시험관 생물검사를 활용한 먹는물의 영향기반 수질 평가 및 정량한계 기준 제안

Effect-Based Water Quality Assessment of Drinking Water Using In Vitro Bioassays and Proposal of limit of quantification Criteria

Hyeyeon Park¹-Yegyun Choi¹-Yunho Lee^{1†}

¹School of Environmental and Energy Engineering, Gwangju Institute of Science and Technology (GIST)

roblem

Introduction

Quantification in in vitro bioassay

- Chemical analysis uses direct and standardized linear calibration for quantification.
- In contrast, in vitro bioassay responses are measured as % effect—indicating the response relative to a maximal effect—or as induction ratio, which reflects the fold change compared to a negative control.
- These responses are then converted into bioanalytical equivalent concentrations (BEQs) by referencing the dose-response curve of a known reference compound.
- This quantification is indirect and assay-dependent, influenced by factors such as assay condition.

Quality assurance & quality control (QA/QC) of in vitro bioassay

Reproducibility crisis of in vitro bioassay Indirect and assay-dependent quantification Excessive sample enrichment may cause cytotoxicity, complicating interpretation.

Lack of reproducibility, reliability and standardization across different laboratories

Addressing through QA/QC

Accuracy: closeness to true value Precision: consistency in results Matrix interference: impact of sample composition Sensitivity: ability to detect low-level response

(limit of detection; LOD, limit of quantification; LOQ)

In vitro bioassay for drinking water Drinking water contains trace-level contaminants, which often result in subtle biological responses. These low-level signals can be misinterpreted as false positives in bioassay-based monitoring.

Research Focus: Analytical sensitivity (LOQ)

Among QA/QC elements, LOQ is essential for interpreting low-level effects in drinking water. A clearly defined LOQ helps prevent overestimation of weak responses and improves the reliability of bioassay results.

Research Objectives

*To develop a reliable strategy for setting appropriate LOQs in *in vitro* bioassays to ensure accurate interpretation of low-level biological effects in drinking water.

Methods

Method for determining LOQ

Bioassay's LOQ Assay's detection threshold.

A range of literature-reported methods was applied to calculate the bioassay's LOQ.

Dividing by REF value

Sample-specific LOQ

Calculated as bioassay's LOQ / Relative Enrichment Factor (REF; 100 for this study) To reflect the sample enrichment

Laboratory blank

BEQ values of ultrapure (UP) water Representing a practical threshold under laboratory condition.

Method for determining bioassay's LOQ

Table 1. Literature methods for bioassay's LOQ determination Method for determining bioassay's LOQ

Classification The lowest reference compound concentration with a coefficient CV-based of variation (CV) below 30%. Reference compound concentration causing 10% effect (EC₁₀) EC₁₀-based LOQ = Average of the blank or solvent control +10×standard de

LOQ = Average of the solvent control + 3×SD of solvent control

CALUX used in this research

viation (SD) of solvent control

Table 2. CALUX assays, endpoints, and reference compounds used in this study

CALUX	End Point	Reference compound
ERα	Estrogenicity	17β-estradiol (E2)
PAH	Endocrine system disruption	Benzo[a]pyrene (B[a]P)
PXR	Liver metabolism	Nicardipine (Nic)
p53	Genotoxicity	Actinomycin D (Act)
Nrf2	Oxidative stress response	Curcumin (Cur)

Samples and experimental scheme

Data analysis

SD-based

- BEQs express the effect of a sample as the concentration of a reference compound producing the same response.
- BEQ calculation requires the effect concentration (EC), indicating the concentration that triggers a specific biological effect. The reference compound is a known substance with established biological activity.

Adaptive stress response

→ All samples: BEQ < LOQ, no significant biological

→ Significant BEQ observed in tap water (190 µg/L)

→ This suggests the potential presence of oxidative

→ BEQ of tap water exceeded EBT value (3.2 µg/L)

→ The BEQ of bottled water (4 µg/L) exceeded the

laboratory blank (0.015 µg/L) but was below the

activity is unlikely to be biologically meaningful.

sample-specific LOQ (10 µg/L), indicating that the

stress-inducing compounds formed during drinking

For ERα, PAH, PXR CALUX $BEQ = \frac{EC_{10}(reference compound)}{EC_{10}(reference compound)}$

For p53, Nrf2 CALUX EC_{IR1 5} (reference compound) EC_{IR15}(Sample)

Results & Discussion

Determining bioassay's LOQ

Table 3. Bioassay's LOQ values calculated according to methods reported in the literature. Parentheses indicate the corresponding % effect or induction ratio.

	_	Bioassay's LOQ					
	Method for determining	ERα	PAH	PXR	p53	Nrf2	
Classification	bioassay's LOQ	(ng/L)	(ng/L)	(µg/L)	(µg/L)	(µg/L)	
CV-based	Lowest tested dose showing CV under 30%	0.17	N/A	140	N/A	368	
		(6.3%)		(13%)	IN/A	(1.04)	
EC ₁₀ -based	Concentration causing	0.43	960	91	N/A		
	10% effect (EC ₁₀)	(10%)	(10%)	(10%)			
SD-based	LOQ = Average of the	0.050	300	180	698	2120	
	solvent control +10×SD	(1.4%)	(3.3%)	(18%)	(2.14)	(1.43)	
	LOQ = Average of the solvent control + 3×SD	0.010	100	130	195	1000	
		(0.43%)	(0.99%)	(12%)	(1.34)	(1.13)	

- → LOQ methods were selected based on the corresponding % effect or induction ratio, excluding those yielding N/A values.
- \rightarrow To align with BEQ calculations (EC₁₀ or ECIR_{1.5}), methods below these thresholds were prioritized.
 - For % effect endpoints: average of the solvent control + 10×SD
 - For induction ratio endpoints: average of the solvent control + 3×SD
- → These approaches were also the most reported in the literature.
- → These bioassay's LOQs were divided by 100 (REF value) to derive sample-specific LOQ

Applicable LOQs of each endpoints

Table 4. LOQ values for each endpoint calculated by using three different criteria

Method for LOQ	ERα (ng/L)	PAH (ng/L)	PXR (µg/L)	p53 (μg/L)	Nrf2 (µg/L)
Sample-specific LOQ	0.0005	3	1.8	1.95	10
Laboratory blank	0.000008	2.6	1.6	N/A	0.015

- For ERα, PAH, and PXR CALUX assays, the sample-specific LOQs were comparable to the laboratory blank, with no statistically significant differences observed (p > 0.05).
- → In contrast, the sample-specific LOQs for p53 and Nrf2 CALUX assays were much higher than their laboratory blank.

Applying sample-specific LOQ and laboratory blank to the real drinking water samples

Figure. CALUX assay results for each sample across five endpoints, expressed as BEQs (n = 3). Error bars represent SD. The blue dashed line indicates the sample-specific LOQ. The red dashed line indicates the laboratory blank. (a) ERα CALUX, (b) PAH CALUX, (c) PXR CALUX, (d) p53 CALUX, and (e) Nrf2 CALUX. Notably, significant BEQs were

♦ p53

❖ Nrf2

activity

water treatment

by ~60 times

observed only in tap water for PXR, PAH and Nrf2 endpoints.

Hormone activity

⇔ ERα

→ All samples: BEQ < LOQ, no significant biological activity

Xenobiotic metabolism

PAH

- → Tap water: highest BEQ (190 µg/L), activity only observed in tap water
- → BEQ of tap water exceeded effect-based trigger (EBT) value (6.2 ng/L) by ~4 times
- → Bottled water: no significant difference with laboratory blank (p > 0.05)

❖ PXR

- → Tap water: highest BEQ (13 µg/L), but lower than EBT value $(154 \mu g/L)$
- → In contrast, bottled water showed similar BEQ to laboratory blank $(p>0.05) \rightarrow$ no significant biological activity

Sample-Specific LOQ: Recommended LOQ approach for bioassays

- → Offers a conservative threshold to prevent overestimation
- > In some endpoints, values aligned with laboratory blanks and BEQs of bottled water—practical and realistic in actual sample conditions

Conclusion

- This study proposed three methods for determining the limit of quantification (LOQ) to ensure the reliable application of in vitro bioassays and evaluated their validity.
- In particular, the bioassay's LOQ—calculated as the average of the solvent control plus ten times the standard deviation—and the sample-specific LOQ—obtained by dividing the bioassay's LOQ by a relative enrichment factor (REF) of 100—showed values like the laboratory blank of some endpoints. Sample-specific LOQ provides more conservative and practical threshold.
- ❖ In addition, PAH, PXR, and Nrf2 activities in tap water exceeded the LOQ, suggesting potential biological risks. These findings indicate that in vitro bioassays can be effectively used to evaluate drinking water treatment processes.

Acknowledgement

This work was supported by the Korea Environment Industry & Technology Institute (KEITI) funded by the Korea Ministry of Environment (grant no. RS-2024-00337326).