundaries and diverse shapes in change areas. Advanced transformer-based
methods have also incorporated domain-specific attention mechanisms to improve change detection accuracy.
Yin et al.*® proposed CTCANet, a CNN-transformer network combining convolutional block attention module
(CBAM) for change detection in high-resolution remote sensing images, demonstrating superior performance
in capturing both local details and global context. Although transformers have gained significant success in
context modeling in remote sensing change detection, they often struggle to extract the local and fine-grained
information of objects in long-range modeling dependencies.

Attention mechanism
The attention mechanism is widely adapted in the many deep learning-based models, including encoder-
decoder-based architectures, to focus on the spatial and channel features. The attention mechanism also plays a
pivotal role. In remote sensing change detection tasks, as these images contain objects at different scales and color
ranges. Peng et al.*® proposed attention in image difference to overcome false positives to improve the accuracy
of change detection in remote sensing images. Similarly, Eftekhari et al.*” presented a parallel spatial attention
block for the change detection task to reduce the false alarms caused by occlusions. Feng et al.*8 proposed ICIF-
Net using multiscale attention to capture the local and global contextual information. Furthermore, Jiang et al.*’
introduced a multi-scale difference and attention network (MDANet) for high-resolution city change detection.
Building upon this work, Zhan et al.>® proposed AMFNet, an attention-guided multi-scale fusion network for
bi-temporal change detection that integrates innovative feature fusion techniques for enhanced performance.
Li et al.*! introduced a multi-scale fusion Siamese network based on a three-branch attention mechanism
for high-resolution remote sensing image change detection, addressing challenges in edge detection and small
target detection. Likewise, Farooque et al.>? proposed a dual attention-driven multi-scale multi-level feature

Scientific Reports |

(2025) 15:30729 | https://doi.org/10.1038/s41598-025-16148-5 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

fusion approach for hyperspectral image classification. Recent studies highlighted the importance of attention
mechanisms in improving the detection performance in remote sensing change detection®. Furthermore, Guo
et al.>* developed MSFNet, a multi-scale spatial-frequency feature fusion network that replaces traditional CNN
operations with shift window self-attention (SWSA) for direct processing of remote sensing images. However,
attention-based models often need careful design to balance between computational efficiency and accuracy
because the unbalanced and excessive attention mechanism in any model can lead to reduced computational
efficiency.

Feature fusion

In many deep learning tasks, feature fusion is considered an important process, including segmentation®,
multimodal tasks®, and classification”. Liu et al.’® introduced SoftFormer, a SAR-optical fusion transformer
for urban land use and land cover classification, demonstrating the effectiveness of transformer-based fusion
strategies. Their approach employs an interior self-attention mechanism that enables shallow transformer layers
to extract local features similar to CNNs while maintaining the global modeling capabilities of transformers.
The fusion in deep learning models happens at multiple scales, with heterogeneous features and multiple levels.
The feature fusion in some cases is just a simple operation based on the problem level; for some cases, simple
concatenation can be enough®. The feature fusion can be more reliable and flexible when using multiple attention-
based techniques®*-¢2, In remote sensing, feature fusion mechanisms are employed using attention mechanisms,
temporal, and spatial-temporal attentions. Furthermore, using the flow field and deformable convolution®® to
focus on the alignment-based fusion to align features of different levels in the spatial dimensions®*>.

Materials and methods

The proposed methodology introduces a novel hybrid semantic segmentation architecture for change detection
in remote sensing imagery for smart cities, monitoring, and development. At its core, the system employs a
modified U-Net framework in which the traditional single encoder is replaced by an enhanced dual-stream
encoder as the backbone, along with multiple specialized modules. The Channel Attention module utilizes
average and maximum pooling with shared MLP networks for channel-wise attention, while the Spatial
Attention module employs convolution for spatial relationships. A key innovation in the architecture is the
Boundary Aware Module using Sobel operators for object boundary detection, the Multi-Scale Attention module
processing at different scales for multi-scale context, and the Improved Decoder module combining boundary
awareness with multi-scale attention. The architecture is enhanced by the Cross Attention Fusion module for
transformer-like feature exchange and dynamic feature combination through channel attention.

Dual stream encoder

The modified UNet encompasses a dual-encoder stream that integrates the strengths of both transformer-based
and convolutional neural network-based architectures for advanced semantic segmentation for change detection
in smart cities. As the image pairs in CD are captured across time, changes occur at different scales and vary at
different scales, like small changes (e.g., new small buildings), medium changes (e.g., road construction in the t2
image), and large-scale changes like urban development. To extract the hierarchical changes, the Pyramid Vision
Transformer (PVT-v2) is employed to process the input through multiple stages. This architecture gives a bigger
picture, like a bird’s-eye view. In parallel, we incorporated the ResNet34 encoder to capture complementary
features, which provides strong local feature extraction capabilities and focuses on fine details, much like having
a magnifying glass. To adapt the ResNet34 encoder for 6-channel input (3 channels X 2 temporal images),
we initialize the first convolutional layer by averaging the pretrained weights across the RGB channels and
replicating them for the temporal pairs. Let Wretrainea € R%**3X7%7 represent the pretrained weights from
ImageNet. We compute channel-averaged weights W, as follows:

3
1
Wavg = g Z Wpretrained[:, C, 2]

c=1
These averaged weights are then replicated across the temporal pairs to initialize the 6-channel input:

Winit = Repeat(Wayg, dim = 1, repeats = 2)

This initialization preserves the spectral characteristics of the pretrained model while enabling effective
processing of bi-temporal imagery. The dual-stream encoder architecture processes image pairs t1, and #2, each
image is represented as a three-dimensional tensor I;1, I12 € R3XHXW x — [Li1||Ie2] € REXHXW where 3
represents the RGB color channels. So, each image is represented as a tensor of size 3256 x256. These two
images are concatenated to form a single input . The || symbol represents the concatenation of 3 channels from
the first image with the 3 channels from the second image, resulting in a 6-channel input and creating a tensor
of size 6 X256 x256.

Pyramid vision transformer stream processing

The modified UNet encompasses a dual-encoder stream that integrates the strengths of both transformer-based
and convolutional neural network-based architectures for advanced semantic segmentation for change detection
in smart cities. As the image pairs in CD are captured across time, changes occur at different scales and vary at
different scales, like small changes (e.g., new small buildings), medium changes (e.g., road construction in the t2
image), and large-scale changes like urban development. To extract the hierarchical changes, the Pyramid Vision
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Transformer (PVT-v2) is employed to process the input through multiple stages. This architecture gives a bigger
picture, like a bird’s-eye view. In parallel, we incorporated the ResNet34 encoder to capture complementary
features, which provides strong local feature extraction capabilities and focuses on fine details, much like having
a magnifying glass. To adapt the ResNet34 encoder for 6-channel input (3 channels X 2 temporal images),
we initialize the first convolutional layer by averaging the pretrained weights across the RGB channels and
replicating them for the temporal pairs. Let Woretrainea € RO4X3XTXT represent the pretrained weights from
ImageNet. We compute channel-averaged weights Wy as follows:

3
1
Wan = § E Wpretrained[l, C, Z]
c=1

These averaged weights are then replicated across the temporal pairs to initialize the 6-channel input:

Winit = Repeat(Wayg, dim = 1, repeats = 2)

This initialization preserves the spectral characteristics of the pretrained model while enabling effective
processing of bi-temporal imagery. The dual-stream encoder architecture processes image pairs t1, and 2, each
image is represented as a three-dimensional tensor I;1, Ito € R¥>*T*W X = [I,1||I;2] € R®*T*W where 3
represents the RGB color channels. So, each image is represented as a tensor of size 3x256x256. These two
images are concatenated to form a single input . The || symbol represents the concatenation of 3 channels from
the first image with the 3 channels from the second image, resulting in a 6-channel input and creating a tensor
of size 6x256x256.

Pyramid vision transformer stream processing

The PVT-v2 encoder serves as the primary feature extraction stream, with a hierarchical transformer structure
to process visual information at multiple scales. The PVT-v2 encoder stream starts with an overlapping patch
embedding layer, which projects the input image into a sequence of tokens:

Pﬁmb(m) = CO’I’LUZD(Z', kpatch7 Sst'ride) + PE

Where P..,., () represents the patch embedding output, PE are learnable position embeddings to encode spatial
information, Kpascn is the patch size, and ss¢riqe is the stride. This encoder then processes these tokens through
four progressive stages, each maintaining different feature dimensions:

Fpvr = {ff € R™ fy e R'* s e R®, f7 € R°'?}

Here, f{, 5, f¥, f represent multi-scale feature maps extracted from the 1st, 2nd, 3rd, and 4th encoder
blocks of PVT-v2 backbone respectively, with channel dimensions 64, 128, 320, and 512.

Each stage captures increasingly complex temporal changes by implementing a modified transformer block
that includes multi-head self-attention (MHSA) with spatial reduction. In which, Q, K, V represent query, key,
and value, feature maps respectively, W is the output projection matrix, and WZQ, W WY are per-head
projection matrices for ¢ = 1, ..., h where h is total the number of attention heads.

MHSA(Q, K,V) = Concat(heady, ..., heady)W©
where each head computes:
head; = Atifention(QVVZ-Q7 KWk, VWiV)
And a feed-forward network (FFN) with depth-wise convolution processes through three sequential operations:
FFN(x) = MLP(DW Conv(MLP(z))
The structural diagram of the modified PVT-V2 is presented in Fig. 1.
Residual network stream processing

The ResNet34 stream processes in parallel, providing complementary analysis through its initial modified
convolution operation:

Zeonvl = Conv2d(ZTeconcat, channelsour = 64, kernel = 7, stride = 2)

Where Zconcat represents the bi-temporal image pair input. The initialization process includes ReLU activation
and batch normalization. The ResNet stream processes the input through modified convolution layers:

Xinit = ReLU(BN (Convrx7(X)))

Where, weights specifically adapted for 6-channel input through channel-wise averaging:
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Fig. 1. Structural diagram of the modified Pyramid Vision Transformer (PVT-v2) encoder. The architecture
processes the input through overlapping patch embedding, hierarchical transformer blocks, and MHSA
mechanisms. The figure highlights the four progressive stages (f p 1 to f p 4) with varying feature dimensions,
which enables the model to extract hierarchical representations for precise change detection. The satellite
image on the left side is from the Levir-MCI dataset®.

3
1
Ween = 3 Z Wiaeh - lixex7x7

i=1

This  stream  maintains its  hierarchical  feature  extraction through  residual  blocks
R; = ResBlock; (Xi—1), 4 € 1,2,3,4, producing a feature hierarchy:

FRcsNﬁt _ {f{ c R64’f§‘ c R128,f§ c ]R256~>3207f:1r c RSIQ}

With dimensions C; = {64,128, 256,512}, where each level serves specific purposes: the first level (f7)
captures fine-grained temporal differences in textures and edges, the second level ( f3 ) identifies changes in local
patterns and shapes, the third level (f3) adapts its features to match the PVT-v2’s dimensional space for better
feature fusion, and the fourth level (fi) comprehends complex local transformation patterns. The structural
diagram for the ResNet34 encoder is presented in the Fig. 2.

Channel and spatial attention mechanisms

The proposed methodology introduces a dual-attention mechanism specifically designed for detecting changes in
remote sensing imagery from the Levir-MCI dataset, which contains bi-temporal high-resolution satellite images
focusing on building and road changes. The architecture implements two complementary attention modules:
Channel Attention (CA) and Spatial Attention (SA), working in concert to enhance feature representation for
precise change detection.

Channel attention mechanism

The channel attention (CA) module advances the feature representation by dynamically computing the channel-
wise importance weights for change detection. First, the module computes global average and max pooling to
capture channel-wise statistics:

1 . ..
FGUQZHXWZX(Za])v Fmax:H{L?XX(Z,])
)

Here, Fuvg, Fmax are average-pooled and max-pooled feature maps, H, W are the height and width (spatial
dimensions) of input feature map, X ; ;) input feature at spatial position. Through average and max pooling, the
mean activation and most prominent activation per channel are captured.

Ar = Convld(Favg, Wr)
In this operation, a shared bottleneck is achieved through dimension reduction. The A, represents the reduced

feature map, Convld represents the convolution operation, and W, represents the learnable weights for
dimension reduction ratio.

Ae = ReLU(Convld(A,, We))
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Fig. 2. Structural diagram of the modified ResNet34 encoder. The input is modified to accept 6 channels (3
channels x 2 temporal images), Conv1 weights are initialized by averaging pretrainted RGB weights. The match
channel layer converts the 256 to 320 channels to align with PVT-v2, and attention gates fuses features from
ResNet34 and PVT-v2 streams.

Through this Equation, ReLU adds the non-linearity, and W, represents to learnable weights for channel
expansion. This operation generates channel-wise importance weights.

F.=0(4:.)0 X

Finally, the refined features are derived; o(A.) representing the normalization of the attention weights for
channel importance and ® representing the channel-wise multiplication. The final operation emphasizes on
critical channels for detecting changes from the remote sensing images. The CA mechanism is like an adaptive
lens system that functions like an intelligent filter that provides both a bird’s eye view and a magnifying glass. Just
as an aerial photographer uses specialized color filters to highlight specific features in the urban environment.

Spatial attention

The spatial attention (SA) module highlights the spatial locations, which plays a critical role in detecting the
localized changes; in our case, these changes could be the development of the road or building or the demolishing
of these. SA first calculates the channel-wise average and max feature maps and concatenates both maps and
processes through the convolution layer to generate a spatial attention map.

S = o(Conv2d(Concat(Favg, Fmax); Ws))

Here, W, represents the learnable weights for spatial attention. The refined feature map F. is obtained by
multiplying the channel-wise attention feature map with the spatial attention feature map S. ' = S ® F. The
combination of CA and SA modules ensures the model focuses on spatial regions where changes are most likely
to occur, improving detection accuracy for small-scale urban changes. The SA mechanism acts like a dynamic
spotlight system that enhances both bird’s eye view and magnifying glass capabilities. The SA module creates
intelligent attention maps that guide both global and local processing streams to focus computational resources
on spatial regions where changes are most likely to occur.

Boundary-aware feature enhancement

The proposed methodology introduces an advanced boundary-aware module (BAM) specifically designed to
emphasize on the boundaries of the objects for detecting changes in remote sensing imagery from the Levir-MCI
dataset. The BAM incorporates an advanced dual-directional gradient computation approach based on the Sobel
operators (3 X 3 matrices) to extract boundary information from feature maps X, representing the number
of channels, height, and width. The horizontal and vertical gradients are computed using two-dimensional
convolution operations with Sobel kernels:
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Here, K, represents the horizontal Sobel Kernel, and K, represents the vertical Sobel Kernel. The horizontal
and vertical gradients (E,, E,) are computed using the two-dimensional convolution operations with Sobel
Kernels:

E, = Conv2d(X, K.), E,;=Conv2d(X, Ky)

After computing the horizontal and vertical gradients, these gradients are combined through the Pythagorean
theorem to compute the edge magnitude of each pixel. For each pixel position, it takes the square root of the sum
of squared gradients, giving us the total edge strength.

E=\/E%+E}

The final-boundary enhanced feature map F” is obtained by element-wise multiplication with sigmoid-activated
o edge map.

F' =Foo(E)

The integration of BAM significantly improves feature representation by emphasizing boundary information,
leading to more accurate change detection in urban environments from remote sensing images.

Multi-scale attention mechanism

The multi-scale attention (MSA) mechanism is incorporated for change detection in remote sensing from smart
cities. The changes in urban environments (like single buildings, stacks of buildings, and roads)happen at various
scales, and these changes look different from different perspectives. The MSA framework decomposes the input
into a feature map. We implemented the three scales decomposition strategy using bilinear interpolation, which
can be represented as:

F, = (F,H,,W,), Se {10, 0.5, 0.25}

Here, Hs, W is the target height and width for the scaled feature map, F which represents the input feature
map, and 1) represents the bilinear interpolation function, which resizes the feature map to desired dimensions.
Each scaled feature map F is then processed using scale-specific convolutional layers to capture multi-scale
contextual information.

F. = Conv2d(Fs, W)

The W in this context represents learnable weights for each scale. The bilinear interpolation is again used to
upsample the enhanced feature for all scales to the original resolution.

FP =y(F', H,W)

Here, F'P represents the upsamples feature map at scale s. All three upsampled feature maps are then
concatenated to form the final multi-scale attention feature map, the mathematical representation is as follows:

/ — up paup  pup
Fmsa - C’oncat(Fsl ’ 'FSQ ’ E@S )
This concatenated feature map is then processed through a convolutional layer to refine the multi-scale features.

Firisa = Conv2d(Fmsa, Winsa)

Here, Winsa represents the learnable weights for the convolutional layer. The refined F° " sa €nthances the model’s
capability to capture the changes at multiple scales and improves detection accuracy for both small and large-
scale buildings and roads from remote sensing images. The MSA mechanism extends the dual perception system
by implementing a telescopic zoom array that operates simultaneously at multiple magnification levels. The
primary bird’s-eye view provides the standard aerial perspective and the magnifying glass focuses on fine details.
The MSA creates additional viewing scales, like deploying multiple surveillance drones at different altitudes
(100%, 50%, and 25% zoom levels) over the same urban area.

Cross-temporal attention mechanism

The cross-temporal attention (CTA) module is incorporated to enable the model to correlate the features from
bi-temporal remote sensing images. The CTA enhances the ability to detect structural changes (such as buildings
and roads) over time in evolving smart city environments. The CTA mechanism first projects feature maps from
the two temporal states into query (Q), key (K), and value (V) spaces using the learnable metrics, mathematically
represented as follows:
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Q = Wy.F1, K=Wi.Fs, V=W,F

Here, F1, F5 represents feature maps from the first and second temporal states. This formulation transforms the
features into spaces like Q, K, and V which are helpful in the attention computation. To compute the attention
scores scaled dot-product attention is used.

Q.KT
Vg
Here, dj, represents the dimension of the key vectors. This equation calculates the similarity between Q and K

vectors, and enables the model to identify corresponding regions in both temporal states. From this a context-
aware map is generated

A= SoftMax( )

C=A.V

This operation captures the relevant information from the second temporal state based on the computed
attention scores. Next a residual connection is applied.

Fcta:F1+C

Finally, the module combines the original feature map from the first temporal state ' with a context-aware
map C. The attained fused feature map integrates temporal dependencies and enhances the model’s capability
to detect changes from bi-temporal remote sensing images while skipping the irrelevant variations. The CTA
operates like a time-lapse analyst who not only captures changes over time but also intelligently correlates
specific regions between temporal states. It is a sophisticated photo alignment system that works through both
our bird’s-eye and magnifying glass perspectives.

Decoder module

To process the feature maps from the encoder stages, we implemented a three-stream feature processing decoder
as depicted in the Fig. 4 (block diagram for the proposed model). It refines BAM features and multi-scale features
to generate the final change detection output. The decoder integrates features from the encoder and enhances
them through up sampling and feature fusion. For each stage, the module first applies BAM to emphasize the
boundaries of objects and fine details.

Foom = BAM(Fy)

Here, the represents to the boundary-aware module, and F}, are the input features maps from the encoder
stages. The BAM uses the Sobel operators (as explained in section 3.3) and MSA to refine the boundaries. Where
the MSA is applied to capture the contextual information at different resolution or scales:

Frsa = MSA(Fram)

This operation combines the features from the multiple scales to pay attention to the fine-grained and contextual
information. Then these feature maps are up sampled to the next resolution using the bilinear interpolation.

Fup = ¢Y(Fusa, scale =2)

The scale factor, such as s=2, doubles the resolution for fine-grained analysis. The upsampled features are
combined with residual connections from previous decoder steps.

Fout:Fprev+Fup

This final output is passed through as a convolutional layer to generate the predicted change map.

Ffinal = Oonv2d(Fout7 Wfinal)

The final feature is obtained through convolution. This step refines the features and predicts the changes from bi-
temporal remote sensing images for smart cities monitoring and other applications. The detailed block diagram
of our proposed DSHA architecture is presented in Fig. 3, which illustrates the integration of the different
modules, and the visualisation of the DSHA architecture’s processing pipeline, from input to images to the final
change map, is shown in Fig. 4.

Experimental results
Datasets
We conducted experiments using the two change detection datasets.

LEVIR-MCI dataset: The LEVIR-MCI dataset® contains the 10077 bi-temporal aerial image pairs. The
dataset contains a pre-image (A), an image taken before, and a post-image (B), which was taken after a time gap
to indicate whether the area is changed or not, along with the grayscale & RGB segmentation masks. We have
used the RGB masks in this study. The colormap of masks consists of three labels: (0, 0, 0) for the background
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Fig. 3. Block diagram of the proposed dual-stream hybrid architecture. The architecture integrates a dual-
stream encoder (PVT-v2 on the left and ResNet34 on the right), cross-attention fusion modules, boundary-
aware modules, and a multi-scale attention mechanism. The diagram illustrates the flow of features through the
network, highlighting the hierarchical processing, feature fusion, and refinement stages to generate the final
change map.
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Fig. 4. Visualization of the proposed DSHA architecture’s processing pipeline. (Left) Input bi-temporal satellite
images form LEVIR-MCI®. (Center) Feature extraction via the dual-stream encoder, followed by cross-
temporal attention and feature fusion. (Right) Decoder with boundary-aware modules, producing the final
change detection output with refined boundaries.

pixel represented with 0; (255, 255, 0), which represents the roads with hot encoded with 1; and (255, 0, 0)
for buildings, represented with 2. The distribution of the dataset is as follows: 6815 training image pairs, 1333
validation image pairs, and 1929 testing image pairs.

Before feeding the bi-temporal images pairs into the dual-stream encoder, our preprocessing pipeline applies
the minimal transformations by resizing the images to 256x256 pixels and converting them to tensors with
pixel values in the [0,1] range to perserve the spectral integrity of remote sensing imagery. We do not apply
the ImageNet normalization paramters (also known as ImageNet stats) because our preliminary experiments
revealed severe degradation loss of important spectral information by making images too dark when these stats
were applied to LEVIR-MCI images; resultantly, it was compromising the change detection performance.

Change Detection Dataset: The Change Detection Dataset (CDD) consists of season-varying remote sensing
images of the same region, obtained from Google Earth (DigitalGlobe)®”. The CDD dataset contains cropped
images with a size of 256 X 256 pixels and includes multiple augmentations®’. The spatial resolution of CDD
ranges from 3 to 100 cm/px. The dataset comprises 10,000 training image pairs, 3,000 validation image pairs,
and 3,000 test image pairs. For preprocessing, we used the same settings as LEVIR-MCI. The images from the
LEVIR-MCI dataset and CDD datasets are shown in Fig. 5.

Loss function and evaluation metrics

To handle the class imbalance and improve the segmentation overlap, we incorporated the combined loss for the
deep supervision. The combined loss comprises the four multiple losses: CrossEntropy (CE) loss, Dice loss, Focal
loss, and Boundary Aware (BA) loss. The mathematical representation of CE is as follows:

. B C-1
L = Z >y log(py))
b=1 c¢=0

Here, B is the batch size of the i 1mages, Cis the number of classes (3 in our case), and y 1s the ground truth label
for class ¢ in the batch sample. b, pb’C is the predicted probability for class ¢ in output i. It guides the model to
adjust weights so that the prediction matches with the ground truth. The Dice loss can be represented as below:

2.7PW 4 ¢

LW _q_
Dice 2.TPG + FPG) + FNG) + ¢

In Dice loss, the € is 1e — 5 as a soothing factor, TP is true positives, FP® is false positives, and FN® g
false negatives. The mathematical formulation of focal loss is as follows:

B C-
Focalzfl ZZ pbc log( )

b=1 c¢=0

v is v = 2, which is the focusing parameter, and a. are class weights (computed for dataset imbalance in our
case). The formulation for BA loss is as follows:

L

Boundary

= MSE@©® . o

pred’ “targ et)

Here O represents the gradient computation using the Sobel filters. The final output is the weighted sum of
all these losses. It means each loss function has a different weight (importance) in the final calculation. The
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Fig. 5. Sample bi-temporal satellite image pairs from LEVIR-MCI and CDD datasets showing various urban
changes including building construction and road development. The upper row shows LEVIR-MCI dataset
images® and bottom row shows CDD dataset images®”.

weighting scheme for deep supervision is as follows: for CE, 0.7; for Dice loss, 0.7; for Focal loss, 0.3; and for BA
loss, 0.5. The total loss calculation formula is as follows:

N
1 i i i i
Liotat = 37 D (i (0.3.L% +0.7LE) ¢ + 0.3LE),, + 0.5L5),))

=1

In the combined loss function, we set the CE weight to 0.3, which provided fundamental classification guidance
for changed and unchanged pixels. Since our study focused on the CD task where spatial coherence matters more
than individual pixel accuracy, we set the Dice loss weight to 0.7 to detect coherent changed regions (buildings
and roads) rather than scattered pixels. Further we included the Focal loss was to address the imbalance between
changed and unchanged pixels and to focus on learning hard-to-detect changes, like smaller buildings and
narrow roads. To prevent over-emphasis on hard examples that could lead to noise detection, we set the Focal
loss weight to a moderate value of 0.3. Finally, we incorporated BA loss to address blurry boundary issues, with a
balance weight of 0.5 to precisely balance boundary detection and overall performance. This combination of the
loss functions facilitates our model in dealing with class imbalance, smooth boundary prediction, and improving
segmentation overlap, resulting in better performance.

For the evaluation, five commonly used metrics are employed: Accuracy (A), F1-Score (F1), precision (P),
recall (R), and mean Intersection over Union (mIoU). Each evaluation metric serves an important purpose. The
overaccuracy characterises the percentage of correctly detected pixels among all the samples. The F1 represents
the harmonic mean of the precision and recall. The P represents the ratio of correctly detected changed pixels
to all the pixels that are identified as changed in the map. The recall represents the percentage of correctly
detected changed pixels to the number of all pixels that should be detected as changed pixels. While the mIoU, an
important evaluation metric in the change detection task, represents the overlap between prediction and ground
truth, it reveals the precise coverage of changed and unchanged pixels in the detected change map compared
with ground truth. The mathematical representations of these metrics are as follows:
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_ TP+ TN
" TP+TN+FP+FN

Here, TP is the correctly detected changed pixels, TN is the number of accurately detected unchanged pixels, FP
is the number of incorrectly detected pixels, and FN is the number of missed detected changed pixels.

TP
P_TP+FP
TP
R=—""_
TP+ FN
P.R
Fl=2-—""
P+R
C= TP, .
mloU = S50 (rrgrrsrn,) X weighte

SO weight.
Here, weight. is the number of ground truth pixels in class c.

Implementation details

The proposed DSHA model is implemented based on the open-source deep learning framework PyTorch and
initialized with two pretrained models, PVTv2 and ResNet34, for the backbone of the U-Net architecture. For
model training, the AdamW optimizer was adopted with an initial learning rate of 5e-4, a weight decay of
0.0005, and parameters 81 and B2 as 0.9 and 0.999, respectively. The batch size was set to 8 for each GPU. In
addition, we employ a OneCycleLR scheduler with a maximum learning rate of 1e-3, a cosine annealing strategy,
and gradual reduction to ensure better model convergence. For the loss function, a combined loss is used, which
incorporates CE loss, Dice loss, Focal loss, and BA loss with weights [0.3, 0.7, 0.3, 0.5], along with class weighting
and deep supervision weights [1.0, 0.8, 0.6, 0.4]. All the experiments were conducted on the Nvidia RTX 4060 Ti
with 16 GB RAM with the Windows 11 Pro operating system.

Model complexity

The DSHA architecture comprises 25.69M parameters, which are strategically distributed across components.
The base architecture contains 25.63M parameters, and our final dual-stream architecture with all other
configurations introduces a modest 60K additional parameters. This represents a parameter efficiency of 0.23%
overhead for the achieved performance improvements.

Ablation studies

To validate the effectiveness of our proposed method, we conducted a series of ablation experiments. We removed
the following components from the U-Net architecture: the attention mechanism, multiscale processing,
the boundary-aware module, the encoder & dual encoder, and integrated them one by one. Their results are
presented in numeric form in Table 1.

As can be observed from the results, the baseline UNet + Attention Mechanism, although achieving a modest
performance, struggled with high validation loss (0.4303), low validation accuracy (63.80%), lowest P (62.34%),
lowest R (61.40%), lowest F1 or F1-Score (61.01%), and low validation mIoU (61.81%), which limits its ability
to process all features within context. The addition of multiscale processing in the U-Net + attention mechanism
significantly improved the performance. Specifically, the validation loss was reduced to 0.3886, representing a
9.69% decrease compared to the baseline configuration. Besides the decrease in validation loss, the validation
accuracy increased to 71.69%, precision improved to 69.91%, recall increased to 67.92%, the F1-score reached
68.89%, and the mIoU was elevated to 69.45%. The achieved scores of these metrics collectively indicate that the
integration of multiscale processing not only reduced prediction errors but also enhanced the model’s overall
robustness capabilities by allowing the model to look at the feature at different scales. The integration of the
PvT-V2 encoder in the U-Net + attention mechanism + multiprocessing further strengthened the model’s
performance.

The validation loss decreased by an additional 10.11%, reaching 0.3493, while the validation accuracy increased
to 80.55%, precision improved to 77.20%, recall amplified to 81.85%, the F1 score improved to 78.15%, and the
mloU reached 78.03%. This enhancement underscores the importance of leveraging advanced transformer-
based architectures in our change detection task, which made it easier for the model to strongly capture the
global context and long-range dependencies. Introducing the dual-stream encoder in place of the single-stream
PvT-V2 encoder in the U-Net + attention mechanism + multiprocessing marked another significant milestone
in the ablation study. The dual-stream architecture allowed the model to process bitemporal images more
effectively by separately extracting local and global features from each temporal input before fusing them. As a
result, the validation loss was further reduced by 9.91%, dropping to 0.3147, while the validation accuracy rose
t0 90.51%, precision improved to 88.97%, recall increased to 86.26%, the F1 score reached 87.50%, and the mIoU
climbed to 87.67%.

The final configuration, which incorporated the boundary-aware module alongside all previously mentioned
components, achieved the best overall performance. The boundary-aware module played a crucial role in
refining edges and fine details, which are critical for accurately detecting changes in remote sensing images. With
this addition, the validation loss was decreased to its lowest value of 0.2997, while the validation accuracy peaked
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Metrics U-Net+AM | U-Net+ AM+ MP | U-Net+ AM+ MP+PE | U-Net+ AM+ MP+DSEnc | U-Net+AM+ MP+DS

Train | 65.09 73.13 82.17 92.33 97.19
A (%)

Val 63.80 71.69 80.55 90.51 95.27
L Train | 0.3709 0.3341 0.3010 0.2712 0.2583

08

Val 0.4303 0.3886 0.3493 0.3147 0.2997

Train | 63.80 72.88 81.21 92.38 96.54
P (%)

Val 62.34 69.91 77.20 88.97 93.86

Train | 61.40 69.14 83.39 87.99 92.37
R (%)

Val 59.83 67.92 81.85 86.26 91.28

Train | 62.24 70.12 78.97 89.24 93.05
F1 (%)

Val 61.01 68.89 78.15 87.50 92.51

Train | 63.10 70.90 79.66 89.50 94.21
mloU (%)

Val 61.81 69.45 78.03 87.67 92.28

Table 1. Comprehensive Analysis of Training and Validation Metrics Across Different Model Configurations
in the Ablation Study. The metrics include Loss, A (%), P (%), R (%), F1 (%), and mIoU (%) for both training
and validation phases, demonstrating progressive improvement. Abbreviations: AT - Attention Mechanism;
MP - Multiscale Processing; PvT-V2 Enc - Pyramid Vision Transformer V2 Encoder; DSEnc - Dual Stream
Encoder; BAM - Boundary Aware Module

at 95.27%, precision reached 93.86%, recall improved to 91.28%, the F1 score increased to 92.51%, and the mIoU
achieved an impressive 92.28%. These results demonstrate the effectiveness of the boundary-aware module in
addressing challenges related to edge detection and segmentation accuracy, which are common limitations in
baseline models.

On comparing the final configuration (our proposed) with the baseline model configuration, it showed
remarkable improvement. Our proposed method achieved a 49.29% improvement in mIoU, a 50.41% increase
in accuracy, a 51.29% increase in precision, a 52.62% improvement in recall, and a 51.63% improvement in F1-
score.

These enhancements in the results suggest the effectiveness of our proposed model over the simple baseline
model in better handling the global and local context in segmentations. Therefore, our suggested model has
significant potential in smart cities for accurate and reliable change detection from bitemporal remote sensing
images, which can be extremely helpful for urban planning policymakers to monitor land use changes and track
infrastructure development and environmental impacts over time. Figure 7 presents the ablation study results
across validation metrics results in graphical form. The graphical representation of the results of our proposed
model also shows the significance and effectiveness in the change detection task by achieving the peak mIoU
and overall accuracy, along with other metrics, and the loss significantly decreased to its minimalist level. The
graphical results representation is divided into two sub-images Fig. 6 and Fig. 7 for the clarity of analysis.

After training and validation of the proposed DSHA model, we exported the model and tested it on the test
dataset. We performed the testing with two configurations: one with a single stream PVT-V2 encoder, and the
final configuration of U-Net with a dual stream module as a backbone coupled with a boundary aware module.
Their qualitative results are displayed in Fig. 8.

By looking closely at the results in Fig. 9, the customized single stream encoder detected the changes from the
given bitemporal images but lacks the fine details and failed to identify the exact boundaries of the buildings and
roads. Therefore, it produced blurry, smooth-out segmentation masks, and in some areas, it overly predicted.
In contrast, our proposed model with the boundary-aware module detected the objects” edges with fine details,
resulting in detecting almost the same boundaries as in the ground truth. Our proposed model performed
equally well in detecting small building objects as well as a series of building objects; also, road structures are
perfectly detected. These results further validate that our proposed hybrid model is the optimal solution for
detecting changes at multiscale, including the small and complex building structures and roads from the remote
sensing bi-temporal images for smart cities.

Comperative experiment

To further validate the robustness of the DSHA, we conducted the comparative experiments on CDD. For the
experiments we used the baseline UNet + AM and final configuration of our proposed DSHA for testing on
CDD with the same training parameters settings as before. The results of these experiments are presented in
Table 2, which further contributes to the analysis of the performance metrics of the different models.

The experimental results demonstrate significant performance improvements across all evaluation metrics
when comparing the baseline UNet+AM with our proposed DSHA architecture. Specifically, the DSHA model
achieved an accuracy of 92.17%, representing a substantial improvement of 23.14 percentage points over the
baseline UNet+AM (69.03%). Similarly, the precision metric also showed remarkable improvement, with DSHA
achieving 91.78% compared to 68.72% for the baseline, indicating a 23.06 percentage point improvement. The
recall performance displayed the higher substantial improvement, with DSHA achieving 87.83% compared
62.11% for UNet+AM, representing a significant improvement of 25.72 percentage points. Furthermore, the F1-
score, which provides a balanced measure of precision and recall, also demonstrated substantial improvement

Scientific Reports |

(2025) 15:30729 | https://doi.org/10.1038/s41598-025-16148-5 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/
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Fig. 6. Visual comparisons of the validation performance metrics of different model configurations in the
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Fig. 7. Visual comparisons of the validation performance metrics of different model configurations in the
ablation study. The validationresults for the three-evaluation metrics (P, R, and F1) are shown.

from 65.31% (UNet+AM) to 89.81% (DSHA), representing a performance enhancement of 24.50 percentage
points. Likewise, the mIoU, which is considered the primary evaluation metric, demonstrated exceptional
improvement from 65.24% to 89.97%, achieving a significant improvement of 24.73 percentage points. These
comprehensive comparative results on the CDD dataset further validate the effectiveness and robustness of our
proposed DSHA architecture, demonstrating its superior capability in handling diverse urban change detection
scenarios across different datasets. The consistent performance improvements across all evaluation metrics
highlight the architecture’s ability to generalize effectively to various remote sensing imagery characteristics
and change detection challenges, so, confirming its potential for practical deployment in smart city monitoring
applications.
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166:

Fig. 8. Visual comparison of change detection results on the LEVIR-MCI®: Left side (column a) Pre-change
images, (column b) Post-change images, (column ¢) Ground truth masks, (column d) Predictions using
single-stream modified PVT-V2 encoder backbone, and right side (column e) Predictions using proposed
DSHA model with dual-stream encoder. The first and second rows (columns d and e) represent building
change predictions in red color masks, while rows 3 and 4 (columns d and e) show road changes in yellow and
building change predictions.

Fig. 9. Closeup results for the comparison are presented. (left side mask) ground truth, (center mask) PvT-v2’s
detection, (right side mask) our proposed model’s detection.
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Models A(%) | P(%) | R(%) | F1-Score(%) | mIoU(%)
UNet+AM | 69.03 | 68.72 | 62.11 | 65.31 65.24
DSHA 92.17 | 91.78 | 87.83 | 89.81 89.97

Table 2. Performance comparison of baseline UNet+AM and the Proposed DSHA Model on CDD Dataset.
The evlaution metrics include A(%), P(%), R(%), F1-Score(%) and mIoU(%).

Method Dataset IoU(%) | mIoU(%) | F1-Score (%)
MaskChanger LEVIRCD | 85.12 91.96
Mask Classification (MaskCD) | LEVIR CD 91.13 90.84
ChangerEx LEVIRCD | x X 91.77
BIT LEVIR CD 73.54 0.6683
SRC-Net LEVIR CD | 85.60 92.24
DMINet LEVIR CD 83.57 80.57
SiamixFormer5 LEVIRCD | 85.38 91.58
SNUNet LEVIR CD 87.07 86.08
LightCDNet LEVIRCD | 84.21 91.43
CrossCDNet LEVIRCD | 84.65 91.69
RS-Mamba LEVIR CD | 83.66 91.1
USSFC-Net LEVIRCD | 83.55 91.04
Chage Former LEVIRCD | 82.48 90.40
Ours LEVIR CD 92.28 92.50

Table 3. Comparison of different methods on LEVIR CD Dataset. The table shows IoU(%), mIoU(%), and F1-
Score(%) metrics. Best results are highlighted in bold.

Comparison with SOTA

The proposed DSHA is compared with several recent state-of the-art deep learning-based remote sensing
change detection methods (2023-2025); a Siamese network integrated MaskChanger®, a cross-level change
representation perceiver based MaskCD®, Residual networks based ChangerEx’’, a bitemporal image
transformer (BIT)®, a patch-mode joint feature fusion model SRC-Net’!, a dual branch multi-level inter-
temporal network (DMINet)®, a two-transformer-based SiamixFormer’?, an integrated Siamese network and
nested U-Net (SNUNet)®, an early fusion and deep supervision based LightCDNet’>, a global and lightweight
decoder based CrossCDNet’%, an omnidirectional selective scan based RS-Mamba’>, a U-Net based USSFC-
Net’®, and transformer-based ChangerFormer””.

In Table 3, we compared the performance of our proposed DSHA model with several state-of-the-art
methods of deep learning-based remote sensing change detection methods on the LEVIR-MCI dataset.
Maskchanger adopted the segmentation-specialized Mask2Former architecture by incorporating Siamese
networks to extract features separately from bi-temporal images, while retaining the original mask transformer
decode. Maskchanger used IoU evaluation to calculate the degree of overlap between the detected masks and
the ground truth, and it achieved an IoU score of 85.12% and an F1 score of 91.96% on the LEVIR-CD dataset.
Mask (MaskCD) reformulated change detection as a mask classification problem by using a Cross-Level Change
Representation Perceiver (CLCRP) with deformable attention to generate change-aware representations, followed
by a Masked Attention-based Detection Transformer (MA-DETR) decoder that predicts object masks and their
corresponding change/no-change classifications instead of performing pixel-wise labeling. It achieved an mIoU
score of 91.13% and an F1-score of 90.84%, showcasing its effectiveness in handling complex tasks. ChangerEx
used parameter-free feature exchange operations (spatial exchange in early stages and channel exchange in later
stages) between bi-temporal features during feature extraction, combined with Flow Dual-Alignment Fusion
(FDAF) for interactive alignment and fusion to achieve effective change detection. ChangerEx demonstrated
the high scores with 91.77% of F1-score, a recall of 90.61%, and precision of 92.97%, however, the IoU or mIoU
score was not mentioned in the results. BIT uses a transformer-based approach that incorporates self-attention
mechanisms to model long range dependencies with deep features but achieved relatively lower scores, with a
mloU of 73.54% and F1-score of 66.83%.

SRC-Net employed a Perception and Interaction Module with cross-branch perception mechanisms and a
Patch-Mode joint Feature Fusion Module to leverage bi-temporal spatial relationships between features at the
same location at different times for enhanced change detection and used the IoU for the evaluation. It achieved
a relatively high IoU score of 85.60 and an F1-score of 92.24% compared to BIT on the LEVIR-CD dataset. A
dual-branch multi-level inter-temporal network DMINet achieved an mIoU of 83.57% and F1-score of 80.57%
on the LEVIR-CD dataset, which demonstrates a reasonably good performance in change detection. A two
SegFormers used two parallel SegFormer encoders to extract hierarchical features from bi-temporal images,
applies temporal transformers at each stage for cross-attention fusion (query from T1, key-value from T2), and
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employs a lightweight MLP decoder to generate building detection or change detection maps, and achieved an
IoU score of 85.38 and F1-score of 91.57% on LEVIR-CD dataset. SiamixFormer employed two SegFormers to
independently extract features from bi-temporal images and achieved an IoU score of 85.38% on the LEVIR-CD
dataset, particularly excelling in detecting building changes. SNUNet, an integrated Siamese network combined
with a nested U-Net architecture, achieved an mIoU score of 87.07% and an F1-score of 86.08%. The score of
SNUNet shows its ability to capture the features for change detection from bi-temporal remote sensing images.
LightCDNet, used an early fusion backbone network with a Deep Supervised Fusion Module (DSFM) to guide
the fusion of primary features from bi-temporal images, combined with a pyramid decoder for end-to-end
lightweight change detection while preserving input information; achieved an IoU score of 84.21% and an F1-
score of 91.43% on the LEVIR-CD dataset.

CrossCDNet employed a Siamese neural network with an Instance Normalization and Batch Normalization
Module (IBNM) as the encoder backbone to extract and fuse bi-temporal feature maps, followed by a simple
MLP decoder for cross-domain change detection with enhanced generalization capability. It used the IoU for
measuring the degree of overlap between detection and ground truth. CrossCDNet achieved an IoU score of
84.65% and an F1-score of 91.96% on the LEVIR-CD dataset. The RS-Mamba incorporated an omnidirectional
selective scan module to capture global context in multiple spatial directions with linear complexity, enabling
efficient dense prediction on large VHR remote sensing images without the quadratic computational overhead
of transformers. RS-Mamba achieved an IoU score of 83.66% and F1-score of 91.1% on the LEVIR-CD dataset.
USSFC-Net used multi-scale decoupled convolution (MSDConv) for efficient multi-scale feature extraction and
a spatial-spectral feature cooperation strategy (SSFC) that generates 3D attention weights without additional
parameters to model spatial-spectral feature interactions for ultra-lightweight change detection, and achieved an
IoU score of 83.55% and F1-score of 91.04% for remote sensing change detection task. Finally, ChangeFormer,
used a hierarchical transformer encoder in a Siamese network to extract multi-scale features from bi-temporal
images, computes feature differences through difference modules at multiple scales, and employs a lightweight
MLP decoder to fuse these multi-level feature differences for change detection. It achieved an IoU score of
82.48% and an F1-score of 90.40% on the LEVIR-CD dataset.

Our proposed DSHA model incorporating a dual stream encoder with multi-scale attention and boundary
aware module achieved a better mIoU score of 92.28% and a better F1-score of 92.50% and outperformed the
currently existing state-of-the-art models on the LEVIR-CD dataset for change detection. This comparison
shows the superior capability of DSHA in detecting changes at multiple scales, including the small and
complex building structures as well as road structures, which makes it an optimal solution for remote sensing
bi-temporal images’ image analysis in smart cities. The superior performance demonstrates DSHA’s practical
viability for deployment in smart city monitoring networks, where accurate detection of small-scale urban
changes is crucial for municipal asset management, building permit compliance verification, and infrastructure
development oversight. This enhanced precision in multi-scale change detection fills a critical gap in operational
urban monitoring systems, providing city administrators with reliable automated analysis tools necessary for
maintaining comprehensive urban development records and supporting regulatory enforcement processes. This
evidence-based support for policymakers in sustainable urban planning and controlling urban expansion and
infrastructural changes directly contributes to the Sustainable Cities and Communities goal of the Sustainable
Development Goals*.

Conclusion and disscussion

In this article, we have proposed the DSHA with adaptive multi-scale boundary-aware mechanisms for robust
urban change detection in smart cities. Our approach synergistically combines the strengths of both CNN and
transformer by employing ResNet34 and customized PVT-v2 in a dual-stream encoder as the backbone for a
U-Net framework. This integration enables the simultaneous capture of both the global context and fine-grained
details. The feature fusion layers fuse the global and fine-grained features. The integration of a boundary-
aware module, along with multi-scale attention in the decoder, significantly enhances the model’s ability to
detect object boundaries and capture changes at various scales accurately. Furthermore, the combined loss
function, which is a combination of four losses, also helps the model to adjust its weights for better detections.
The experimental results of our proposed DSHA, ablation studies, and comparison with SOTA demonstrate
a substantial improvement over the existing state-of-the-art methods on the change detection benchmark
dataset. The proposed DSHA model achieved an mIoU score of 92.28, which is a primary evaluation metric
in segmentation tasks that calculates the ratio of overlap between ground truth and detections. Moreover, the
DSHA also showed its superior performance in other evaluation metrics, such as achieving the F1-score of
92.50, precision of 93.86, recall of 91.28, and accuracy of 95.27. The qualitative results also show the better
detection capability of our proposed DSHA, including the small and complex building and road structures.
These advancements in the results clearly demonstrate a significant advancement in urban change detection
from bi-temporal remote sensing images for smart cities. Future research could explore extending to land use
changes and other remote sensing applications and scenarios to enhance its robustness.

Beyond the technical achievements demonstrated, this research contributes significantly to the smart cities
paradigm by providing urban planners and policymakers with a robust technological tool for evidence-based
decision-making in sustainable urban development. The DSHA model’s superior performance in detecting
dense urban changes aligns with Sustainable Development Goal 11’s targets for making cities inclusive, safe,
resilient, and sustainable, while also supporting SDG 15 through accurate monitoring of land use changes and
environmental impacts. The real-time monitoring capabilities enabled by this approach represent a crucial
component of smart city infrastructure, facilitating data-driven governance and supporting the achievement of
multiple Sustainable Development Goals through comprehensive urban change analysis. This work demonstrates
how advanced remote sensing technologies can bridge the gap between technical innovation and practical urban
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planning applications, providing the monitoring foundation necessary for sustainable smart city development
and contributing to global efforts toward achieving the 2030 Sustainable Development Agenda.

Data availability

The datasets used in this study are publicly available at: Agent, L. C. LEVIRMCI Dataset. https://huggingface.co
datasetslcybuaalevir-mcitreemain/ (2025). Accessed:20250308, and https://drive.google.comfiled/1GX656JqqO
yBi_Efow65kDGVtonHrNs9edit. Accessed: 20250613.
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