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Abstract: In visual speech recognition (VSR), speech is transcribed using only visual information to
interpret tongue and teeth movements. Recently, deep learning has shown outstanding performance
in VSR, with accuracy exceeding that of lipreaders on benchmark datasets. However, several problems
still exist when using VSR systems. A major challenge is the distinction of words with similar
pronunciation, called homophones; these lead to word ambiguity. Another technical limitation
of traditional VSR systems is that visual information does not provide sufficient data for learning

]

words such as “a”, “an”, “eight”, and “bin” because their lengths are shorter than 0.02 s. This report
proposes a novel lipreading architecture that combines three different convolutional neural networks
(CNNs; a 3D CNN, a densely connected 3D CNN, and a multi-layer feature fusion 3D CNN), which
are followed by a two-layer bi-directional gated recurrent unit. The entire network was trained
using connectionist temporal classification. The results of the standard automatic speech recognition
evaluation metrics show that the proposed architecture reduced the character and word error rates
of the baseline model by 5.681% and 11.282%, respectively, for the unseen-speaker dataset. Our
proposed architecture exhibits improved performance even when visual ambiguity arises, thereby

increasing VSR reliability for practical applications.

Keywords: 3D densely connected CNN; 3D multi-layer feature fusion CNN; convolutional neural
network; deep learning; lipreading; speech recognition; visual speech recognition

1. Introduction

Speech is the most common form of communication between humans and involves
the perception of both acoustic and visual information. In 1976, McGurk and McDonald
demonstrated that speech perception is influenced by vision, which is called the McGurk
effect [1]. This effect indicates the necessity of matching both auditory and visual phonemes
to perceive pronounced phonemes correctly.

Vision plays a crucial role in speech understanding, and the importance of utilizing
visual information to improve the performance and robustness of speech recognition has
been demonstrated [2—4]. Although acoustic information is richer than visual information
when speaking, most people rely on watching lip movements to fully understand speech [2].
Furthermore, people rely on visual information in noisy environments where receiving
auditory information is challenging. Similarly, people with hearing impairments depend
on visual information to perceive spoken words. However, comprehending oral language
using visual information alone, especially in the absence of context, can be challenging
because it is difficult to understand lipreading actuations such as lip, tongue, and teeth
movements without context [3]. Hearing-impaired people using visual information have
achieved an accuracy of 17 & 12%, even for a small subset of 30 monosyllabic words, and
21 %+ 11% for 30 compound words, according to Easton and Basala [4]. Chung et al. [5]
showed that experienced professional lip-leaders achieved 26.2% accuracy with the BBC
News benchmark dataset when they could watch an unlimited number of videos.
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The development of a visual speech recognition (VSR) system has enormous poten-
tial for various practical applications, such as speech recognition in noisy environments,
biometric identification for security, communication in underwater environments, and
silent movie analysis, and it can positively affect patients with speech impairments [6,7].
Therefore, it is important to develop a VSR system that exclusively uses visual information.

Recently, several researchers have investigated the possibility of developing a VSR
system by decoding speech using only visual information to mimic human lipreading
capability [8-13]. Despite their efforts, VSR systems still exhibit low performance and
accuracy compared to those of audio or audio-VSR systems. A major challenge is the
distinction of words with similar pronunciation, called homophones [9]; these lead to
ambiguity at the word level. For example, although some words, such as pack, back, and
mac, differ in their sound, the characters (e.g., [p], [b], and [m]) produce almost identical lip
movements, thereby making them difficult to distinguish. As such, word distinction is the
most difficult task for humans and crucial for accurate lipreading [14]. Another technical
limitation of traditional VSR systems is that visual information does not provide sufficient
data for learning words such as “a”, “an”, “eight”, and “bin” because their length is no
longer than 0.02 s [15].

To address the challenges of similar pronunciation and insufficient visual information,
this paper presents a novel lipreading architecture that exhibits superior performance
compared to those of traditional and existing deep learning VSR systems. This architecture
consists of two sub-networks using end-to-end neural networks: the visual feature extrac-
tion module is made of a 3D convolutional neural network (CNN), a 3D densely connected
CNN for each time step by reducing model parameters, and a multi-layer feature fusion
(MLFF) CNN for capturing multichannel information in the temporal dimension of the
entire video and localizing effective objects. The sequence processing module uses a two-
layer bi-directional gated recurrent unit (GRU), which is followed by a linear layer. After
applying a SoftMax layer to all time steps to obtain the probabilities, the entire network is
trained using the connectionist temporal classification (CTC) loss function.

In our experiment, we compared the accuracy and efficiency of our architecture
with those of other visual feature extraction models with excellent performance on a
benchmark dataset [16]. The models used for this comparison were LeNet-5 [17], VGG-
F [18], ResNet-50 [19], DenseNet-121 [20], and LipNet [21] as the baseline model. Extensive
evaluation results show that the proposed architecture achieves state-of-the-art results and
remarkable efficiency compared to existing deep learning methods.

The contributions of our work can be summarized as follows:

e  We developed a novel lipreading architecture based on end-to-end neural networks
that relies exclusively on visual information;

e  We compared the architecture of our proposed model with that of LipNet as the
baseline and those of 3D LeNet-5, 3D VGG-F, 3D ResNet-50, and 3D DenseNet-121 to
evaluate the reliability of our model for practical applications;

e  We demonstrated improved accuracy and efficiency of the proposed architecture over
existing deep learning architectures applied to VSR system implementation.

The remainder of this paper is organized as follows. Section 2 reviews related work
on VSR systems and the traditional and existing deep learning approaches. Section 3 intro-
duces the proposed architecture. Section 4 presents information on benchmark datasets,
data processing, data augmentation, implementation, and performance evaluation metrics.
Along with certain comparative experiments and public processes, this section presents the
experimental results. Finally, Section 5 provides a discussion and our conclusions.

2. Related Work

This section summarizes the traditional and existing deep learning approaches for
VSR systems. Figure 1 illustrates the VSR processes of the traditional and deep-learning-
based methods.
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Figure 1. VSR process: (a) traditional step and (b) deep-learning step.

2.1. Traditional VSR

There are various traditional approaches for implementing VSR systems, such as
pre-processing of extracted image features and temporal video feature detection, involving
tasks such as optical flow, movement detection, and hand-worked vision pipelines. The
traditional approach to implementing the VSR method can be split into two phases. The
first phase involves the extraction of visual features from lip movements, and this process
relies primarily on hand-labeled features of the geometric information of the lip, such as
the lip contour. The existing visual feature extraction method for lip movement involves
four steps, starting with the detection and extraction of the region of interest (ROI), the lip,
from the video stream, followed by the extraction of lip features from the ROL For reducing
the dimension of the extracted features, a visual feature transformation is required as a
complementary step during feature extraction. Different feature transformation algorithms
have been developed and used for lipreading tasks, such as linear feature transformation
(e.g., discrete cosine transformation (DCT) and discrete wavelet transform (DWT) [22]) and
geometry-, motion- [23], and statistical model-based feature transformations [24,25]. The
quality of these algorithms depends on the accuracy of training data that are hand-labeled,
a task that requires significant amounts of time and effort.

The second phase involves text prediction using the dynamic visual features (classifier
phase) and prediction of the words or sentences using a dynamic classifier such as the
hidden Markov model (HMM). Using a limited dataset and the HMM model, Goldschen
et al. [26] were the first to propose a visual-only sentence-level lipreading technique.
They extracted visual features of the mouth region from codebook images to predict
continuous sequences of tri-visemes. This study was followed by the development of
multi-stream HMMs [27] and the creation of expanded datasets such as model audio and
visual streams [22].

As the databases become increasingly complicated, issues such as a high number of
speakers, variations in posture, and alterations in the conditions of lighting and background
environment may arise. In addition, databases may possess other limitations such as
high feature dimension and variations in image quality. Consequently, a complex lip
feature extraction algorithm is required. Some classifiers run based on the conditional
assumption and are not ideal for modeling long-term dependencies or for operating general
classification tasks where several variables are merged.

2.2. Deep Learning VSR

In recent years, deep learning methods have been successfully applied to many fields,
including VSR systems. Unlike traditional approaches, in which predictions are limited,
deep learning methods attain high accuracy. For instance, when a CNN is combined
with traditional methods, the trained classifier CNN architecture can distinguish between
visemes, and an HMM framework is used to add temporal information after the CNN



Sensors 2022, 22,72

4 0f 20

output [24,25]. Other researchers have combined long short-term memory (LSTM) with
histograms of oriented gradients (HoGs) and input recognized short phrases from the
GRID dataset [13,16]. Similarly, using the OuluVS and AVLetters datasets, a trained
LSTM classifier with DCT and deep bottleneck features was employed to make word
predictions [24].

The deep speech recognition architecture that reads the entire input sequence and
then predicts the output sentence is called the sequence-to-sequence model (seq2seq). This
model uses global information for longer sequences. Watch, listen, attend, and spell (WLAS)
was the first seq2seq model to consist of both audio and visual modules, and it was used to
recognize audio-visual speech from a real-world dataset [14,28].

The first suggested end-to-end model to deal with sentence-level lipreading and
predict character sequences was LipNet [21]. This model combined spatial-temporal convo-
lutions with Bi-GRU and was trained using the CTC loss function. A limited grammar and
vocabulary dataset (GRID corpus) was used to evaluate the performance of the LipNet ar-
chitecture: the word error rates in the overlapped and unseen-speaker databases were 4.8%
and 11.4%, respectively, whereas the success rate of human lipreaders for the same database
was 47.7%. Similar architectures have been introduced to investigate the convergence
of audio-visual features, where digit sequences were predicted using a small subset of
18 phonemes and 11 terms, and a CTC cascading model was used [29-31]. Thus, the deep
learning method can learn more deeply and extract more comprehensive features from the
experimental data, demonstrating strong robustness for big data and visual ambiguity.

3. Architecture

This section describes a VSR deep learning architecture and proposes a novel visual
feature extraction module (Figure 2c). The proposed module is compared with other
visual feature extraction modules that exhibit outstanding feature extraction performance:
(i) LipNet as the baseline module (Figure 2a) and (ii) four other comparative architectures
with different visual feature extraction modules, namely, 3D LeNet-5, 3D VGG-E 3D ResNet-
50, and 3D DenseNet-121 (Figure 2b). Figure 3 and (Appendix A—Table A1) provide the
detailed hyperparameters describing the proposed architecture.
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Figure 2. Schematic design of VSR architecture: (a) LipNet architecture (baseline), (b) four compared
architectures, and (c) proposed architecture.
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Figure 3. Detailed architecture: (a) baseline and (b) proposed architecture.

3.1. Spatial-Temporal CNN

CNNs directly use raw input data, thereby automating the feature construction pro-
cess. When a 2D CNN is applied to an image recognition task, it captures the encoded
information for a single image’s data and then transfers the encoded information to com-
pute features from the spatial dimensions using 2D feature maps. However, the application
of a 2D CNN to a video identification task, where the motion information is encoded in
multiple contiguous frames, is ineffective (Figure 4a). Therefore, we use a 3D CNN, which
acts as a spatial-temporal CNN in the convolution process, to compute features of both
the spatial and temporal dimensions and to capture different lipreading actuations, such
as the movements of the lips, tongue, and teeth. This use of a 3D CNN is supported by
studies that have shown that 3D CNNs are effective for the extraction of features from
video frames, when spatial and temporal information encoded in subsequent frames is
considered (Figure 4b) [21,25].

By transforming a single video frame into a cube by stacking several consecutive
frames together, the spatial-temporal convolution uses a 3D kernel. In this construction,
the feature maps of the convolutional layer are bound to several consecutive frames of the
previous layer, which makes it possible to collect motion information during video analysis.
Formally, tanh(-) is the hyperbolic tangent function, b;; is the bias for this feature map, R;

is the size of the 3D kernel along the temporal dimension, wZZ: is the (p, g, r)th value of the
kernel linked to the m" feature map in the previous layer, and the value at position (x, y, z)
on the j feature map in the i’ layer is given.

P—1Q;—1R;—1
= (x+p)(y+q)(z+7)
'UZ_.VZ = tanh(bij + Z ZO ZO ZO wgﬁv(f_lp)my q)(z+r ) (1)
m p: q: r=

The heights and weights of the kernels are given by P; and Q;, respectively [25]. As 3D
convolutional kernels replicate kernel weights around the entire cube in this construction,
only one form of feature can be extracted from the frame cube.
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In our experiment, all the input video frames were fed into a spatial-temporal CNN
to encode the visual information of the extracted lips. To be precise, we obtained spatial-
temporal features using a 3D convolutional layer with 64 3D kernels of size 3 x 7 x 7 in the
input image extracted from multiple contiguous frames. We used a batch normalization
(BN) layer to decrease the transformation of internal covariates and ReLU to speed up the
training process. Then, to decrease the spatial scale of the 3D feature maps, a max-pooling
3D layer was added. Thus, the output shape was observed with 75 x 50 x 13 x 64 tensors
for an input sequence of 75 x 100 x 50 x 3 (time/width/height/channel) frames.

3.2. 3D Densely Connected CNN

A densely connected CNN creates relationships between various layers of the con-
nection, which helps enable full use of the features, reduces the gradient disappearance
problem, and deepens the network. Before the convolution layer, the bottleneck layer
reduces the input feature volumes. The multichannel feature volumes are then fused
following the bottleneck layer process. As the preceding features remain, the next layer is
only applied to a small set of feature volumes. In addition, with the hyperparameter theta
regulating the degree of compression, transition layers are included to improve the model
compactness further. Adopting a bottleneck layer, transition layer, and smaller growth
rate results in a narrower network. This strategy reduces the model parameters, effectively
suppresses overfitting, and saves computational power.

Although many researchers have used 2D CNNs and extracted visual information
separately [28,29], 3D densely connected CNNs were used by adding temporal dimensions
to densely connected convolution kernel and pooling layers. This approach was used
because 2D CNNs often require complex pre-processing and post-processing to perform the
same tasks. Therefore, we modified the 2D DenseNet-121 architecture into a 3D DenseNet-
121 architecture to 35 maintain dense connectivity to enable deep feature extraction, and
this architecture fully utilizes the information provided by the spatial-temporal CNN
simultaneously. The dense block is a primary structure composed of densely connected
composite functions in the 3D DenseNet-121 architecture, consisting of three sequential
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operations: BN, ReLU, and 3D convolution layers. The transition layers between different
dense blocks contain a BN, ReLU, 3D convolution layer, and average 3D pooling layer.
We extended the strengths of 2D DenseNet-121 to 3D volumetric image processing
tasks. The 2D DenseNet-121 network consists of I layers, where each layer represents
a nonlinear transformation H;. The output of the /th layer can then be written as x;,
defined as:
x; = Hj([xo, x1, ..., x1-1]) 2)

where xg, x1, ..., x1_1 are the volumes of the 3D features produced from the previous
layers, and [...] refers to the operation of concatenation. Figure 5a illustrates a 3D densely
connected CNN architecture consisting of four adjacent dense blocks and three transition
layers. Dense block (1) was constructed using a BN layer, ReLU, 3 x 1 x 1 3D convolution
layer, BN layer, ReLU, and 3 x 3 x 3 3D convolution layer (Figure 5b). The structures
of dense blocks (2), (3), and (4) are similar to that of dense block (1). Figure 5c shows
the transition layer composed of a BN layer, ReLU, 3 x 1 x 1 3D convolution layer, and
2 x 2 x 2 average 3D pooling layer.

3D Dense 3D Transition 3D Dense 3D Transition 3D Dense 3D Transition 3D Dense
Block (1) Layer (1) Block (2) Layer (2) Block (3) Layer {3) Block (4)
x6 x12 x24 x16
da 1. 1. i .
(a) q r |
A
: 4 oLt PN t
| I I | I \ I |
- v v __4i_______r________1
T 1 | 1
| e L — 1
|
1
1
(b) (c) ;
B 2
2 Al 21T & Z° [

3D Dense Block 3D Transition Layer

Figure 5. Densely connected 3D CNN architecture: (a) detailed densely connected 3D CNN; (b) 3D
dense block structure; and (c) 3D transition layer structure.

3.3. MLFF 3D CNN

Currently, outstanding performance has been achieved for image classification prob-
lems using different CNN models. An example is the fusing of multiple CNNs for feature
aggregation, where extracting various spatial and temporal features is possible by creating
different structures and depths [30]. Different convolutional layers can extract features at
various levels of abstraction for the MLFF 3D CNN training phase. Various features can
also be derived from this training process with varying depths and filters of different sizes.
Using this approach, some of the related features lost in the layered architecture can be
selected, rendering the final feature richer.

The proposed MLFF 3D CNN architecture is shown in Figure 6. The first module
(Figure 6a) consists of a 3D convolutional layer with 64 3D kernels of size 3 x 5 x 5on a
3D densely connected convolution layer output feature, followed by a BN layer and ReLU
layer. For the second module (Figure 6b), the structure of the first module is followed by a
dropout layer to alleviate overfitting as the benchmark dataset used is not large compared
with existing image datasets. The role of the dropout layer is to improve and generalize the
performance by preventing the creation of strongly correlated activations, which solves
overtraining and overfitting [31]. In the third module, the structure is similar to that of
the second module, except that the dropout layer is replaced by a spatial dropout layer
(Figure 6¢), which is a method of dropping the entire feature map. Unlike the standard
dropout method, which randomly drops pixels, this method exhibits excellent image
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classification using CNN models with strong spatial correlation [32]. Therefore, we applied
a spatial dropout layer to effectively extract the shapes of the lips, teeth, and tongue with a
strong spatial correlation that includes fine movements.

{a) = s
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Figure 6. Detailed MLFF 3D CNN: (a) first architecture; (b) second architecture with dropout layer
using dropped pixel; and (c) third architecture with spatial dropout layer using dropped channel.

3.4. GRU

The GRU is a recurrent neural network that learns to propagate and regulate the
flow of information over more time stages [33]. The GRU can distinguish longer temporal
contexts, which is helpful for discriminating ambiguity because 3D CNN captures only
short viseme-level features. Moreover, the gradient vanishing problem can be solved by
using a GRU, which uses an update gate and reset gate.

Our proposed architecture uses a two-layer bi-directional GRU as a sequence process-
ing module (Figure 7a). Unlike the typical deployment of GRU, a two-layer bi-directional
GRU is employed to present information in both forward and backward manners to two
separate neural network architectures that are connected to the same output layer, such
that both networks can obtain complete information regarding the input. The two-layer
bi-directional GRU layer receives its input from the MLFF 3D CNN sequentially and then
generates characters as output, as follows:

Y= 0_(I/vrat + Uhy—q + br) (4)
hi= (1 —z) ohy_1+zi 0 op(Wyar + Uy (re o hy—q) + by) ©)

The GRU consists of four components (x;, z¢, 7t, and h¢) and a given sequence of
image features a = (a1, ap,- - -, a;). x; is an input vector with its resulting weight param-
eter matrix and vector. z; is an update gate vector with its resulting weight parameter
matrix and vectors W;, U, and b,. r; is a reset gate vector with its resulting weight
parameter matrix and vectors W;, U,, and b,. Finally, h; is an output vector with its
resulting weight parameter matrix and vectors Wy, Uy, and by,. h;_; is the previously
hidden state output, which has the same structure as the current state. o is the ReLU
function, used as an activation function. represents the Hadamard product. To obtain
an output with 75 x 512 tensors using the merge layer, we provided an input sequence of
75 x 3 x 1 x 192 (time/width/height/channel) frames in a bi-directional GRU.
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Figure 7. Sequence processing module: (a) a two-layer bi-directional GRU and (b) CTC.

3.5. Connectionist Temporal Classification (CTC)

We used the CTC approach and applied it to an end-to-end deep neural network. This
approach uses a loss function to parameterize the distribution of a label token sequence
without having to align the input sequence [34]. A single set of time step label tokens can
be expressed as V by using CTC, where the series of size-T given by the temporal module
is the output labeled by the blank symbols ‘LI and consecutive symbols are repeated
(Figure 7b). We define a function B : (V U {U})* = V* to delete adjacent characters
and to remove any blanks because the processed string may contain a blank token. It is
possible to obtain the probability of observing a labeled sequence y by marginalizing this
label, p(y|x) = Luen-1(y) p(ui|x) - - - p(ur|x), where x is the input video, for all possible
alignments. The standard CTC loss Lt formula is defined as follows:

pec(ylx) = Y pere(wlx) = ) qut (6)

weB~1(y) weB1(y)

Lete = —In Pctc (]/|x) )

where T is the duration of the input sequence and qiwt) represents the SoftMax probability

of the output label w;, where w; € {a, ai, an, ao,---, zun, zuo, blank} at frame t. The
CTC path of a sequence is w = (w1, wy, -+, wr), and y is the sentence label (ground
truth). B~1(y) is the set of all possible paths of the CTC that can be mapped to ground
truth y. As CTC prohibits the use of autoregressive connections to control the inter-time-
step dependencies of the label sequence, it is conditionally independent of the marginal
distributions generated at each time step of the temporal module. Therefore, CTC models
are typically decoded using a beam search procedure to restore the temporal dependency
of the labels, which blends the probabilities of that language model.
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4. Experiments and Results

This section describes the used dataset, data pre-processing, data augmentation,
and implementation.

4.1. Dataset

The GRID audio-visual dataset is widely used for audio-visual recognition and VSR
studies and is built on sentence-level audio video clips [16]. GRID is an openly available
corpus containing an audio-visual database from 34 speakers with 1000 utterances per
speaker and a total duration of 28 h. One sample has a single speaker clip, and each sample
in this database lasts 3 s at 25 frames/s. The visual data for speaker number 21 are missing
from the online available database corpus [16]. This database is sentence-level with a fixed
grammar and is composed of “command (4) + color (4) + preposition (4) + letter (26) +
digit (10) + adverb (4)”. It has 51 unique words, and each sentence is a randomly chosen
combination of these words.

To unify the test conditions for our experiment, we divided the training and validation
sets as follows [21]. In unseen-speaker datasets that were not historically used in the litera-
ture, 3971 videos were used for the evaluation data relevant to male speakers (1 and 2) and
female speakers (20 and 22). The remaining videos for the unseen speakers (28,775 videos)
were utilized to train the models. Following this strategy, the models were evaluated using
speakers that had not appeared in the training process, thus guaranteeing the general-
ized performance of the model. We employed sentence-level variants of segmentation for
overlapped-speaker datasets, where 255 random sentences from each speaker were used
for evaluation. For training, the leftover data from all speakers were pooled.

4.2. Data Pre-Processing and Augmentation

The data pre-processing stage detects the targeted face and mouth using a DLib face
detector [35]. This detector utilized a HoG feature-based linear classifier [35]. The output
is given as the (x, y) coordinates of the diagonal edges; these coordinates are used later
to draw the bounding box around the mouth. Subsequently, the iBug tool was used
with 68 landmarks coupled with an online Kalman filter as a face landmark predictor [36].
This tool is typically used to read lip movements and extract points on the lips, which
correspond to those obtained from the trained dataset. These tools were employed to
extract a mouth-centered area with dimensions of 100 x 50 pixels per frame using an affine
transformation and to standardize the RGB channels over the entire training set to have
zero mean and unit variance. For training data, we used the data augmentation process
from [21] to prevent overfitting. We performed training with both regular and horizontally
mirrored image sequences. As the dataset included start and end terms that acted as a
timer for each “clip” sample, we augmented the training data at the sentence level using
individual words as additional training instances. These instances had a decay rate of 0.925.
Finally, if necessary, we detected the movement speed and duplicated the frames to prevent
variation, and this process was conducted with a probability of 0.05/frame. All models
were trained and tested under the same pre-processing and augmentation processes for the
GRID dataset.

4.3. Implementation

All models were implemented using Keras with a TensorFlow backend and TensorFlow-
CTC decoder to measure the character error rate (CER) and word error rate (WER) scores
using CTC beam search. In Figure 3 and Table A1 (Appendix A), the detailed configu-
ration and parameters used for each layer in the proposed architecture are summarized.
The network parameters of all models were initialized via He initialization, except for
the orthogonally initialized square GRU matrices and the default hyperparameters. The
orthogonally initialized square GRU matrices were trained with mini batches of size 8
and used the optimizer ADAM [37] with a learning rate of 0.0001. The proposed model
was trained utilizing channel-wise dropped pixels and the dropped channel using spatial
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dropout in the MLFF 3D CNN, where the proposed models included the baseline model
trained on GRID until overfitting.

As mentioned earlier, LipNet is the baseline model in our study; therefore, we eval-
uated its performance for the categories of unseen and overlapped speakers. For the
unseen-speaker category, 8.534% CER and 16.341% WER were achieved, versus 6.400%
CER and 11.400% WER in the model paper [21]. In addition, for overlapped speakers, we
obtained CER of 5.657% and WER of 14.779%, whereas 1.900% CER and 4.800% WER were
mentioned in the model paper: our test results for the LipNet model are higher than those
of the original LipNet model. Due to these variations in outcomes, video clips of individual
words were not used for additional training instances or other defective operations in
the training phase. As one of the contributions of this analysis is a feasibility test of the
proposed model, to obtain the required CER and WER, we did not further subdivide the
baseline model. However, we compared the results acquired in our environment with those
obtained in the testing environments of the existing models to analyze both the existing
models and the proposed model.

4.4. Performance Evaluation Metrics

We used standard automatic speech recognition evaluation metrics to assess the pro-
posed model. The learning loss of all the models was measured to evaluate the learning
state during the training process. To compare the performances and computational ef-
ficiencies of all models, we evaluated the parameters, epoch time, CER, and WER, of
each model.

By calculating the total edit distance, the error rate metrics used for accuracy as-
sessment were obtained and converted into percentages. It is necessary to compare the
decoded text to the original text when assessing misclassifications. The equation is given,
wherein N is the cumulative number of characters in the ground truth, S is the number of
characters substituted for incorrect classifications, I is the number of characters inserted
for non-picked characters, and D is the number of deletions that should not be present for
decoded characters. Thus, the CER and WER are determined using Equations (8) and (9),
where C and W denote characters and words, respectively.

CER(%) — (W) % 100 ®)
N

WER (%) = (W) x 100 ©9)
N

We performed a CTC beam search using a TensorFlow-CTC decoder implementation
to generate approximate maximum-probability predictions for all experimental models.
We also compared the CER and WER with respect to the number of parameters and
computational efficiency over the epoch time. To visualize the results, we used the phoneme-
to-viseme mapping described in [38].

4.5. Training Process and Learning Loss

The training and validation losses during training on the GRID corpus are shown in
Figures 8 and 9, and the definition of each tested model is presented in Table 1 for both the
unseen and overlapped-speaker categories. For the former category in Figure 8, the gaps
between training and validation in models A and B and the baseline model are similar, as
illustrated in Figure 8a—c. Furthermore, our proposed model shows large gaps relative
to those for the three models in Figure 8a—c, but slightly smaller gaps relative to those
in Figure 8d.
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(d) model-eC; (e) model-D; (f) model-E.

In the category of overlapped speakers, the training loss of each model started to
decrease earlier than the baseline, as shown in Figure 9. The validation loss of the baseline
and Figure 9b show similar tendencies, where the differences between the training and
validation losses in Figure 9c—e are lower than the difference in the baseline model.

We performed the training process with the 3D ResNet-50 model; however, it did not
perform as our experimental environment ran out of memory, and the results for unseen
speakers were excluded. Finally, these results indicate that our proposed model for the
two categories in the GRID dataset shows the lowest difference between the training and
validation losses, which effectively prevents overfitting.

4.6. WER and CER

The results are reported for the unseen and overlapped speakers of the GRID dataset.
The results of the comparison between our proposed model and the existing deep learning
models are presented in Table 2, which reveals that our proposed model achieved state-of-
the-art (SOTA) results: 2.853% CER and 5.059% WER for the unseen-speaker category and
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1.004% CER and 1.011% WER for the overlapped-speaker category. These results exhibit
decrease of all conditions over the current SOTA and baseline results.

Table 1. Number of parameters and epoch time of the proposed method compared to those of the
baseline and different methods.

Model Method Parameters Unseen Speakers O;;:Lalfegzd
Frontend Backend Epoch Time (s) Epoch Time (s)
Baseline 3D CNN Bi-GRU + CTC 45.7M 1152 131
Model-A 3D CNN + 3D LeNet-5 Bi-GRU + CTC 36.5M 1104 118
Model-B 3D CNN + 3D VGG-F Bi-GRU + CTC 113.4M 1405 178
Model-C 3D CNN + 3D ResNet-50 Bi-GRU + CTC 667M - 256
Model-D 3D CNN + 3D DenseNet-121 Bi-GRU + CTC 22.4M 1272 126
Model-E Proposed architecture 34.5M 1286 127
Table 2. Performance of the proposed model compared to the baseline model and different existing
models with unseen and overlapped speakers.
Year Model Unseen Speakers Overlapped Speakers
CER (%) WER (%) CER (%) WER (%)
Hearing-impaired person (avg.) [21] - 47.700 - -
2016 Baseline-LSTM [21] 38.400 52.800 15.200 26.300
2016 Baseline-2D [21] 16.200 26.700 4.300 11.600
2017 LipNet-NoLM [21] - - 2.000 5.600
2017 LipNet [21] 6.400 11.400 1.900 4.800
2017 WAS [5] - - - 3.300
2018 LCANet [39] - - 1.300 2.900
2018 LipNet + 3D-FPA [9] 7.246 14.178 - -
2019 LRNeuNet [40] 6.100 9.500 1.200 2.700
2019 LipSound [41] - - 1.532 4.215
2020 PCPG [42] - 11.200 - -
2020 FastLR [43] - - 2.400 4.500
2020 LipNet + LipsID [44] 5.200 9.900 1.200 3.300
2020 TVSR-Net + SC-Block [45] - 90.900 - -
2020 DualLip [46] - - 1.600 2.710
2021 3D-ResNet50-TCN-CTC [47] 4.100 6.200 1.200 1.100
Frontend Backend CER (%) WER (%) CER (%) WER (%)
Baseline 3D CNN Bi-GRU + CTC 8.534 16.341 5.657 14.779
Model-A 3D CNN + 3D LeNet-5 Bi-GRU + CTC 11.797 17.188 8.083 22.526
Model-B 3D CNN + 3D VGG-F Bi-GRU + CTC 8.395 11.914 3.499 10.482
Model-C NN Bi-GRU + CTC - - 3.089 8203
Model-D SR Bi-GRU + CTC 5314 10286 3165 8529
Model-E Proposed architecture 2.853 5.059 1.004 1.011

Although the accuracies of the models with 3D ResNet-50 and 3D DenseNet-121
architectures exceeded that of the baseline, no significant differences were detected (Table 2).
In the case of unseen speaker’s category (Figure 10a,b), Models A, B, D, and E exhibit an
almost steady learning behavior until approximately 250 epochs; subsequently, the error
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rates show a continuous decrement. On the other hand, both baseline and Model A with
a simple structure show higher error rates compared to others. Moreover, the smallest
error rates are achieved by our proposed Model E with the same training steps. For the
overlapped speaker category, Models B, C, and D show similar performance. Unlike
the comparable performance of Model A for the unseen speaker category, an obvious
degradation in performance is observed for the same model in the case of overlapped
speaker’s category (Figure 10c,d). For our proposed Model E, the error rate shows a
noticeable decrement after approximately 130 epochs. Therefore, in terms of accuracy, our
proposed model outperforms the existing models, including the baseline model, which can
be attributed to the combination of multiple 3D CNN architectures. Figure 10 shows the
training step with CER and WER on the GRID database.
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Figure 10. Training steps for CER and WER comparing our proposed model against the baseline and
other models: (a) CER and (b) WER evaluated using unseen speakers, and (¢) CER and (d) WER

evaluated using overlapped speakers.

4.7. Model and Computational Efficiency

The major limitations of VSR systems in practical applications are their model size
and computational efficiency. To evaluate the computational efficiencies of the models,
we compared their accuracies with different numbers of trained parameters and epoch
times (Figures 11 and 12). We summarized the number of parameters and epoch time for
individual models for the two dataset categories in Table 1. Although our proposed model
has an epoch time similar to that of the baseline model, lower CER and WER are seen due
to 10 M fewer parameters used. In addition, our model shows a faster epoch time and
lower number of parameters than those of the three other models except Model A with the
GRID dataset. LeNet-5 has a gradient-based learning CNN structure, which is divided into
an input layer, a convolution layer, a pooling layer, a fully connected layer, and an output
layer, and the input layer is removed, and a total of seven layers are included. Model A
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is a simple structure using two convolution layers and pooling layers from LeNet-5. This
simple structure has difficulty in processing high resolution images. Therefore, its accuracy
will be significantly lowered when used for an application like lip reading, which requires
delicate motion detection.
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Figure 11. CER and WER of the baseline and different models according to the number of parameters,
measured on two splits: (a) CER and (b) WER evaluated using unseen speakers, and (c) CER and
(d) WER evaluated using overlapped speakers.

In conclusion, we obtained a lower error of GRID database while reducing the number
of parameters by approximately 11.2 M compared to that of the baseline model; we also
achieved a comparable epoch time.

4.8. Confusion Matrix

A mapping proposed by the IBM ViaVoice database was used for the visual analy-
sis [38]. It consists of 43 phonemes grouped into 13 classes of visemes, including a silence
class, vowels based on lip rounding (V), alveolar-semivowels (A), alveolar-fricatives (B),
alveolar (C), palato-alveolar (D), bilabial (E), dental (F), labio-dental (G), and velar (H). For
the bilabial viseme class, we plot a confusion matrix corresponding to the most confusing
phoneme (Figure 13a), which represents the vowels based on lip rounding. In the experi-
mental results, {/AE/, /IH/} is frequently misclassified during the text decoding process
(Figure 13a). At a first glance, the confusion between /IH/ (a rather close vowel) and /AE/
(a very open vowel) is unexpected but only occurs in “at”, a generally pronounced feature
word with a shortened, weak vowel /AH/ in sample /AE/. This effect is due to the similar
pronunciations of the {at, bin} text pair. Figure 13b represents the intra-viseme categorical
confusion matrix. Distinguishing homophones is a major challenge, and we present the
experimental results for [p], [b], and [m] in Figure 13c. Based on the evaluation of our
model from different aspects, this model can help overcome the technical barriers for the
practical implementation of VSR systems.
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Figure 12. CER and WER of the baseline and different models according to epoch time, measured
on two splits: (a) CER and (b) WER evaluated using unseen speakers, and (c) CER and (d) WER

evaluated using overlapped speakers.

The confusion matrix in [21] shows the results for frequent misclassifying words in
the text decoding process. Many errors occurred, but {/AA/, /AY/} and {/AE/, /IH/}
accounted for the largest proportion among them. Furthermore, similar pronunciation
between the text pairs of {r, i}, {at, bin}, and {four, two} causes frequent incorrect classi-
fication during the text decoding process for {/AA/, /AY /},{/AE/, /IH/} and {/AO/,
/UW/}in [39]. Although it was difficult to distinguish words of similar pronunciation for
{/AE/, /IH/} in our proposed model, an enhancement can be noticed in Figure 13a for
correctly classifying similar pronunciations for {/AA/, /AY/} and {/AO/, /UW/}, unlike
their frequent misclassification in [21,39]. Additionally, we can determine the superiority
of our model performance by comparing it with the bilabial and intra-visemes categor-
ical confusion matrix in [21,39]. Therefore, our model showed excellent performance in
distinguishing all similar pronunciations on bilabial-visemes and intra-visemes.
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Figure 13. Detailed proposed architecture confusion matrices for the (a) lip-rounding based vowels;
(b) intra-visemes; and (c) bilabial groups. The three groups with the most confusions were selected,
as well as the confusions within viseme clusters.

5. Discussion and Conclusions

The primary reason lipreading is difficult is that much of the image in the video input
remains unchanged—the movement of the lips is the biggest distinction. However, it is
possible to perform action recognition, which is a type of video classification, from a single
image. When lipreading, it is always important to derive the characteristics relevant to the
speech content from a single image and to analyze the time relationship between the entire
series of images to infer the content. The key problem with lipreading is visual ambiguity.

This paper presented a novel lipreading architecture for sentence-level VSR. By apply-
ing multiple visual feature extraction methods, we achieved accurate viseme prediction. To
the best of our knowledge, this is the first time that a 3D CNN, 3D densely connected CNN,
and MLFF 3D CNN have been used in combination to extract the features of lip movements
as encoders. The strengths of each stage are as follows. The 3D CNN extracts features from
multiple consecutive video frames efficiently. The 3D densely connected CNN helps in
fully utilizing the features, effectively reducing the problem of gradient disappearance,
and making the network deeper. In addition, the bottleneck layer, translation layer, and
smaller growth rate make the network narrower, thereby reducing the number of model
parameters, suppressing overfitting and saving computational power. Lastly, the MLFF 3D
CNN with a dropout and spatial dropout layer avoids overfitting and effectively extracts



Sensors 2022, 22,72

18 of 20

shapes with strong spatial correlations with fine movements while exploring the context
information of the movement in both the temporal and spatial domains.

We compared several deep learning models for predicting sentence sequences, and
the results indicated that our proposed architecture achieves SOTA CER and WER values
(Table 2). Smaller numbers of parameter and faster epoch times than those of the existing
methods were realized using our proposed model. Moreover, the proposed architecture
showed reduced CER and WER values than those of the baseline model for both the
unseen-speaker and overlapped-speaker datasets.

It is important to develop a VSR system that exclusively uses visual information. This
system has practical potential for various applications in speech recognition in noisy or
underwater environments, biometric identification for security, and silent movie analysis;
furthermore, it could be beneficial for patients with speech impairments. However, it
remains difficult to perform automatic speech recognition using only VSR as speech uses
acoustic and visual information. Thus, in future work, we will investigate a solution that
can be directly applied to the loss function, because the loss function was not modified in
our proposed model. Moreover, we intend to expand our concept to pursue performance
enhancement and discover potential applications using both audio and visual information.
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Appendix A

The following table provides a detailed hyperparameters further describing the pro-
posed end-to-end lip-reading architecture.

Table Al. Hyperparameters of proposed architecture.

[1 x 2 x 2] average pool/(1 x 2 x 2)

Layers Size/Strid/Pad Output Size Dimension Order
3D Conv [3x5x5]/(1,2,2)/(1,2,2) 75 x 50 x 25 x 64 TXCxHxW
3D Max Pooling [1x2x2]/(1,2,2) 75 x 50 x 13 x 64 TxCxHxW
[3 x 1 x 1] 3D Conv
3D Dense Block (1) (x6) 75 x 25 x 13 x 96 TxCxHxW
[3 x 3 x 3] 3D Conv
[3 x 1 x 1] 3D Conv
3D Transition Block (1) 75X 12X 6 X6 TxCxHxW
[1 x 2 x 2] average pool/(1 x 2 x 2)
[3 x 1 x 1] 3D Conv
3D Dense Block (2) (x12) 75 x 12 x 6 x 38 TxCxHxW
[3 x 3 x 3] 3D Conv
[3 x 1 x 1] 3D Conv
3D Transition Block (2) 75x6x3x3 TxCxHxW
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Table Al. Cont.

Layers Size/Strid/Pad Output Size Dimension Order

[3 x 1 x 1] 3D Conv

3D Dense Block (3) (x24) 75 x 12 x 6 x 38 TxCxHxW
[3 x 3 x 3] 3D Conv

[3 x 1 x 1] 3D Conv

3D Transition Block (3) 75x3x1x1 TxCxHxW

[1 x 2 x 2] average pool/(1 x 2 x 2)

[3 x 1 x 1] 3D Conv

3D Dense Block (4) (x16) 75 x 3 x 1 x 33 TxCxHxW
[3 x 3 x 3] 3D Conv

MLFF 3D CNN (1) [3x5x%x5]/(1,2,2)/(1,2,2) 75 x3x1x64 TxCxHxW

MLFF 3D CNN (2) [3x5x5]/(1,2,2)/(1,2,2) 75 x3x1x64 TXxCxHxW

MLFF 3D CNN (3) [3x5x5]/(1,2,2)/(1,2,2) 75 x3x1x64 TxCxHxW
Bi-GRU (1) 256 75 x 512 TxF
Bi-GRU (2) 256 75 x 512 TxF
Linear 27 + blank 75 x 512 TxF
Softmax 75 x 28 TxV
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