

The Effects of Garlic mustard (*Alliaria petiolata*) Invasions on Soil Microbiome

마늘냉이의 침입이 토양 미생물 군집에 미치는 영향

Yousuk Kim^P, Seorin Jeong, Tae-min Kim, Byungwook Choi, Eunsuk Kim^C

2025.03.20

Evolutionary Ecology Laboratory

Invasive Plants and Plant-Soil Feedback

Target Species

Garlic mustard (*Alliaria petiolata*)

- Introduced to North America in the mid-1800s, its invasion of forests has led to significant ecosystem changes.
- In South Korea, first discovered in Samcheok (SC) in 2012, later discovered in Suwon (SW) and Incheon (IC).
- Even after 10 years of its introduction, specific information on the impact of the garlic mustard invasion remains unavailable.

Experimental Sites and Sampling

- Site : SC, SW, IC
- After assessing the invasion of garlic mustard in each site, randomly selected GM invaded areas and uninvaded areas adjacent to the each invaded areas (SC: 4, SW: 3, IC: 1).
- Establish five 1m x 1m plots (replicates) in each invaded and uninvaded areas.
- Collect soil samples at a depth of 0–10 cm in each plot.
- Total 80 bulk soil samples : SC (4 x 2 x 5 = 40 Samples), SW (3 x 2 x 5 = 30 Samples), IC (1 x 2 x 5 = 10 Samples).
- After sample collection, remove roots using a 2mm sieve and store at -80°C until DNA extraction.

DNA Extraction and Amplicon Sequencing

DNA extraction

Using DNeasy PowerSoil Pro Kit (Qiagen, Germany)

1) Nanopore sequencing for bacterial community

Long-read sequencing (V1-V9 region; 27F-1492R)

68 136 433 576 821 980 1117 1243 1435

2) Illumina sequencing for fungal community

■ ITS2 region (ITS3F-ITS4R)

Post-sequencing pipeline for Nanopore and Illumina sequencing

Statistical Analysis

1) Alpha diversity

Analysis of variance (ANOVA), Pairwise comparison

2) Beta diversity

Permutational analysis of variance (PERMANOVA), Non-metric multidimensional scaling (nMDS), Analysis of similarities
 (ANOSIM)

3) Differential abundance analysis (DA analysis)

ANCOM-BC2

4) Functional analysis

- FAPROTAX (Functional annotation of prokaryotic taxa) for bacterial community
- FunGuild for fungal community
- LEfSe (Linear discriminant analysis Effect Size) (DA analysis)
- Pearson's Correlation

Bacterial community

- Total: 80 Samples, 2,443 Species (1,370,937 Reads)
- Samcheok (SC): 40 Samples, 2,252 Species (695,052 Reads)
- Suwon (SW): 30 Samples, 2,284 Species (522,747 Reads)
- Incheon (IC): 10 Samples, 1,913 Species (153,138 Reads)
- Conduct additional analyses at the species level.

Alpha diversity

- GM invaded areas showed lower diversity than uninvaded areas.
- Significant differences were observed in SW (71.1 vs. 86.5), and similar trends were observed in IC (73.4 vs. 80.6) and SC (50.9 vs. 56.2).
- At the phylum level, Proteobacteria and Actinobacteria were dominated, and at the species level, *L. pratensis*, *P. taiwanensis*, and *C. woesei* account for the largest proportions.

Beta diversity

	Df	SS	R^2	F Pr(>F)
Site	2	1.34	0.31	18.23 0.0001 ***
Treatment	1	0.11	0.03	2.99 0.0224*
Site:Treatment	2	0.20	0.05	2.73 0.0098**
Residual	74	2.72	0.62	
Total	79	4.37	1.00	

- Similar with alpha diversity, there were differences between sites.
- Differences in bacterial communities between GM invaded and uninvaded areas were identified.
- The differences in bacterial communities seemed to result from changes in relative abundance rather than shifts in community member.

Differential abundant Species after Garlic mustard Invasion

- This is the result of dividing the bacterial communities by site and conducting ANCOM-BC2 analysis.
- A total of 20 bacterial species showed differences due to garlic mustard invasion.
- Most species that showed differences after garlic mustard invasion showed increases in the invaded area.
- However, the bacterial species that showed differences were only identified at the SC.

Functional Diversity of Bacterial community

- 1,688 out of 2,443 records (69.1%) were assigned to at least one group
- A total of 80 functions were derived from FAPROTAX.
- Chemoheterotrophy and aerobic chemoheterotrophy functions accounted for the largest proportion.
- Nitrate reduction, nitrogen respiration, and nitrate respiration accounted for a significant portion of nitrogen cycle-related functions, following chemoheterotrophy following previous functions.
- Across all sites, we observed <u>differences in functional diversity due to GM invasion</u>.

Functional Diversity of Bacterial community

- LEfSe analysis to explore functional changes due to GM invasion at each site.
- A total of 27 ecological functions showed significant differences.
- This difference was confirmed <u>only in SC</u>.
- Phototrophic bacteria decreased, while heterotrophic bacteria increased.
- Bacteria that fix nitrogen were found to be decreasing.

Fungal community

- Total (80 Samples): 14,717 ASVs (3,833,771 reads), 1,546 Species (1,882,257 reads)
- SC (40 Samples): 8,079 ASVs (1,810,123 reads), 1,211 Species (857,470 reads)
- SW (30 Samples): 6,964 ASVs (1,465,553 reads), 581 Species (663,312 reads)
- IC (10 Samples): 2,329 ASVs (558,095 reads), 771 Species (361,475 reads)
- Conduct additional analyses at the species level.

Alpha diversity

- Unlike the bacterial community, no differences in alpha diversity were observed between the overall invaded and uninvaded areas.
- SW showed lower diversity in the invaded area than in the uninvaded area, and SC showed the opposite trend.
- Among the entire community, <u>Ascomycota (자낭균)</u>,

 <u>Basidomycota (담자균) are dominant</u> at the phylum level.

Beta diversity

	Df	SS	R^2	F Pr(>	F)
Site	2	4.77	0.21	10.82 0.00	01***
Treatment	1	0.69	0.03	3.13 0.00	01***
Site:Treatment	2	1.42	0.06	3.22 0.00	01***
Residual	74	16.30	0.70		
Total	79	23.18	1.00		
SC		SW			IC

(18.9%)

(23.4%)

As with the bacterial communities, <u>differences in fungal communities were identified between invaded and uninvaded</u>
 areas, with differences observed between sites.

(25.4%)

(32.2%)

(42.4%)

- Fungal communities have a <u>relatively lower proportion of species in common</u> between invaded and uninvaded areas than bacterial communities.
- This suggests that the changes in the community due to invasion by GM occurred through a process of selection for specific fungi.

(36.4%)

(32.4%)

Differential abundant Species after Garlic mustard Invasion

- A total of 12 species showed significant differences due to GM invasion.
- Nine species were identified in SC, three species in SW, and no species with significant differences were identified in IC.
- Most of the increased species were plant pathogen, on the contrary, among the reduced species, ectomycorrhizal.

Functional diversity of Fungal community

- All: 41 functions / SC: 41 functions / SW: 35 functions / IC: 38 functions
- Undefined saprotroph, endophyte, plant saprotroph and plant pathogen are dominant within the fungal community.
- In terms of functional diversity, only SC exhibits a significant difference, similar to bacterial community.

Correlation between Bacterial function and Fungal function

- To identify correlations between functions that showed significant differences in each bacterial and fungal community and functions generally related to plant growth or nutrient cycling.
- In fungal function, <u>endophytes and ectomycorrhizal</u>
 <u>showed similar trends, while plant pathogens showed</u>
 <u>opposite trends</u>.

Conclusion

- We observed changes in soil bacterial and fungal communities in domestic GM habitats.
- However, it was only in SC that differences in communities were confirmed to lead to differences in specific microorganisms and differences in function.
- This study confirmed the <u>decrease of ectomycorrhizal after GM invasion</u>, which may cause changes in the nitrogen <u>cycling</u>, which is consistent with the results of previous studies.
- However, since this study only confirmed the changes in biotic factors due to GM invasion, it is not known what factors
 caused the differences in microbial communities and functions.
- Therefore, additional analysis should be conducted through further studies to measure soil abiotic factors.

Thank you for listening Q&A