
Addressing and Visualizing Misalignments in Human
Task-Solving Trajectories

Sejin Kim
sejinkim@gist.ac.kr

GIST
Gwangju, Korea

Hosung Lee
confeitohs@gmail.com

KAIST
Daejeon, Korea

Sundong Kim∗

sundong@gist.ac.kr
GIST

Gwangju, Korea

Abstract
Understanding misalignments in human task-solving trajectories
is crucial for enhancing AI models trained to closely mimic human
reasoning. This study categorizes such misalignments into three
types: (1) lack of functions to express intent, (2) inefficient ac-
tion sequences, and (3) incorrect intentions that cannot solve
the task. To address these issues, we first formalize and define
these three misalignment types in a unified framework. We then
propose a heuristic algorithm to detect misalignments in ARCTraj
trajectories and analyze their impact hierarchically and quantita-
tively. We also present an intention estimation method based on
our formalism that infers missing alignment between user actions
and intentions. Through trajectory alignment, we experimentally
demonstrate that AI models trained on human task-solving trajecto-
ries improve performance in mimicking human reasoning. Based on
hierarchical analysis and experiments, we highlight the importance
of trajectory-intention alignment and demonstrate the effectiveness
of intention-aligned training.

CCS Concepts
• Computing methodologies→ Probabilistic reasoning; Plan-
ning with abstraction and generalization; Learning from
demonstrations.

Keywords
Human Task Trajectories, Intention Alignment, ARC (Abstraction
and Reasoning Corpus), AI Reasoning, Human-Centered AI

ACM Reference Format:
Sejin Kim, Hosung Lee, and Sundong Kim. 2025. Addressing and Visualizing
Misalignments in Human Task-Solving Trajectories. In Proceedings of the
31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining V.2
(KDD ’25), August 3–7, 2025, Toronto, ON, Canada. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3711896.3736831

KDD Availability Links: The experiment code is available at https://
doi.org/10.5281/zenodo.15515271. The data analysis code is available at
https://doi.org/10.5281/zenodo.15515295.

∗Corresponding author.

This work is licensed under a Creative Commons Attribution 4.0 International License.
KDD ’25, Toronto, ON, Canada
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1454-2/2025/08
https://doi.org/10.1145/3711896.3736831

1 Introduction
Developing AI models capable of human-like reasoning is a fun-
damental goal in the field of artificial intelligence research. These
systems should perform tasks efficiently and adapt to novel situa-
tions with the flexibility and generalization that are characteristic
of human cognition. ARC-AGI has emerged as a pivotal benchmark
for assessing these abilities in AI models [4].

Task 23b5c85d

Figure 1: An example of ARC task (Task 23b5c85d). The goal
is to infer the rule from input-output pairs and generate the
correct output grid for a new input. The correct answer is
the 3 × 3 magenta-colored rectangle.

As shown in Fig. 1, ARC tasks require identifying high-level
transformations from minimal examples and applying them to new
inputs, closely mirroring human cognitive processes. Despite sig-
nificant advancements in deep learning and reinforcement learning,
current models face challenges in effectively solving ARC tasks,
highlighting a persistent gap between AI and human reasoning.

Recent large language models (LLMs) have demonstrated impres-
sive performance on the ARC benchmark. However, their approach
remains highly inefficient due to substantial computational costs per
problem. For instance, Falcon-40B achieved 61.9% accuracy among
publicly available LLMs, while OpenAI o3 reached 87.5%. These
results come at an enormous computational expense, requiring or-
ders of magnitude more computation than human problem-solving,
underscoring the need for AI models that can perform reasoning
more efficiently and in a human-like manner.

To address this, interactive interfaces [3, 6, 8, 10, 13, 18, 19] col-
lect human task-solving trajectories, offering insights into human
approaches. Among them, the ARCTraj dataset [7], collected via
the O2ARC platform [18], provides extensive human trajectory
data and forms the basis for ARCLE [11], a reinforcement learning
environment designed to model human strategies.

https://doi.org/10.1145/3711896.3736831
https://doi.org/10.5281/zenodo.15515271
https://doi.org/10.5281/zenodo.15515271
https://doi.org/10.5281/zenodo.15515295
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3711896.3736831

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Sejin Kim, Hosung Lee, and Sundong Kim

However, training AI models directly on ARCTraj trajectories
presents challenges. Recent studies [9, 17] utilize these trajectories,
but their effectiveness is limited by rigid preprocessing rules, re-
ducing generalization to unseen tasks. We hypothesize that this
stems from misalignments between human intentions and
trajectory data, caused by tool limitations, reasoning-to-action
gaps, and even user errors. We categorize these misalignments into
three types, each corresponding to a distinct challenge in human
task-solving, as framed by Activity Theory [14]:

• Functional Inadequacies in Tools corresponds to the lack
of functions to express intent. In many cases, users intend to
execute specific actions, but the tools provided do not allow
them to express these intentions directly. As a result, they
must resort to workarounds or indirect methods, leading to
unintended inefficiencies in their trajectories.
• User Unfamiliarity with Tools aligns with the choice of
inefficient action sequences. Due to limited familiarity with
the toolset, users may not always choose the most optimal
sequence of actions. Instead, they experiment or take un-
necessary steps, resulting in redundant or overly complex
trajectories.
• Cognitive Dissonance in Users: relates to incorrect in-
tentions that cannot solve the task. Users may misinterpret
task objectives or apply incorrect strategies, leading them to
take actions that ultimately fail to solve the problem. Unlike
the previous categories, these errors stem from conceptual
misunderstandings rather than tool constraints.

To systematically address trajectory misalignments, we first for-
malize three types of misalignment. Specifically, we introduce pop-
ular states and ideal actions to characterize inefficiencies in human
task-solving trajectories. Using this framework, we analyze mis-
alignment patterns in ARCTraj, identifying their prevalence across
multiple levels—action, intention, trajectory, and task.

To mitigate these misalignments, we propose an Intention Pre-
diction Algorithm (Alg. 2) that aligns trajectories with inferred
human intentions. By detecting key popular states and encoding
their transitions, we infer structured intention labels for each action.

Furthermore, we empirically validate that intention-aligned su-
pervision enhances the efficiency of AI learning. Models trained
with inferred intention labels exhibit improved generalization, re-
ducing reliance on spurious correlations and promoting structured
decision-making. This study aligns AI learningwith human problem-
solving strategies, establishing a framework for trajectory-based
learning and highlighting the broader implications of Intention
Learning for AI models seeking to achieve human-like reasoning.

Contributions. This study makes the following key contributions
to trajectory-based AI learning.

• We formalize and define three primary types of misalignment
in human task-solving trajectories.
• We conduct a hierarchical and quantitative analysis of mis-
alignment patterns.
• We propose an Intention Prediction Algorithm to align tra-
jectories with inferred human intentions.
• We empirically demonstrate that intention-aligned trajectory
learning improves AI task-solving performance.

2 Related Work
2.1 ARC Tasks and Human Trajectories
The Abstraction and Reasoning Corpus for Artificial General Intelli-
gence (ARC-AGI) [4] serves as a benchmark for evaluating AI mod-
els’ abstract reasoning and generalization capabilities. While earlier
AI models, including deep learning-based approaches, achieved
at most 55–60% accuracy on ARC tasks, recent advancements in
large language models (LLMs) have pushed performance to 87.5%
using test-time reasoning techniques [2]. However, these models
process a large number of tokens at inference time, making their
approach fundamentally different from human reasoning and sig-
nificantly less cost-efficient. This discrepancy highlights the need
for AI systems that perform efficient, human-like reasoning rather
than relying on brute-force search over extensive token sequences.

Human task-solving trajectories offer valuable insights for AI
learning [6, 13]. The ARCTraj dataset [7], collected via the O2ARC
platform [18], provides extensive human trajectories that have
enabled reinforcement learning environments such as ARCLE [11]
to model human strategies. To date, ARCTraj is one of the largest
available corpora capturing fine-grained user actions on ARC tasks,
covering various strategies and behaviors. Its scale and diversity
make it particularly suitable for analyzing patterns of reasoning
and error.

However, previous studies [9, 12, 17] faced scalability and gen-
eralization issues due to rigid preprocessing rules and single-task
limitations. Language-based approaches [1, 15] explore structured
guidance through explanations or concept grouping, but they lack
direct mappings to user actions. These efforts offer high-level rea-
soning cues but often overlook the procedural structure inherent
in human trajectories.

This study addresses these limitations by systematically analyz-
ing and mitigating misalignments in the ARCTraj dataset.

2.2 Activity Theory and Misalignment Analysis
Misalignment between user intentions and actions is a key chal-
lenge in AI training [16]. We leverage Activity Theory [14] to sys-
tematically analyze these discrepancies.

Activity Theory frames human activity as interactions between
the user (subject), task (object), and tools (instruments), with mis-
alignments arising from contradictions in this triad:

• Functional Inadequacies in Tools: When tools lack nec-
essary functions, users resort to workarounds.
• User Unfamiliarity with Tools: Limited proficiency leads
to inefficient action sequences.
• Cognitive Dissonance in Users: Misunderstanding task
objectives results in incorrect actions.

This study focuses on the direct impact of these misalignments
on reasoning and task-solving performance, excluding broader so-
ciocultural components of Activity Theory. By identifying these
recurring patterns, we aim to improve alignment between user
intent and model behavior during trajectory-based learning. Our
approach helps bridge the gap between human demonstrations and
structured AI learning, ensuring that models capture user intentions
rather than merely replicating surface-level behaviors.

Addressing and Visualizing Misalignments in Human Task-Solving Trajectories KDD ’25, August 3–7, 2025, Toronto, ON, Canada

3 Formalizing Misalignments in Human
Trajectories

The ARCTraj dataset [7] provides detailed records of users’ de-
cisions and actions as they solve ARC tasks. Each trajectory is
structured using the state-action sequences defined by the ARC
Learning Environment (ARCLE) [11], which serves as a framework
for analyzing user interactions and problem-solving strategies.

3.1 Format of Human Trajectories
To formalize ARC tasks and trajectories, we adopt the notation
proposed in recent work [2]. A single ARC task 𝑑 from the set of
tasks DARC is defined as:

𝑑 = {(xtrain
𝑘

, ytrain
𝑘
)𝐾
𝑘=1, (x

test, ytest)} ∈ DARC,

where (xtrain
𝑘

, ytrain
𝑘
) are input-output grid pairs provided as demon-

strations, and (xtest, ytest) represent the test problem grid and its
answer grid.

User trajectories T𝑑 are collected as state-action sequences while
solving a task 𝑑 . A single trajectory 𝜏𝑑 is represented as:

𝜏𝑑 = (𝑠0, 𝑎0, 𝑠1, 𝑎1, . . . , 𝑠𝑛) ∈ T𝑑 ,

where 𝑠𝑖 denotes a state, 𝑎𝑖 an action, and 𝑛 the number of actions
in the trajectory 𝜏𝑑 . Every state 𝑠𝑖 and action 𝑎𝑖 in the trajectory
𝜏𝑑 follow the same state-action transition function 𝑓 (𝑠, 𝑎) as the
yellow arrow in Fig. 2:

𝑓 (𝑠𝑖 , 𝑎𝑖) = 𝑠𝑖+1

si ai = MoveDown

f(s, a)

si+1

Figure 2: A single state transition step in ARCLE [11]. An
action transforms the current state 𝑠𝑖 into the next state 𝑠𝑖+1
through the transition function 𝑓 (𝑠𝑖 , 𝑎𝑖) = 𝑠𝑖+1. In this exam-
ple, the selected grids masked in white are shifted down by
one row.

States. Each state 𝑠𝑖 is derived from xtest and evolves through
the state-action transition function 𝑓 (𝑠, 𝑎) like:

𝑠𝑖 =

{
xtest if 𝑖 = 0,
𝑓 (𝑠𝑖−1, 𝑎𝑖−1) if 1 ≤ 𝑖 ≤ 𝑛.

States encompass the current task grid and additional contextual in-
formation, such as object properties and clipboard contents, which
enable actions like copying and pasting. These additional signals
provide richer data for analyzing user strategies [11].

This formalization captures the dynamic nature of human problem-
solving. As discussed in subsequent sections, it serves as a concep-
tual foundation for identifying potential misalignments between
user actions and inferred intentions.

3.2 Fundamental Concepts
The human trajectory does not explicitly record user intentions,
making it harder to analyze and quantify misalignments between
actions and intentions. We address this by inferring intentions from
trajectories using structural patterns and key assumptions.

We assume that users generating each trajectory 𝜏𝑑 pursue sim-
ilar problem-solving strategies. Although reasoning diversity ex-
ists, ARC tasks emphasize precise analogies, often leading users to
converge on shared subgoals. While this may oversimplify, prior
studies [6, 13] observed consistent patterns across tasks.

Some actions may belong to multiple intentions, but such over-
laps occur in a few trajectories and have minimal impact. Likewise,
some misaligned sub-trajectories may reflect creative or efficient
alternatives, offering rare yet valuable insights for future work.

Popular States. Popular states, also called bottleneck states in
prior studies [6], are defined as frequently visited states among tra-
jectories. We identify popular states using a threshold 𝜃 (|T𝑑 |) based
on the number of trajectories for task 𝑑 . For example, a common
choice like 𝜃 (𝑥) =

√
𝑥 1 strikes a balance between sensitivity and

robustness in identifying frequently visited states.

P𝑑 = {𝑠𝑖 | 𝑁 (𝑠𝑖 ;T𝑑) ≥ 𝜃 (|T𝑑 |)},
where 𝑁 (𝑠𝑖 ;T𝑑) denotes the number of trajectories visiting state 𝑠𝑖 .

Intention. An intention is defined as a sequence of actions that
transitions between two popular states. An action sequence 𝑎𝑖:𝑗 con-
sists of consecutive actions 𝑎𝑖 , 𝑎𝑖+1, . . . , 𝑎 𝑗−1 that transition from 𝑠𝑖
to 𝑠 𝑗 while avoiding intermediate popular states. Formally:

𝑎𝑖:𝑗 = (𝑎𝑖 , 𝑎𝑖+1, . . . , 𝑎 𝑗−1) such that
𝑠𝑖 , 𝑠 𝑗 ∈ P𝑑 and 𝑠𝑘 ∉ P𝑑 for 𝑖 < 𝑘 < 𝑗 .

Ideal Actions. To simplify the representation of the intention, we
define an ideal action, denoted as 𝑎★

𝑖:𝑗 . This ideal action encapsulates
the intention behind the sequence 𝑎𝑖:𝑗 , abstracting the sequence
into a single, efficient action that transitions directly from 𝑠𝑖 to 𝑠 𝑗 .

𝑓 (𝑠𝑖 , 𝑎★𝑖:𝑗) = 𝑠 𝑗 .

Here, 𝑎★
𝑖:𝑗 is a hypothetical action summarizing the intention of 𝑎𝑖:𝑗 .

The set of all such ideal actions for 𝑑 is:

A★
𝑑
= {𝑎★𝑖:𝑗 | 𝑓 (𝑠𝑖 , 𝑎

★
𝑖:𝑗) = 𝑠 𝑗 where 𝑠𝑖 , 𝑠 𝑗 ∈ P𝑑 }.

Ideal Trajectory. An ideal trajectory is defined as a sequence
of popular states and ideal actions that transition through these
states, satisfying the conditions for an optimal transition. Unlike
observed trajectories in T𝑑 , ideal trajectories represent a conceptual
framework for understanding optimal user behavior. Thus, the ideal
trajectory 𝜏★

𝑑
for a task 𝑑 is represented as:

𝜏★
𝑑
= (𝑠0, 𝑎0, 𝑠1, 𝑎1, . . . , 𝑠𝑛) where ∀𝑠𝑖 ∈ P𝑑 ,∀𝑎𝑖 ∈ A★

𝑑
.

Here, 𝜏★
𝑑
represents the optimal path that fully aligns with the user’s

intentions as captured by ideal actions.

1√𝑥 is a widely used heuristic for filtering frequent items under Zipfian distributions.
In NLP, it serves as a vocabulary cutoff; in Information Retrieval, it guides keyword
pruning and index reduction; and in graph or web log analysis, it selects salient patterns.
Our ablation results show that varying 𝜃 (𝑥) among log𝑥 ,

√
𝑥 , and 0.2𝑥 yields similar

numbers of popular states (11.4, 6.5, and 7.1, respectively), suggesting robustness to
this choice.

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Sejin Kim, Hosung Lee, and Sundong Kim

(a) Ideal Trajectory (b) Functional Inadequacies in Tools

(c) User Unfamiliarity with Tools (d) Cognitive Dissonance in Users

Figure 3: Various trajectories for ARC Task 23b5c85d as shown in Fig. 1. (a) The ideal trajectory transitions directly between
popular states with the shortest possible sequence of actions, perfectly representing user intentions. (b) Functional inadequacies
influence the trajectory in tools, where the lack of a suitable action requires combining multiple actions, resulting in longer
transitions between popular states. (c) A trajectory is caused by user unfamiliarity with tools, where redundant actions
reflect inefficiencies despite a shorter ideal trajectory. (d) Trajectory reflects cognitive dissonance in users, where errors or
misinterpretations prevent reaching the correct answer state, deviating from transitions between popular states.

3.3 Three Types of Misalignments
Based on Activity Theory [5], these misalignments can be cate-
gorized into three distinct types, each reflecting contradictions
between users, tools, and tasks in the ARC task-solving process. We
formalize and analyze these categories using the concepts of popu-
lar states, inferred intentions, ideal actions, and ideal trajectories
introduced in the previous section.

Functional Inadequacies in Tools. This misalignment stems from
tool–task mismatch. The toolset (e.g., O2ARC) lacks an ideal action
𝑎★
𝑖:𝑗 linking popular states 𝑠𝑖 and 𝑠 𝑗 .

𝑎★𝑖:𝑗 ∉ A𝑑 .
As a result, users must combine a sequence of actions (𝑎𝑖 , . . . , 𝑎 𝑗−1)
to achieve the same intention:

𝑎𝑖:𝑗 = (𝑎𝑖 , 𝑎𝑖+1, . . . , 𝑎 𝑗−1), where 𝑎𝑘 ∈ A𝑑 \ A★
𝑑
for 𝑖 ≤ 𝑘 < 𝑗 .

For instance, Fig. 3b shows a trajectory where the absence of a
“cropping” action forces the user to rely on sequences such as copy-
ing, pasting, and resizing. This results in an inefficient trajectory
compared to the ideal trajectory shown in Fig. 3a, where direct
transitions are achieved using “cropping”.

User Unfamiliarity with Tools. This misalignment arises from
contradictions between users and tools. Although an ideal action
𝑎★
𝑖:𝑗 exists in the supported action set A𝑑 :

𝑎★𝑖:𝑗 ∈ A𝑑 ,
Then, the user skips it and takes an inefficient action sequence.

𝑎𝑖:𝑗 = (𝑎𝑖 , 𝑎𝑖+1, . . . , 𝑎 𝑗−1) where 𝑎𝑘 ∈ A𝑑 \ A★
𝑑
for 𝑖 ≤ 𝑘 < 𝑗 .

Suppose the trajectory in Fig. 3b represents an ideal trajectory.
Fig. 3c then illustrates a scenario where the user, unfamiliar with
the copy-paste functionality, attempts tomove an object step by step.
This results in a redundant action sequence of 16 actions, which
could otherwise be represented by two ideal actions, highlighting
inefficiency in transitioning between popular states.

Cognitive Dissonance in Users. This misalignment reflects con-
tradictions between users and tasks. Cognitive Dissonance can
manifest in two distinct cases: (1) when users have incorrect inten-
tions or (2) when users possess the correct intention but execute
incorrect actions, leading them to an incorrect final state. However,
since human trajectories do not explicitly record user intentions,
verifying the second case is not feasible. Therefore, we define and
detect Cognitive Dissonance based on the first case.

Specifically, Cognitive Dissonance occurs when a user’s trajec-
tory fails to reach a correct final state, deviating from popular states:

𝑠𝑛 ≠ ytest, where ytest ∈ P𝑑
Here, 𝑠𝑛 represents the final state of the trajectory, ytest the answer
grid of the task 𝑑 , and P𝑑 the set of popular states for the task 𝑑 .
This typically holds since correct solutions tend to be convergent and
often visited by multiple users.

This focus highlights cases where the user misunderstood the
task objectives or made significant errors during problem-solving,
resulting in an incorrect solution state. Such deviations not only
hinder success but also reflect deeper issues in perception, strategy,
or tool use. Analyzing these cases can reveal patterns of confusion
or bias, offering insights for improving instruction, interfaces, or
even curricula.

Addressing and Visualizing Misalignments in Human Task-Solving Trajectories KDD ’25, August 3–7, 2025, Toronto, ON, Canada

Crop

Move

MoveMove

Move

Move

Move

Move

Move

Move

Move Move

MoveMove
Move Move

Move

ResizeGrid
Paste

Copy

Copy

Paste

ResizeGrid

Figure 4: The state space graph of user trajectories from Fig. 3.
The blue node represents the test problem state, the green
node denotes the answer state, and the red nodes indicate
states where incorrect answers were submitted. The thick-
ness of nodes and edges reflects the frequency of occurrence
for each respective state and action.

3.4 State Space Graph
Fig. 4 visualizes user trajectories from Fig. 3 in a state space graph.
Each node represents a distinct state encountered during task solv-
ing, and directed edges represent the actions taken between these
states. The size of each node reflects the frequency of its visits,
while the thickness of each edge indicates the frequency of the cor-
responding action sequence. This provides a concise yet informative
overview of the distribution and transitions in human behavior.

Edges with the same color across Fig. 3a–3d are blurred to em-
phasize deviation from the ideal trajectory. Misalignment types
are color-coded: blue for Functional Inadequacies, yellow for User
Unfamiliarity, and red for Cognitive Dissonance. This scheme facil-
itates the intuitive identification of error types across trajectories
and enables a comparative inspection of how different reasoning
errors are distributed throughout the task-solving process.

The classification of some edges depends on whether intermedi-
ate cyan nodes are considered popular states. Suppose only the blue
and green nodes are included in P𝑑 . In that case, the dashed blue
edge represents a missing ideal action (

𝑐𝑟𝑜𝑝
−−−−→), making the green

and yellow paths examples of Functional Inadequacies in Tools.
These paths require multiple actions to achieve what could be done
by a single ideal action. This illustrates how certain inefficiencies
stem not from user intent but from limitations in available action
primitives that constrain expressivity.

Alternatively, if cyan nodes are also considered popular, each
green edge becomes an ideal action. The yellow edge (

𝑚𝑜𝑣𝑒−−−−→ ×16)
now reflects User Unfamiliarity with Tools—inefficiency despite
better available actions. Such cases reveal how misalignments stem
from both system design and user behavior. They help identify op-
portunities for training or interface improvements and distinguish
between structural and correctable inefficiencies.

Visualization with State Space Graph. To illustrate the detection
results, we visualize misalignments using the state space graph
(Fig. 4). Each edge in the graph represents an action, and node sizes
indicate the frequency of these actions in user trajectories.

Edges highlighted in different colors correspond to detected
misalignment types:
• Functional Inadequacy (Blue Edges): Sequences that lack
an ideal action, requiring multiple inefficient steps.
• User Unfamiliarity (Yellow Edges): Actions that could be
performed more efficiently are not due to user errors.
• Cognitive Dissonance (Red Edges): Incorrect trajectories
that fail to reach the goal state.

3.5 Misalignment Detection Algorithm
We introduce a lightweight yet structured misalignment detection
algorithm based on popular states and ideal actions, which systemat-
ically detects and categorizes misalignments in human trajectories.
This algorithm evaluates each action sequence in a trajectory and
classifies it as either an alignment transition or one of the three
misalignment types defined earlier. It is designed to operate directly
on raw trajectory logs without requiring ground-truth intentions or
manual annotations, making it both scalable and broadly applicable
to various tasks and domains.

Alg. 1 describes our heuristic approach, which systematically cat-
egorizes action sequences into alignment and misalignment types
through three main steps. (1) Identifying popular states as way-
points in trajectories, (2) Detecting action sequences between these
waypoints, and (3) Classifying the sequences as aligned or mis-
aligned based on deviations from ideal actions.

Algorithm 1:Misalignment Detection Algorithm
Input: Trajectories T𝑑 , State-Action Transition Function 𝑓 ,

Supported Action Set A𝑑 , Threshold Function 𝜃

Output: Identified Misalignments for TrajectoriesM𝑑

M𝑑 ← {} // Initialize misalignment set

for 𝑡 ∈ T𝑑 do
// Step 1. Extracting Popular Nodes
P𝑑 ← {}
for 𝑠𝑖 ∈ 𝑡 do

if 𝑁 (𝑠𝑖) ≥ 𝜃 (|T𝑑 |) then
P𝑑 ← P𝑑 ∪ {(𝑠𝑖 , 𝑎𝑖)}

// Step 2. Finding Misalignments
𝑀𝑡 ← {}
for (𝑠𝑖 , 𝑎𝑖) ∈ P𝑑 do

if 𝑓 (𝑠𝑖 , 𝑎𝑖) ≠ 𝑠𝑖+1 then
if �𝑎 ∈ A𝑑 such that 𝑓 (𝑠𝑖 , 𝑎) = 𝑠𝑖+1 then

𝑀𝑡 ← 𝑀𝑡 ∪{Functional Inadequacy in Tools}
else

𝑀𝑡 ← 𝑀𝑡 ∪ {User Unfamiliarity with Tools}

if 𝑠𝑛 ≠ y𝑡𝑒𝑠𝑡 then
𝑀𝑡 ← 𝑀𝑡 ∪ {Cognitive Dissonance in Users}

// Step 3. Aggregating Detected Misalignments
M𝑑 ←M𝑑 ∪ {𝑀𝑡 }

returnM𝑑

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Sejin Kim, Hosung Lee, and Sundong Kim

4 Misalignment Analysis
This section analyzes misalignments in human trajectories from
ARCTraj across three hierarchical levels. We begin with an action-
level analysis of the frequency and distribution of actions leading
to specific states. Next, we examine intention-levelmisalignments
between popular states. Finally, we explore trajectory-level rela-
tionships between misalignment types.

4.1 Action-Level Analysis
This subsection analyzes action distributions across states using
in-degree metrics to identify patterns commonly associated with
different misalignment types. In the state space graph (Fig. 4), node
size indicates the in-degree of a state, representing actions that
lead to it from previous states. Smaller average in-degrees suggest
more diverse user strategies, fewer shared popular nodes, and thus
a greater potential for misalignment across trajectories.

Average In-Degree. The in-degree distribution reveals meaningful
differences in both task complexity and user behavior. Tasks with
smaller average in-degrees, summarized in Table 1, often involve
low-level pixel adjustments or non-intuitive solution strategies. For
example, Task 17 required inefficient fill-in patterns across large
grids, while Task 25 involved moving numerous pixels individually.
These tasks dispersed user actions across many intermediate states,
leading to lower in-degree values and greater variability in the
overall trajectories.

Table 1: Tasks with the bottom 10 average node sizes. These
tasks involve complex patterns, multiple objects, or pattern
filling, requiring diverse strategies.

Rank TaskID Shortest Length Description

1 017c7c7b 4 complex pattern
2 0e206a2e 7 multi-objects
3 025d127b 1 complex pattern
4 0dfd9992 10+ fill in the pattern
5 05269061 3 fill in the pattern
6 1a07d186 10+ complex pattern
7 0962bcdd 2 expand the pattern
8 3428a4f5 4 fill in the pattern
9 09629e4f 5 complex pattern
10 00d62c1b 1 multi-objects

Key Insights from Action-Level Analysis. Low average in-degrees
highlight Functional Inadequacies in Tools, where available actions
fail to address task requirements efficiently. Pixel-level tasks, for
instance, forced users to rely on repetitive actions, emphasizing the
need for a more comprehensive action set.

With in-degree distributions, we identified key patterns high-
lighting Functional Inadequacies in Tools, particularly in tasks
requiring repetitive or granular actions. These findings show how
user behavior and tool limitations interact at a granular level. This
action-level perspective sets the stage for intention-level analysis,
where we investigate how sequences of actions between popular
states contribute to broader misalignment patterns.

4.2 Intention-Level Analysis
This subsection examines misalignments at the intention level by
analyzing action sequences between popular states, as identified
using Alg. 1. Each intention corresponds to a sequence of actions
connecting two consecutive popular states, enabling the categoriza-
tion of misalignments within these segments.

Distribution of Misalignment Types. Table 2 presents the distri-
butions of intentions and actions across different misalignment
types. Aligned intentions dominate the dataset, comprising 91.11%
of all intentions. However, they represent only 49.57% of the total
actions, showing that misaligned intentions often require more ex-
tended or more redundant action sequences. Functional Inadequacy
contributes most significantly to this imbalance, as it frequently
involves highly repetitive pixel-level operations that substantially
inflate the number of actions.

Table 2: Distribution of misalignment types at the intention
level, showing their relative occurrence as a proportion of
total intentions and actions. Misaligned intentions, although
fewer, account for a significant share of suboptimal actions.

Misalignment Type Intentions Actions

User Unfamiliarity 2.31% 11.30%
Functional Inadequacy 4.15% 27.54%
Cognitive Dissonance 2.43% 11.59%
Not Misaligned 91.11% 49.57%

Key Insights from Intention-Level Analysis.

• Aligned intentions dominate: The high proportion of
aligned intentions (91.11%) demonstrates consistent user
behavior across most tasks. This suggests that human tra-
jectories capture well-structured strategies, making them a
reliable dataset for analyzing user behavior.
• Functional Inadequacy drives inefficiency: Despite rep-
resenting only 4.15% of intentions, Functional Inadequacy
accounts for 27.54% of all actions, revealing toolset limita-
tions for tasks requiring repetitive or complex modifications.
Addressing these inefficiencies through tool enhancements
improves user performance.
• Overlap inmisalignment types: User Unfamiliarity (2.31%
and Cognitive Dissonance (2.43%) exhibited similar inten-
tion proportions. Also, their action proportions (11.30% and
11.59%) show similar patterns. This overlap indicates poten-
tial shared causes but highlights the need for further investi-
gation into how thesemisalignments differ in trajectory-level
manifestations.

The intention-level analysis revealed that most user strategies
align with ideal actions, though misaligned intentions lead to sub-
optimal behavior. This highlights how tool inefficiencies and user
strategies manifest at the intention level. Building on this, the sub-
sequent analysis examines the cumulative effects of misalignments
across entire action sequences.

Addressing and Visualizing Misalignments in Human Task-Solving Trajectories KDD ’25, August 3–7, 2025, Toronto, ON, Canada

4.3 Trajectory-Level Analysis
This subsection examines misalignments at the trajectory level by
analyzing complete sequences of actions from the initial state to
the final state. Fig. 5 illustrates the distribution of misalignments
and their overlaps.

Functional Inadequacies 
 in Tools

Ideal Trajectories

Cognitive Dissonance 
in Users

User Unfamiliarity 
 with Tools

20.84%

35.24%

10.40% 18.07%2.33%

5.12%
1.12%

5.90%

Figure 5: A Venn diagram of misalignment types at the trajec-
tory level, showing proportions of trajectories with different
misalignment types and overlaps between them.

Key Insights from Trajectory-Level Analysis.
• Consistency in ideal trajectories: The proportion of ideal
trajectories (35.24%) highlights structured user strategies,
particularly for simpler tasks with intuitive solutions. This
suggests that human trajectories capture meaningful behav-
ior patterns essential for training AI systems to emulate
effective approaches.
• Prevalence of Functional Inadequacy: Functional Inade-
quacy appeared in over 40% of misaligned trajectories, un-
derscoring limitations in the current action set. Tasks involv-
ing repetitive operations, such as pixel-level modifications,
were particularly affected. Addressing these issues with tool
enhancements could reduce misalignments and improve ef-
ficiency.
• Minimal overlap between misalignment types: Over-
laps between misalignment types were minimal, especially
between User Unfamiliarity and Cognitive Dissonance. This
indicates distinct causes: User Unfamiliarity stems from in-
efficient tool usage, while Cognitive Dissonance reflects task
misinterpretations or incomplete solutions. Differentiating
these misalignments enables tailored interventions.

The trajectory-level analysis revealed that Functional Inadequacy
is the most prevalent misalignment type, with minimal overlap be-
tween other misalignments. These findings suggest distinct causes
for each misalignment type and reinforce the need to address tool
limitations. The following section demonstrates how inferred in-
tentions from trajectories enhance sequential modeling, providing
a deeper understanding of user behavior and tool challenges.

5 Evaluating Intention-Aligned Trajectories
In the previous sections, we analyzed misalignments in human tra-
jectories from ARCTraj and identified that a large portion, approxi-
mately 65% according to Fig. 5, exhibits some form of suboptimal
behavior. This observation underscores the potential benefits of
explicitly addressing these misalignments to enhance the efficiency
and generalization of trajectory-based learning systems.

Motivated by this, we propose a method to infer implicit user
intentions by identifying transitions between popular states that
likely represent meaningful steps in human problem-solving. We
incorporate these inferred intentions as auxiliary supervision in
model training and evaluate whether doing so leads to improved
task-solving performance and a better alignment with structured
reasoning patterns in human demonstrations.

5.1 Intention Prediction Algorithm
We present Alg. 2, which formalizes the process of intention pre-
diction by leveraging popular states as key decision points. Our
key assumption is that most human demonstrations follow correct
task-solving procedures and that popular states represent crucial
intermediate waypoints in these processes.

Algorithm 2: Intention Prediction Algorithm
Input: Trajectories for Solving task T𝑑 = (𝑠0, 𝑎0, · · · , 𝑠𝑛),

Threshold Function 𝜃

Output: Task Trajectories with Assigned Intentions T
P ← {} ; // Initialize popular states set

// Step 1. Identify Popular States

for 𝜏𝑑 ∈ T𝑑 do
for 𝑠𝑖 ∈ 𝜏𝑑 do

if 𝑁 (𝑠𝑖) ≥ 𝜃 (|T |) then
P ← P ∪ {𝑠𝑖 } ;

// Step 2. Assign Intention Edges

for 𝜏𝑑 ∈ T do
𝑠 ← 𝜏𝑑 [𝑠0] ; for 𝑠𝑖 , 𝑎𝑖 ∈ 𝜏𝑑 do

if 𝑠𝑖 ∈ P then
for 𝑠 𝑗 , 𝑎 𝑗 ∈ 𝜏𝑑 [𝑠 : 𝑠𝑖] do

𝑎 𝑗 [𝑖𝑛𝑡𝑒𝑛𝑡𝑖𝑜𝑛] ← (𝑠, 𝑠𝑖) ;
𝑠 ← 𝑠𝑖 ; // Update current popular state

return T𝑑

Building on this assumption, we hypothesize that user inten-
tions emerge through transitions between popular states. For each
trajectory 𝜏𝑑 , we annotate every action sequence 𝑎𝑖:𝑗 occurring be-
tween two such states (𝑠𝑖 , 𝑠 𝑗) with an intention tuple (𝑠𝑖 , 𝑠 𝑗). This
pair defines a conceptual ideal edge 𝑎★

𝑖:𝑗 that abstracts the user’s
intended transformation.

To assess the value of this information, we augment training
data with these inferred intentions. Inspired by prior work that
utilizes human trajectories for training [17], we evaluate whether
this additional supervision improves model performance on task-
solving benchmarks.

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Sejin Kim, Hosung Lee, and Sundong Kim

0 50 100 150 200 250 300 350 400
Epoch

1.2×10 1

1.8×10 1

2.4×10 1
3.0×10 1
3.6×10 1
4.2×10 1
4.8×10 1 State Loss

0 50 100 150 200 250 300 350 400
Epoch

2.0×10 1

2.5×10 1

3.0×10 1
3.5×10 1
4.0×10 1
4.5×10 1
5.0×10 1
5.5×10 1 Action Loss

0 50 100 150 200 250 300 350 400
Epoch

4.2×10 3

4.5×10 3

4.8×10 3

5.1×10 3
5.4×10 3
5.7×10 3
6.0×10 3 Return-To-Go Loss

0 50 100 150 200 250 300 350 400
Epoch

2.0×10 1

2.5×10 1

3.0×10 1
3.5×10 1
4.0×10 1
4.5×10 1
5.0×10 1
5.5×10 1 Intention Loss

DT+Object+Intention DT+Object DT+Intention DT

Figure 6: Training loss curves for different components. (a) State loss measures the cross-entropy error for predicting the state
grid. (b) Action loss represents the cross-entropy error for action prediction. (c) Return-to-go loss is calculated using MSE for
reward estimation. (d) Intention loss quantifies the cross-entropy error for inferred intentions.

5.2 Experiment
To evaluate the impact of intention supervision, we incorporated
intention annotations into an existing Decision Transformer (DT)
framework [17]. Using a predefined transformation policy, the orig-
inal DT was trained on expert trajectories derived from augmented
input-output examples. The model learns to predict state, action,
return-to-go, and timestep by attending to the sequence of trajec-
tories. Prior work has shown that augmenting input states with
object-level features improves performance in structured tasks.

We extended this framework by integrating intention infor-
mation. Specifically, the model was modified to handle intention-
labeled transitions and was trained to predict intention tuples con-
necting popular states. We implemented this by adding an auxiliary
classification head and corresponding loss term dedicated to inten-
tion prediction. We hypothesize that this supervision encourages
the model to learn structured, goal-oriented patterns of reasoning
rather than simply mimicking surface-level actions.

Baselines. In this study, we experimented with four variations
of the Decision Transformer (DT) to solve the ARC task. Each
model takes state, action, and return-to-go as inputs and predicts
future values accordingly, learning from temporally ordered human
demonstration sequences. We extended the input representations
by incorporating object-level features and intention annotations to
assess better how structured information impacts learning. These
enhancements were designed to guide the model toward more
interpretable, goal-aligned reasoning paths and evaluate whether
they improve generalization across diverse task types.

• DT: The standard DT model was modified to predict return-
to-go, state, and action. Since the state in human trajectories
is represented as a 2D grid of pixel values ranging from 0 to 9,
predicting the state is equivalent to predicting every pixel in
the grid. The input to the DT model consists of (return-to-go,
state, action) sequences from time step 𝑡 to 𝑡 +𝑇 − 1, and the
model is trained to predict the corresponding values from
𝑡 + 1 to 𝑡 +𝑇 .
• DT + Object: In this variant, we introduced object infor-
mation by applying a heuristic algorithm to infer objects
based on pixel grouping in each state. Instead of storing the
object information as a complete state representation, we
embedded it to match the dimensions of return-to-go and
action, ensuring efficient use of model capacity.

• DT + Intention: We proposed using Alg. 2 to introduce
intention information during training. However, since this
information is unavailable during testing, the model was
trained to infer it implicitly. The intention was encoded as
an integer, representing the popular states that define an
ideal action category.
• DT + Object + Intention: This model incorporated both
object and intention information. It achieved the highest
performance among all variations, demonstrating the ef-
fectiveness of leveraging structured representations in the
ARCTraj dataset.

Losses. For training, we used cross-entropy loss for state, action,
and intention predictions, as their values are categorical. In contrast,
mean squared error (MSE) loss was applied to return-to-go,
which is a continuous value in the range of 0 to 1. The total loss
was computed as the sum of all individual components, but only
the component-wise losses are visualized in Fig. 6. Notably, models
without intention information had a lower total loss since they did
not include an intention loss term.

5.3 Result
Our results are summarized in Fig. 7, clearly demonstrating that
incorporating intention supervision significantly enhances task-
solving performance. Specifically, adding intention information to
the existing model with object features (DT + Object) resulted in an
average performance improvement of 5.85% across four evaluation
datasets, each consisting of 2,000 augmented ARC tasks. Despite
the already strong baseline performance of DT + Object (83.59%),
integrating intention alignment further boosted accuracy to nearly
90%, providing strong empirical evidence that intention-based su-
pervision meaningfully improves model learning outcomes.

However, as seen in the training loss curves, training with in-
tentional supervision required more samples and training time,
suggesting increased learning complexity, which is expected since
the model must jointly learn both object-level and intention-based
reasoning in a coordinated fashion. Notably, when intention infor-
mation was added to the baseline model without object features
(DT + Intention), the model exhibited reduced efficiency in leverag-
ing intention cues, leading to a measurable drop in performance
rather than any meaningful improvement. This indicates that in-
tention alignment alone is insufficient without a structured and
interpretable internal representation of object-level information.

Addressing and Visualizing Misalignments in Human Task-Solving Trajectories KDD ’25, August 3–7, 2025, Toronto, ON, Canada

These findings highlight the importance of integrating structured
object representations with intention-based supervision to enhance
trajectory learning. While intention alignment enhances reasoning
over key transitions, its effectiveness depends on the availability of
complementary features such as object information. Future research
could explore more efficient training strategies or explicit intention
annotation methods to refine this approach, such as curriculum
learning over intentions or semi-supervised annotation schemes
for real-world applications.

0 50 100 150 200 250 300 350 400
Epoch

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
(%

)

DT+Object+Intention
DT+Object

DT+Intention
DT

Figure 7: Test accuracy comparison of different models. The
DT + Object + Intention model outperforms others, demon-
strating the effectiveness of intention alignment. However,
adding intention supervision to the baseline DT model with-
out object features leads to a performance drop, highlighting
the importance of combining object and intention informa-
tion for optimal learning.

5.4 Ablation
To evaluate the robustness and effectiveness of inferred intention
signals, we conducted ablation experiments using dummy variants.
Specifically, we compared the predictive accuracy of models trained
under four settings: (1) no intention information, (2) fixed dummy
values (zeros), (3) randomly sampled intentions, and (4) predicted
intentions from Alg. 2.

As shown in Table 3, only the model trained with predicted in-
tentions significantly outperforms the baseline. The DT + Object +
Intention (predicted) model achieves 89.44% accuracy, compared
to 83.59% for DT + Object without intentions. This demonstrates
that learning with inferred, aligned intentions contributes to per-
formance improvements.

By contrast, feeding the model fixed dummy values (e.g., zero
vectors) yields only marginal gains in performance. This suggests
that the model effectively learns to ignore uninformative or re-
dundant intention signals during training. More notably, when
intention labels are randomly sampled from unrelated tasks, perfor-
mance drops significantly to 1.10%. This highlights that incorrect or
misleading intention inputs can actively harm learning by introduc-
ing contradictory supervision that confuses the model’s internal
representations.

Table 3: Ablation study on DT + Object with different inten-
tion sources. Only predicted intentions improve accuracy.

Model Variant Intention Type Accuracy

DT + Object None 83.59%
+ Intention (0) Fixed dummy 84.12%
+ Intention (random) Random dummy 1.10%
+ Intention (predicted) Alg. 2 89.44%

These findings support two key conclusions. First, intention
supervision can improve task-solving performance, but only if the
signals are meaningful and aligned with human behavior. Second,
injecting low-quality or noisy intentions is not only ineffective but
actively harmful. Thus, the benefits of intention alignment depend
heavily on the quality and structure of the inferred annotations.

6 Conclusion
This study introduced a structured approach for understanding
and improving human-like reasoning by analyzing user trajectories
from the ARCTraj dataset. By systematically identifying and for-
malizing three types of trajectory misalignments (i.e., Functional
Inadequacies in Tools, User Unfamiliarity with Tools, and Cog-
nitive Dissonance in Users), we provided a comprehensive and
interpretable framework for diagnosing and explaining errors in
human problem-solving behavior.

We proposed an intention prediction algorithm based on tran-
sitions between popular states to mitigate these misalignments.
This method enabled us to annotate trajectories with high-level
intention structures that reflect user reasoning and approximate
their latent goals. Experimental results demonstrated that incorpo-
rating these inferred intentions into model training significantly
enhances task-solving performance and promotes structured learn-
ing. Notably, models that integrated both object-level features and
intention supervision (DT + Object + Intention) achieved nearly
90% accuracy, outperforming all other baselines and demonstrating
the benefit of combining multiple structural signals.

These findings suggest that intention-aligned supervision helps
models acquire structured reasoning patterns beyond surface-level
execution. However, we also observed that intention signals alone,
without complementary object representations, can degrade per-
formance. This emphasizes the importance of combining multiple
levels of structure when modeling human reasoning.

Future work will explore more expressive models for intention
inference, such as graph neural networks or transformers, to better
capture latent structure in demonstrations. Improving interface
design and refining evaluation via state space analysis may also
offer more effective diagnostics. As datasets like ARCTraj grow,
aligning intention-based representations with learning goals will be
key to building models that generalize systematic reasoning across
diverse domains.

Acknowledgments
This work was supported by IITP (RS-2023-00216011, RS-2024-
004450807, No. 2019-0-01842), NRF (RS-2024-00451162, RS-2024-
00454000), and GIST (Postdoc Value-up) grants funded by the Min-
istry of Science and ICT, Korea.

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Sejin Kim, Hosung Lee, and Sundong Kim

References
[1] Samuel Acquaviva, Yewen Pu, Marta Kryven, Theodoros Sechopoulos, Catherine

Wong, Gabrielle Ecanow,Maxwell Nye,Michael Tessler, and Joshua B. Tenenbaum.
2022. Communicating Natural Programs to Humans and Machines. In NeurIPS
Datasets and Benchmarks.

[2] Ekin Akyürek, Mehul Damani, Linlu Qiu, Han Guo, Yoon Kim, and Jacob Andreas.
2024. The Surprising Effectiveness of Test-Time Training for Abstract Reasoning.
arXiv:2411.07279 (2024).

[3] Alexey Borsky. 2021. The ARC Game. https://volotat.github.io/ARC-Game/.
[4] François Chollet. 2019. On the Measure of Intelligence. arXiv:1911.01547 (2019).
[5] Yrjö Engeström. 2015. Learning by Expanding. Cambridge University Press.
[6] Aysja Johnson, Wai Keen Vong, Brenden M. Lake, and Todd M. Gureckis. 2021.

Fast and Flexible: Human Program Induction in Abstract Reasoning Tasks. In
CogSci.

[7] Sejin Kim, Hayan Choi, Seokki Lee, and Sundong Kim. 2025. ARCTraj: Human
Trajectory Dataset for ARC Tasks. https://huggingface.co/datasets/SejinKimm/
ARCTraj.

[8] Subin Kim, Prin Phunyaphibarn, Donghyun Ahn, and Sundong Kim. 2022. Play-
grounds for Abstraction and Reasoning. In NeurIPS nCSI Workshop.

[9] Yunho Kim, Jaehyun Park, Heejun Kim, Sejin Kim, Byung-Jun Lee, and Sun-
dong Kim. 2024. Diffusion-Based Offline RL for Improved Decision-Making in
Augmented ARC Task. arXiv:2410.11324 (2024).

[10] Lab42. 2022. ARCreate Playground. https://arc-editor.lab42.global/playground.
[11] Hosung Lee, Sejin Kim, Seungpil Lee, Sanha Hwang, Jihwan Lee, Byung-Jun

Lee, and Sundong Kim. 2024. ARCLE: The Abstraction and Reasoning Corpus
Learning Environment for Reinforcement Learning. In CoLLAs.

[12] Jihwan Lee, Woochang Sim, Sejin Kim, and Sundong Kim. 2024. Enhancing
Analogical Reasoning in the Abstraction and Reasoning Corpus via Model-Based
RL. In IJCAI IARML Workshop.

[13] Solim LeGris, Wai Keen Vong, Brenden M Lake, and Todd M Gureckis. 2024.
H-ARC: A Robust Estimate of Human Performance on the Abstraction and
Reasoning Corpus Benchmark. arXiv:2409.01374 (2024).

[14] Aleksei N. Leontiev. 1978. Activity, Consciousness, and Personality. Prentice-Hall.
[15] Arseny Moskvichev, Victor Vikram Odouard, and Melanie Mitchell. 2023. The

ConceptARC Benchmark: Evaluating Understanding and Generalization in the
ARC Domain. Transactions on Machine Learning Research (2023).

[16] Donald A Norman. 1995. The Psychopathology of Everyday Things. In Readings
in Human-Computer Interaction. Morgan Kaufmann.

[17] Jaehyun Park, Jaegyun Im, Sanha Hwang, Mintaek Lim, Sabina Ualibekova, Sejin
Kim, and Sundong Kim. 2023. Unraveling the ARC Puzzle: Mimicking Human
Solutions with Object-Centric Decision Transformer. In ICML ILHF Workshop.

[18] Suyeon Shim, Dohyun Ko, Hosung Lee, Seokki Lee, Doyoon Song, Sanha Hwang,
Sejin Kim, and Sundong Kim. 2024. O2ARC 3.0: A Platform for Solving and
Creating ARC Tasks. In IJCAI Demo. https://o2arc.com

[19] Simon Strandgaard. 2024. ARC Interactive. https://neoneye.github.io/arc/.

A Characteristics of Human Trajectories
The ARCTraj dataset captures user interactions during ARC task
solving, offering distinct properties that influence learning strate-
gies. Trajectories are relatively short, typically 10–30 actions, which
limits temporal context compared to longer reinforcement learning
episodes. This brevity simplifies inspection and reduces computa-
tional cost, although it makes intention inference more difficult.
Each action depends on previous ones, reflecting the sequential
and deliberative nature of human reasoning. Misalignments often
stem from inconsistencies across steps, so models must be able to
capture temporal structure to accurately interpret behavior.

Additionally, each task includes trajectories from approximately
25 users, introducing a range of strategic variations. While this
enriches the dataset, it also challenges models to generalize across
different approaches without overfitting. Actions are compositional,
consisting of an Operation (e.g., rotate, paint) and a Selection
over the grid. This structure increases expressivity but also adds
modeling complexity, as suboptimal operations or incorrect selec-
tions may indicate user errors or misunderstandings. These com-
bined characteristics, including brevity, sequentiality, user diversity,
and compositionality, serve as the foundation for our analysis and
modeling assumptions.

B State Representation of Human Trajectories
Each state in the human trajectories from the ARCTraj dataset com-
prises several components that describe the task environment and
user interactions. These include the visible grid, object information,
background layout, and clipboard contents. In this study, however,
we focus solely on the grid representation, which captures the
essential information required for analyzing task-solving behavior
and misalignments.

Although our modeling relies solely on the grid state for sim-
plicity and generality, the complete state representation comprises
several distinct components that provide a richer, more nuanced
view of user behavior. These include:
• Grid: A 2D pixel array representing visible task state, includ-
ing object layout and background colors.
• Objects: Defined by user selections, with attributes such as
shape and position, which help capture structured changes.
• Background: Unselected grid regions that offer structural
context for interpreting task layout.
• Clipboard: Stores temporarily selected regions for opera-
tions such as copy and paste.

C Case Study: Task 53b68214

Task 53b68214

Figure 8: ARC Task 53b68214. The rule is to resize the grid
vertically to 10 and then fill the expanded region with the
original grid pattern.

C.1 Task Overview and Misalignment Examples
To demonstrate how misalignments can be identified using our
visualization tool, we present a case study of ARC Task 53b68214,
shown in Fig. 8. This task requires users to expand the vertical size
of the grid to 10 rows and then add a magenta zigzag pattern to the
newly appended lower region. Despite the rule’s apparent simplicity,
users must correctly understand and execute two distinct subgoals:
resizing the grid to the appropriate dimensions and generating a
non-trivial, spatially aligned color pattern. The final correct output
is a 10×10 grid, where the lower portion contains the addedmagenta
structure, aligned with task constraints. While the optimal solution
requires only a few precise and well-ordered operations, users
often diverged from this intended path, resulting in observable
misalignment patterns across their trajectories.

https://volotat.github.io/ARC-Game/
https://huggingface.co/datasets/SejinKimm/ARCTraj
https://huggingface.co/datasets/SejinKimm/ARCTraj
https://arc-editor.lab42.global/playground
https://o2arc.com
https://neoneye.github.io/arc/

Addressing and Visualizing Misalignments in Human Task-Solving Trajectories KDD ’25, August 3–7, 2025, Toronto, ON, Canada

By analyzing the trajectory graph from ARC Task 53b68214
(Fig. 9), we identified concrete instances for each of the three mis-
alignment categories introduced earlier. These cases show how
diverse user behaviors manifest as structural patterns in the graph,
highlighting the value of our misalignment detection framework.
• Functional Inadequacies in Tools: Although the task can
technically be solved using the available set of operations,
some users struggled to efficiently replicate the color pat-
tern after resizing. This is partly due to the lack of a grid-
preserving resize operation that automatically fills the ex-
panded space based on prior patterns. While adding such an
operation could improve efficiency, it may only apply to a
narrow set of tasks and could reduce generalizability.
• User Unfamiliarity with Tools: Several users exhibited
inefficient action sequences involving the repetitive use of
the paint tool to manually color individual pixels, despite
the system’s ability to support multi-pixel painting through
selection. This suggests a lack of awareness about more
efficient interaction techniques. These inefficient trajecto-
ries are primarily clustered on the left portion of the graph,
where multiple red nodes indicate failed attempts, including
frequent back-and-forth edits and excessive operations.
• Cognitive Dissonance in Users: Many users overlooked
resizing the grid to a 10 × 10 configuration, either skipping
the step entirely or resizing incorrectly. In addition, some
trajectories exhibit loops or cycles, such as performing an
action and then immediately undoing it, which reflects user
hesitation, low confidence, or task confusion. These behav-
iors are common in the top and bottom regions of the graph
and often precede final incorrect submissions, highlighting
difficulties in understanding task requirements.

Figure 9: Visualization of user trajectories for Task 53b68214.
Each node shows a distinct grid state with its visual over-
lay. Edges indicate user actions, and node colors mark initial
(blue), correct (green), incorrect (red), and intermediate (gray)
states. Clusters and edge density highlight common paths,
repeated strategies, and frequent misalignments across mul-
tiple users.

C.2 Visualization Details
We developed an interactive HTML-based graph visualization tool
to support large-scale, structured analysis of human trajectories
across ARC tasks. For each task, the tool automatically gener-
ates a standalone HTML file named after its ARC Task ID (e.g.,
53b68214.html), which visually presents all collected user trajec-
tories as a unified, interactive directed graph. In this graph, each
node corresponds to a unique grid configuration encountered at
some point in a trajectory, and each edge represents an operation
that transitions between states. Users can click on nodes to inspect
the grid as a 2D emoji array and hover over edges to view the
associated operation type and context.

To improve clarity, our main visualization omits the selection
component and focuses on operation types such as paint, rotate,
and paste. This simplification reduces visual clutter by minimizing
redundant nodes and edges that arise from selection-level variations.
Node colors indicate semantic roles: blue for the initial state, green
for the correct answer, red for incorrect submissions, and gray for
intermediate states. This concise view enables intuitive navigation
and comparison of strategies, revealing common behaviors and
divergence points across user trajectories (see Fig. 10).

Figure 10: Visualization of user trajectories for Task 53b68214
(simplified graph). Nodes represent grid states without selec-
tion information, enabling a clearer view of state transitions.
Clicking a node reveals its grid as a 2D emoji array. Colors
indicate initial (blue), correct (green), incorrect (red), and
intermediate (gray) states, supporting intuitive inspection of
user strategies.

In contrast, we also implemented a full-detail version with both
operation and selection in nodes and edges (Fig. 11). While
this variant enables fine-grained tracking, it greatly increases node
count and adds many self-loops, complicating the state space graph.
This complexity hindered pattern extraction and misalignment
analysis. We therefore focused on the simplified version without
selection, which offered a more tractable and interpretable view of
user trajectories.

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Sejin Kim, Hosung Lee, and Sundong Kim

Figure 11: Full-detail visualization of Task 53b68214 includ-
ing selection. Increased node and edge complexity limited
its utility for structural analysis.

C.3 Misalignment Detection
We applied our proposedMisalignment DetectionAlgorithm (Alg. 1)
to Task 53b68214 to show its ability to detect misalignment types in
user trajectories. The algorithm analyzes trajectory structure, action
types, and recurring patterns characteristic of the three misalign-
ment types, then labels the relevant sub-trajectories accordingly.

First, we identified Functional Inadequacies in Tools when
users showed valid intentions that could not be executed due to in-
terface limitations or missing functionality. In Task 53b68214, many
attempted to resize the grid while maintaining the existing lay-
out, reflecting a natural user expectation. However, the tool resets
the grid upon resizing, erasing prior content, and interrupting the
workflow. This required users to manually recreate progress from
scratch, introducing friction into what was otherwise a straightfor-
ward plan. These sub-trajectories, marked in green, appear early
in the task and reflect a gap between user expectations and tool
capabilities, especially for grid-preserving transformations.

Second, the algorithm highlights User Unfamiliarity with
Tools by spotting unnecessarily long and repetitive sub-trajectories.
A typical case is using the paint action two or three times to
color individual pixels, despite support for multi-pixel selection or
area-filling. These sequences, which a single action could easily
replace, are marked in yellow and usually appear near the task’s
end, reflecting limited tool fluency or interface knowledge. This
suggests that the user grasps the high-level goal but not the full
capabilities of the available toolset, resulting in redundant effort.

Figure 12: Sub-trajectories in ARC Task 53b68214, where the
proposed Misalignment Detection Algorithm (Alg. 1) identi-
fies types of user misalignment. Red-circled regions indicate
Cognitive Dissonance in Users, typically involving cyclic be-
havior such as undoing actions or navigating without a clear
goal. Yellow circles highlight User Unfamiliarity with Tools,
where users applied redundant sequences (e.g., repeated paint
operations) to achieve outcomes that simpler actions could
accomplish. Green ovals mark Functional Inadequacies in
Tools, where limitations (e.g., no resize with pattern preser-
vation) hinder users from expressing intended behavior. This
visualization illustrates how each misalignment type is rep-
resented in the trajectory structure, providing insights for
interface and model design.

Finally, we identified instances of Cognitive Dissonance in
Users by detecting cycles in trajectories. For example, when users
executed a paste followed by an undo, or returned to a prior state
after exploratory steps. These patterns suggest disorientation or
indecision, deviating from goal-directed reasoning and indicating
uncertainty about the correct course of action. Such behavior often
reflects a breakdown in planning or inconsistency in the user’s
evolvingmental model. These segments are marked in red in Fig. 12,
often near the center of the graph where exploration is dense.

This structured misalignment detection provides targeted feed-
back for both interface and model design improvements. Differenti-
ating between user error and tool limitation enables more informed
and impactful design decisions for developers. Understanding user
struggles supports UI refinement, curriculum guidance, and model
alignment with authentic human reasoning patterns. Mapping mis-
alignments on the trajectory graph reveals their frequency, spatial
distribution, and association with task complexity and interaction
patterns, helping to identify recurring issues and guide future im-
provements to tools and datasets.

	Abstract
	1 Introduction
	2 Related Work
	2.1 ARC Tasks and Human Trajectories
	2.2 Activity Theory and Misalignment Analysis

	3 Formalizing Misalignments in Human Trajectories
	3.1 Format of Human Trajectories
	3.2 Fundamental Concepts
	3.3 Three Types of Misalignments
	3.4 State Space Graph
	3.5 Misalignment Detection Algorithm

	4 Misalignment Analysis
	4.1 Action-Level Analysis
	4.2 Intention-Level Analysis
	4.3 Trajectory-Level Analysis

	5 Evaluating Intention-Aligned Trajectories
	5.1 Intention Prediction Algorithm
	5.2 Experiment
	5.3 Result
	5.4 Ablation

	6 Conclusion
	Acknowledgments
	References
	A Characteristics of Human Trajectories
	B State Representation of Human Trajectories
	C Case Study: Task 53b68214
	C.1 Task Overview and Misalignment Examples
	C.2 Visualization Details
	C.3 Misalignment Detection

